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Peter L. Flom, Peter Flom Consulting, New York, NY

ABSTRACT
In ordinary least squares (OLS) regression, we model the conditional mean of the response or dependent variable as a function
of one or more independent variables and we make assumptions about the distribution of the errors. But, just as the mean
is not a full description of a distribution, so modeling the mean is not a full description of a relationship between dependent
and independent variables; it may not even be an adequate one. I show how PROC QUANTREG can be used to perform
quantile regression, which models the conditional quantiles, rather than the mean. I also show how both QUANTREG and
ROBUSTREG can be used when the assumptions of OLS regression are violated.
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INTRODUCTION
In this paper, I discuss quantile regression and robust regression. I begin with descriptions and motivations for both methods,
then discuss implementation in SAS with PROC QUANTREG and PROC ROBUSTREG, and then illustrate their use with
examples.

MOTIVATION
There are at least two motivations for quantile regression and one for robust regression. First, quantile regression: Suppose our
dependent variable is bimodal or multimodal that is, it has multiple humps. If we knew what caused the bimodality, we could
separate on that variable and do stratified analysis, but if we dont know that, quantile regression might be good. OLS regression
will, here, be as misleading as relying on the mean as a measure of centrality for a bimodal distribution.

If our DV is highly skewed as, for example, income is in many countries we might be interested in what predicts the median
(which is the 50th percentile) or some other quantile; just as we usually report median income rather than mean income.

One more example is where our substantive interest is in people at the highest or lowest quantiles. For example, if studying the
spread of sexually transmitted diseases, we might record number of sexual partners that a person had in a given time period.
And we might be most interested in what predicts people with a great many partners, since they will be key parts of spreading
the disease.

Robust regression is designed primarily to deal with outliers of three types:

• Outliers in the dependent variable

• Possibly multivariate outliers in the independent variables - aka high leverage points

• Outliers in both of the above

Outliers and leverage points are common. Multivariate outliers can be very hard to identify, but they can have huge effects
on regression. By examining the effect that leaving each subject out of the regression has on the regression, we can see if the
leverage is problematic.

OLS regression makes assumptions. There are various things to do when these assumptions are violated. Methods such as
transforming variables or deleting outliers are often used and may sometimes be appropriate; but sometimes we do not want to
transform the variable and sometimes the outliers are interesting. Here, it is interesting to note that quantile regression makes
no assumptions about the distribution of the residuals and the various types of robust regression have ways to deal with them.

The examples below provides additional motivation.

QUANTILE REGRESSION
A TINY BIT OF QUANTILE REGRESSION THEORY
A quantile is ordinarily thought of as an order statistic. One type of quantile is the percentile, or 100-quantile. The pth
(sample)/(population) percentile is the value that is higher than p% of all the values in the (sample)/(population). More formally,
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the τ th quantile of X is defined as

F−1(τ) = inf[x : F(x)> τ]

where F is the distribution function of X.

The key bit of theory, as noted by Koenker and originally developed by Fox and Rubin is that this problem of sorting can be
converted into one of optimization. Specifically, the problem is to minimize

Eρt(X− x̂) = (τ−1)
∫ x̂

−∞

(x− x̂)dF(x)+ τ

∫
∞

x̂
(x− x̂)dF(x)

This allows relatively simple extension of the problem of ordinary least squares regression to quantile regression. For details,
see Koenker.

PROC QUANTREG
BASIC SYNTAX OF PROC QUANTREG
Here I outline the basic syntax of PROC QUANTREG and do not go over every detail. For that, you can always see the
documentation.

PROC QUANTREG <options> ;
CLASS variables ; *SAME AS OTHER PROCS;
MODEL response = independents </ options> ;
OUTPUT <OUT= SAS-data-set> <options> ;
PERFORMANCE <options> ;

As usual, the first statement invokes the procedure. There are also BY, ID, TEST, EFFECT and WEIGHT statements, all of
which operate similarly to other statistical procedures. The PROC QUANTREG statement has some options that are dissimilar
to other procedures. You can choose the algorithm and the method for calculating confidence intervals, but, as usual, SAS has
sensible defaults. Several of the algorithms need starting points, and you can specify these using the INEST statement. There
are many plotting options, dealt with below.

The key statement is the model statement. The usual syntax applies, but the options are different. The key option is the
QUANTILE option, the syntax of which is

QUANTILE=number-list | PROCESS

This option specifies the quantile levels for the quantile regression. You can specify any number of quantile levels in the
number list. You can also compute the entire quantile process by specifying the PROCESS option. Only the simplex algorithm
is available for computing the quantile process. The default is a median regression, which corresponds to QUANTILE=0.5.
The PROCESS option calculates the entire quantile process.

ODS GRAPHICS AND PROC QUANTREG
Graphics are always important evaluating models, but this is especially true in quantile regression. The volume of printed
output can become overwhelming, because if you (for example) run quantile regressions on the .05, .10 ... .95 quantile, that is
19 regressions, and there will be approximately the same amount of output as running 19 PROC GLMs. Fortunately, SAS now
offers excellent graphics that can be obtained relatively easily. Unfortunately, you need SAS Graph to run them, and one key
word here is ‘relatively’.

PROC ROBUSTREG

QUANTILE REGRESSION EXAMPLE: BIRTH WEIGHT DATA
INTRODUCTION
Predicting low birth weight is important because babies born at low weight are much more likely to have health complications
than babies of more typical weight. The usual approaches to this are either to model the mean birth weight as a function of
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various factors using OLS regression, or to dichotomize or otherwise categorize birth weight and then use some form of logistic
regression (either ‘normal’ or ordinal). Both these are inadequate. Modeling the mean is inadequate because, as we shall
see, different factors are important in modeling the mean and the lower quantiles. We are often interested in predicting which
mothers are likely to have the lowest weight babies, not the average birth weight of a particular group of mothers. Categorizing
the dependent variable is rarely a good idea, principally because it throws away useful information and treats people within
categories as the same. A typical cutoff value for low birth weight is 2.5 kg. Yet this implies that a baby born at 2.49 kg is the
same as a baby born at 1.0 kg, while one born at 2.51 kg is the same as one who is 4 kg. This is clearly not the case.

A VERY SIMPLE MODEL
In the SAS documentation for PROC QUANTREG, there is a program with a reasonable model for a set of birth weight data.
However, for illustrative purposes, it will be clearer to look at an unrealistically simple model, with only one independent
variable. One continuous variable is maternal weight gain. Perhaps the first graph to look at is a graph of the importance of the
parameters at each quantile. The code for such a model is

proc quantreg ci=sparsity/iid algorithm=interior(tolerance=1.e-4)
data=new;

class visit ed;
model weight = MomWtGain/quantile= 0.05 to 0.95 by 0.05

plot=quantplot;
run;

(The new data set simply has a ID added to the birth weight data, which we will need later).

Figure 1: Parameters by quantile

The left portion of this plot shows the predicted birth weight for each quantile, if the mother gains no weight. Not surprisingly,
it is monotone upwards, and roughly like a normal distribution. But the main interest is in the panel on the right. Maternal
weight gain makes much more difference in the lower quantiles than the upper ones (at least, in this oversimplified model). For
example, at the .1 quantile, each kg of weight gained by the mother relates to about 12 g gained by the baby. But at the upper
quantiles, it relates to only about 7.5 g.

Another graph is the fit plot, available when there is a single, continuous IV. This allows a more detailed look at the relationship
between the IV and the DV at different quantiles.
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Figure 2: Parameters by quantile

A FULLER MODEL

The fuller model used in the SAS example and adapted from Koenker includes the child’s sex, the mother’s marital status,
mother’s race, the mother’s age (as a quadratic), her educational status, whether she had prenatal care, and, if so, in which
trimester, whether she smokes, and, if so, how many cigarettes a day, and her weight gain (as a quadratic).

Mother’s marital status was coded as married vs. not married; race was either Black or White (it is not clear if mothers of other
races were simply excluded), mother’s education was coded as either less than high school (the reference category), high school
graduate, some college, or college graduate. Prenatal care was coded as none, first trimester (the reference category), second
trimester or third trimester. Mother’s weight gain and age were centered on the means. The SAS code for this model is

proc quantreg ci=sparsity/iid algorithm=interior(tolerance=1.e-4)
data=new;

class visit MomEdLevel;
model weight = black married boy visit MomEdLevel MomSmoke

cigsperday MomAge MomAge*MomAge
MomWtGain MomWtGain*MomWtGain/
quantile= 0.05 to 0.95 by 0.05
plot=quantplot;

run;

The quantile plots for this model are shown in the following four graphs
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Figure 3: Parameters by quantile
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Figure 4: Parameters by quantile, part 2
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Figure 5: Parameters by quantile, part 3
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Figure 6: Parameters by quantile, part 4

Figure 3 shows the effect of the intercept, the mother being Black, the mother being married and the child being a boy. The
intercept is the mean birth weight for each quantile for a baby girl born to a unmarried White woman who has less than high
school education, does not smoke, is the average age and gains the average amount of weight. Just about 5% of these babies
weigh less than the usual cut-off weight of 2,500 grams. Babies born to Black women are lighter than those born to White
women, and this effect is greater at the low end than elsewhere - the difference is about 280 grams at the 5%tile, 180 grams at
the median, and 160 grams at the 95%tile. Babies whose mothers were married weigh more than those whose mothers were
not, and the effect is relatively constant across quantiles. Boys weigh more than girls, and this effect is larger at the high end:
At the 5%tile boys weigh about 50 grams more than girls, but at the 95%tile the difference is over 100 grams.

Figure 4 shows the effects of prenatal care, and the first part of education, figure 5 shows the other education effects and the
effects of smoking. Finally, figure 6 shows the effects of maternal age and weight gain. These last two are somewhat harder to
interpret, as is always the case with quadratic effects compared to linear effects. One way to ameliorate this confusion is to plot
the predicted birth weight of babies for different maternal ages or weight gain, holding other variables constant at their means
or most common values. First, we get the predicted values by coding:

proc quantreg ci=sparsity/iid algorithm=interior(tolerance=1.e-4)
data=new;

class visit MomEdLevel;
model weight = black married boy visit MomEdLevel MomSmoke

cigsperday MomAge MomAge*MomAge
MomWtGain MomWtGain*MomWtGain/
quantile= 0.05 to 0.95 by 0.05;

output out = predictquant p = predquant;
run;
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then we subset this to get only the cases where the other values are their means or modes. First, for maternal age:

data mwtgaingraph;
set predictquant;
where black = 0 and married = 1 and boy = 1 and MomAge = 0 and MomSmoke = 0 and visit = 3 and MomEdLevel = 0;

run;

Then sort it:

proc sort data = mwtgaingraph;
by MomWtGain;
run;

Then graph it.

proc sgplot data = mwtgaingraph;
title ’Quantile fit plot for maternal weight gain’;
yaxis label = "Predicted birth weight";
series x = MomWtGain y = predquant1 /curvelabel = "5 %tile";
series x = MomWtGain y = predquant2/curvelabel = "10 %tile";
series x = MomWtGain y = predquant5/curvelabel = "25 %tile";
series x = MomWtGain y = predquant10/curvelabel = "50 %tile";
series x = MomWtGain y = predquant15/curvelabel = "75 %tile";
series x = MomWtGain y = predquant18/curvelabel = "90 %tile";
series x = MomWtGain y = predquant19/curvelabel = "95 %tile";

run;

which creates figure 7.
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Figure 7: Predicted birth weight by maternal weight gain

This is a fascinating graph! Note that the extreme quantiles are the ones where the quadratic effect is prominent. Further note
that mothers who either lose weight or gain a great deal of weight have much higher chances of having low birth weight babies
than women who gain a moderate amount. In addition, women who gain a great deal have higher chances of having extremely
large babies. This sort of finding confirms medical opinion, but is not something we could find with ordinary least squares
regression.

Doing the same thing for maternal age yields figure 8.
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Figure 8: Predicted birth weight by maternal age

In this graph we can see that the effect of age is not that huge, and the quadratic effect is so small that we might consider
simplifying the model by eliminating it. On the other hand, if the literature says that there should be strong quadratic effects
of maternal age, then either there is something odd about this data set or we have evidence counter to that claim. One thing to
note is that this data set spans a limited range of ages - all mothers were 18 to 45 years old. There might be strong effects that
occur at younger and older ages.

COMPARING PREDICTIONS
Of course, what you want is a procedure that actually works, not just one that has nice theory. On this data set, we can get
predicted values for the quantiles of birthweight from quantile regression and GLM regression, and compare them to the actual
weights. These are predicted values from the full model.

Quantile OLS predict Quantile predict Actual
5 3027 2479 2466
10 3109 2751 2722
25 3256 3082 3062
50 3396 3393 3402
75 3503 3704 3720
90 3587 3889 4026
95 3635 4172 4224

ROBUST REGRESSION
METHODS
SAS offers four methods of robust regression:
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• M estimation - computationally quick but not robust to leverage points. Good if the outliers are only in Y. Requires
3n+ 2p2 + 30p bytes of memory (where n = sample size and p = number of parameters). Usually converges quickly,
involves no resampling.

• LTS and S estimation - high breakdown methods (that is there can be a lot of contamination). S is more efficient,
statistically but LTS is faster. Requires np+12n+4p2 +60p bytes of memory and resampling.

• MM estimation - combines the best of the previous methods. The downside is longer computation time. Requires the
resources of both of the above.

A TINY BIT OF ROBUST REGRESSION THEORY
The essential idea of M estimation is to replace ordinary least squares with iteratively reweighted least squares. Ten different
weight functions are available, each with its own parameters. However, in most cases, the choice of weighting function makes
less difference than the choice of parameters. Examining the graphs of the weighting functions in the details section of the
documentation for ROBUSTREG makes it clear why this is so: Although the functions have some substantial differences, they
are all peaked in the middle. The difference is in

• Whether the peak of the function is

– Flat (as in Hamper, Huber and Talworth weights)

– Rounded (Andrews, bisquare, Cauchy, logistic, Welsch)

– A sharp point (Fair) or

– Infinite (Median)

• Whether the ends of the distribution are

– Cut off at some distance from the center (Andrews, bisquare, Hampel, Talworth)

– Asymptotically 0 (Cauchy, Fair, Huber, logistic, median, Welsch)

The default is bisquare.

For LTS and S estimation, the key idea is to choose a subset of between half and all of the observations that has the smallest
sum of squared residuals. Details of how this is done are in the documentation and references cited there.

MM estimation combines the two

1. Finding an LTS (by default) or S estimate

2. Finding σ̂ such that
1

n− p

n

∑
i=1

χ

(
yi− x′iθ

′

σ̂ ′

)
where β =

∫
χ(s)dΦ(s) and χ is either Tukey’s bisquare function (the default) or Yohai’s optimal function.

3. Finding a local minimum θ̂MM of

QMM =
n

∑
i=1

ρ

(
yi− xiθ

σ̂

)
such that QMM(θ̂MM)≤ QMM(θ̂). ρ has the same choices as χ above.

BASIC SYNTAX OF PROC ROUBUSTREG
Again I only show some main options.

PROC ROBUSTREG <options> ;
BY variables ;
CLASS variables ;
EFFECT name=effect-type(variables </ options>) ;
ID variables ;
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MODEL response = <effects> </ options> ;
OUTPUT <OUT=SAS-data-set> keyword=name <keyword=name> ;
PERFORMANCE <options> ;
TEST effects ;
WEIGHT variable ;

most of these are familiar from other SAS procedures. The PERFORMANCE statement offers options to track and improve
performance in terms of speed of computation. The options for the PROC ROBUSTREG statement include METHOD to
specify method and each method has many of its own options; as usual SAS has sensible defaults.

ROBUST REGRESSION EXAMPLE: CONTAMINATED WEIGHTS AND HEIGHTS

Suppose that, in stat methods 101, you want to show an example of simple linear regression. Last year, a colleague who teaches
Psychology 101 did a survey of the relationship between height and weight in his class. He knew well enough to separate the
men and women. But, unbeknownst to him, the football coach had recommended the class and eleven of the team had decided
to take it together. We can generate this sort of data with this code:

data a (drop=i);
do i=1 to 100;

if i < 90 then
do;
height = 70+rannor(1234)*3;

weight = height*2.5 + rannor(1234)*8;
end;

else do;
height = 78 + rannor(1234)*4;

weight = height*3.4 + rannor(1234)*8;
end;

output;
end;

run;

We run OLS regression on these data and get rather odd parameter estimates - the intercept is -267 and the parameter for height
is 6.35, which is not only higher than that for the 89 students who are not football players, it’s higher than that for the football
players as well. The diagnostics plots (figure 9) make it clear that there are high leverage points.
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Figure 9: Diagnostic plots for OLS regression, height weight data

The clearest depiction of the reason for the odd result is the fit plot (figure 10: The regression line is affected by trying to fit
both groups of data.
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Figure 10: Fit plot, OLS regression, height weight data

Next we run robust regression with the default M estimation. This gives us warnings that there are high leverage points, so we
try MM estimation instead.

proc robustreg data = a plots = all method = mm;
model weight = height;

run;

this gives much more reasonable parameter estimates: The intercept is -17.7 and the slope 2.75. The fit plot (figure 11 shows
that robust regression is fitting the main data very well.
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Figure 11: Fit plot, MM regression, height weight data

Further, the ddplot shows that there are 11 outliers (just as we expected) and five of these are also leverage points.

CHOOSING AMONG QUANTILE REGRESSION, ROBUST REGRESSION AND OLS REGRES-
SION
If the assumptions of OLS regression are met and your interest is only in predicting or explaining the mean, then OLS regression
is fine. It will require less explanation than the other methods and the procedure will run faster (although this is only an issue
for quite large data sets). However, when the assumptions are not met, it is difficult to know how the violations will affect the
results. Although Monte Carlo results can be useful, regression is used in such a wide variety of contexts that there may be no
such results that match your situation (and it may be hard to find them, even if they exist).

How then to decide between robust and quantile regression? The goals of the two methods are quite different. Robust regression
attempts to minimize the effect of outliers and leverage points; if you think your data may be contaminated then it is a good
choice. But perhaps those outliers and leverage points are important (as in the birth weight example). If they are, then quantile
regression works better. In addition, the goal of robust regression is to generate accurate parameter estimates. The goal of
quantile regression is to generate accurate estimated values. If we use quantile regression on the height weight data, the
parameter estimates for the median are similar to the parameter estimates for OLS regression. This fits the data quite well, but
does not match the parameters that we know the data have.

SUMMARY
Quantile regression and robust regression are valuable tools in the data analyst’s arsenal, and PROCs QUANTREG and RO-
BUSTREG make it straightforward to apply them.
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