
1

Paper S1-09-2013

Introducing a Colorful Proc Tabulate
Ben Cochran, The Bedford Group, Raleigh, NC

ABSTRACT
Several years ago, one of my clients was in the business of selling reports to hospitals. He used PROC TABULATE
to generate part of these reports. He liked the way this procedure 'crunched the numbers', but not the way the final
reports looked. He said he would go broke if he had to sell default PROC TABULATE output. So, he wrote his own
routine to take TABULATE output and render it through Crystal Reports. This was in during the days of the 6.12
release of SAS before there was something called the Output Delivery System (ODS). Once he got his hands on
SAS ODS, he kissed his Crystal Reports good-bye. This paper is all about using PROC TABULATE to generate
fantastic looking reports. If you want to generate BIG money reports with PROC TABULATE, this presentation is for
you.

INTRODUCTION
The TABLUATE procedure offers the same statistics as many of the other SAS procedures found in the Base SAS
product such as MEANS, SUMMARY and REPORT. In addition to this, the TABULATE procedure provides flexible
report writing features such as:

 flexible table construction
 multiple dimensions
 use of labels and formats
 customization with the Output Delivery System (ODS) statements and options.

The general form of the TABULATE step is:

These are the basic statements to get started with this procedure. The CLASS statement allows you to specify the
categorical (or class) variables. The VAR statement allows you to specify analysis variables. The TABLE
statement is the real work horse of this procedure. You can use special characters to construct a fairly elaborate
report. There are many other statements that can be used to make this procedure quite powerful such as :

 BY
 CLASSLEV
 FREQ
 KEYLEVEL
 WEIGHT

Most of these statements will be illustrated in upcoming examples.

The TABLE statement is used to construct the report. The table format along with statistics and variables are
specified here. Before variables can be used on the TABLE statement, they must be mentioned on the VAR or
CLASS statements first. The 'shape' of the report is controlled by TABLE statement operators.

PROC TABULATE data = SAS-data-set options ;
 class variables ;
 var variables ;
 table expression;
run;

Operator Symbol Task

Comma , determines the number of dimensions
Asterisk * cross, subgroup or 'within'
Blank table concatenator
Parenthesis () grouping agent
Brackets < > specifies denominator definitions
Equal = assigns labels or formats

2

One of the most important TABLE statement operators to initially focus on is the comma. When there is not a
comma present, the report has only one dimension (column). When there is only one comma in the TABLE
statement, there are two dimensions (row, column). When there are two commas in the TABLE statement, there are
three dimensions (page, row, column).

GETTING STARTED
This paper presents a several examples of PROC TABULATE ranging from fairly simple to more complex that
illustrate the power and flexibility of this procedure. The data that is used is derived from the SASHELP.PM
dataset. Only the first 18 rows are shown here.

Figure 1. .

EXAMPLE 1:

Use multiple TABLE statements in one step to generate multiple reports.
.

 Example 1 program.

PROC TABULATE data = SASHELP.pm;
 class hub ;
 var income;
 table hub * n;
 table hub * income * sum ;
run;

3

Example 1 Output.
Because there are NO commas in either TABLE statement, both reports are only one dimensional (column). There
is a column for each value of HUB. The first TABLE statement (Table HUB * N ;) generates a report that shows a
frequency count (N statistic) per HUB. The default format, 12.2, controls the number of decimal places. The second
TABLE statement (Table HUB * INCOME * SUM ;) generates a report that has a column for each HUB and displays
the total INCOME for that HUB.

EXAMPLE 2:

Use multiple CLASS variables to generate a two dimensional report.

Example 2 program.

Example 2 output

The FORMAT = option on the PROC statement controls the appearance of the whole report. On the TABLE
statement, there is one comma, which means the report has 2 dimensions. Starting with the keyword TABLE and
moving to the left, everything up to the comma goes in the row dimension. Everything after the comma goes in
the column dimension. You can have a third, or page, dimension in your report, but this paper only shows one and
two dimensional reports.

EXAMPLE 3:

Display multiple statistics and use an OUT = option to create a SAS dataset,

Example 3 program.

PROC TABULATE data = SASHELP.pm format=comma12.2;
 class year type ;
 var income;
 where type in ('777', '747');
 table year, type * income * sum ;
run;

PROC TABULATE data = SASHELP.pm format=comma12.2 out = pm;
 class hub ;
 var income;
 table hub, income * (n sum mean max mode);
run;

4

This step generates two forms of output. The first is the report that is generated from the procedure, and the second
is the output dataset created from the OUT= option on the PROC statement. Both types of output are shown in this
paper.

Example 3 output – the WORK.PM dataset

Example 3 output – the report.

EXAMPLE 4:

Use an '=' operator to create blank labels for TYPE and SUM.

 Example 4 program.

The '=' can be used to display text in the report. On the TABLE statement, it is used twice: once after the TYPE
variable, and once after the SUM statistic. Both times, the text is set to a blank. This has the effect of 'blanking' out
the words TYPE and SUM. Notice that they are in Example 2 output. TYPE is at the top of the report in line one,
and SUM is on line 3 of that report. In this example, those words are not displayed. .

PROC TABULATE data = SASHELP.pm format=comma12.2 ;
 class hub type;
 var income;
 where type in('777', '747');
 table hub, type = ' ' * income * sum = ' ';
run;

5

Example 4 output.

EXAMPLE 5:

Enhance the program by adding the 'f=' and the rts option. Include the special ALL variable.

Example 5 program

PROC TABULATE data = SASHELP.pm format=comma12.2 ;
 class hub type;
 var income;
 where type in('777', '747');
 table hub all, type * income * sum = ' '
 all = 'Total' * income * sum = ' ' f=dollar12.2 / rts = 12;
run;

6

Example 5 output.

Column and row totals were added to this example by using the special variable ALL in both dimensions. ALL creates
totals in either the row or the column dimension. In the column dimension, the ='Total' option was used so that ALL
is not displayed like it is in the row dimension. Also, the f= option is used in the column dimension to control the
format for the total column. Notice the ALL column is the only column where dollar signs appear.

Output Delivery System (ODS) components can be used to enhance this report. Although there are many
components to ODS, this paper only looks at the STYLE= option. The screen capture below illustrates the type of
things that can be done to add color to the last report.

This chart serves as the 'gameplan' for the next report.

EXAMPLE 6:

Use the STYLE = options in the PROC TABULATE step to produce a 'colorful' report.

7

 Example 6 program.

Example 6 output.

EXAMPLE 7:

Modify the program by using different style attributes. Define a URL to be used as a hyperlink in the BOX= option.
Link the PROC TABULATE output to a spreadsheet. Note: The ODS statements directing this output to a PDF
are not included in this screen capture.

8

Example 7 program.

Notice the URL= option within the BOX=option. This creates a link for the label 'New Flights'. When this label is
selected in the report, the newflights.xls spreadsheet opens.

Example 7 output.

The text 'New Flights' has been defined as the link to the spreadsheet. When you click on 'New Flights', the
spreadsheet below opens.

9

NewFlights.xls.

DOING MORE WITH STATISTICS
The TABULATE procedure can calculate the following descriptive statistics:

 COLPCTN COLPCTSUM NMISS MIN MAX VAR CV MODE
 KURTOSIS ROWPCTN ROWPCTSUM SUMWGT CSS USS RANGE STD
 SKEWNESS REPPCTN REPPCTSUM STDERR SUM MEAN STDERR N
 LCLM UCLM PAGEPCTN PAGEPCTSUM PCTN PCTSUM STD STDDEV

Starting with example 8, the SASHELP.CLASS dataset is used to generate PROC TABULATE reports.

EXAMPLE 8:

Illustrate the N, SUM, PCTN and the PCTSUM statistics. Note: the following program was run in Enterprise Guide.
The STYLE = option on the TABLE statement gives the TOTAL row a yellow background.

Example 8 program

10

Example 8 output.

PCTN and PCTSUM are calculated as follows:
The TOTAL number of observations (N) is 19. For each cell in the PCTN column the formula is:
 PCTN (cell) = N / 19 * 100.

The SUM of all the student’s HEIGHT is 1,184.40.
 PCTSUM (cell) = SUM / 1184 * 100.

EXAMPLE 8B:

Illustrate the N, SUM, ROWPCTN and the ROWPCTSUM statistics. A second class variable (SEX) is added to the
TABLE statement to give the report a two dimensional appearance. Because the new class variable is in the column
dimension, there will be a group of columns for each gender.

Example 8B program.

Example 8B output.

11

When the two RowPctN columns are added together, they total 100. Also, when the two RowPctSum columns are
added together, they also total 100. For RowPct statistics, the formula is as follows:

RowPctN = N (single cell) / Row Total for N.

RowPctSum = SUM (single cell) / Row total for Sum.

EXAMPLE 8C:

Use the denominator definitions as an alternative way to create percentages that add to 100 across the row. Prior to
the development of RowPctN and RowPctSum, denominator definitions ' < > ' were used to control the calculation of
the statistics.

Example 8C program.

Notice the use of Proc FORMAT to create a Percent 'picture'. It is applied only to the PctSum column.

Example 8C output.

EXAMPLE 8D:

Modify the previous program by adding STYLE = options and the Keyword ALL to the Column dimension. Note that
STYLE = can be abbreviated as S=.

12

Example 8D program.

Also notice that since both RowPctN and RowPctSum add up to 100, only one statistical column is used in the ALL
section of the column dimension.

Example 8D output.

EXAMPLE 9:

Write a PROC TABULATE step that illustrates the use of the ColPctN and ColPctSum statistics.

Example 9 program.

Notice that the keyword ALL has been added to the ROW dimension. The ColPctN and ColPctSum columns add
up to 100 percent within each value of the SEX variable.

13

Example 9 output.

CONCLUSION
TABULATE is a very useful procedure in the SAS report writing arsenal. It can deploy many statistics to crunch the
numbers, then display them in a number of ways. The addition of ODS as an enhancement with version 8 SAS
makes this procedure even more valuable.

ACKNOWLEDGMENTS
As always, I would like to thank the people in the Technical Support department of SAS Institute for their kind and
helpful assistance for this past year. Their knowledge helped make this presentation possible.

CONTACT INFORMATION
If you have any questions or comments, the author can be reached at:

Ben Cochran
The Bedford Group
3224 Bedford Avenue
Raleigh, NC 27607
Work Phone: 919.741.0370
Email: bencochran@nc.rr.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

