Paper S1-09-2013

Introducing a Colorful Proc Tabulate
Ben Cochran, The Bedford Group, Raleigh, NC

ABSTRACT

Several years ago, one of my clients was in the business of selling reports to hospitals. He used PROC TABULATE
to generate part of these reports. He liked the way this procedure ‘crunched the numbers', but not the way the final
reports looked. He said he would go broke if he had to sell default PROC TABULATE output. So, he wrote his own
routine to take TABULATE output and render it through Crystal Reports. This was in during the days of the 6.12
release of SAS before there was something called the Output Delivery System (ODS). Once he got his hands on
SAS ODS, he kissed his Crystal Reports good-bye. This paper is all about using PROC TABULATE to generate
fantastic looking reports. If you want to generate BIG money reports with PROC TABULATE, this presentation is for
you.

INTRODUCTION
The TABLUATE procedure offers the same statistics as many of the other SAS procedures found in the Base SAS
product such as MEANS, SUMMARY and REPORT. In addition to this, the TABULATE procedure provides flexible
report writing features such as:

o flexible table construction

e multiple dimensions

e use of labels and formats

e customization with the Output Delivery System (ODS) statements and options.

The general form of the TABULATE step is:

PROC TABULATE data = SAS-data-set options ;
class variables ;
var variables ;
table expression;

run;

These are the basic statements to get started with this procedure. The CLASS statement allows you to specify the
categorical (or class) variables. The VAR statement allows you to specify analysis variables. The TABLE
statement is the real work horse of this procedure. You can use special characters to construct a fairly elaborate
report. There are many other statements that can be used to make this procedure quite powerful such as :

e BY

e CLASSLEV
e FREQ

e KEYLEVEL
e WEIGHT

Most of these statements will be illustrated in upcoming examples.

The TABLE statement is used to construct the report. The table format along with statistics and variables are
specified here. Before variables can be used on the TABLE statement, they must be mentioned on the VAR or
CLASS statements first. The 'shape' of the report is controlled by TABLE statement operators.

Operator Symbol Task

Comma , determines the number of dimensions
Asterisk * cross, subgroup or ‘within'

Blank table concatenator

Parenthesis () grouping agent

Brackets <> specifies denominator definitions
Equal = assigns labels or formats

One of the most important TABLE statement operators to initially focus on is the comma. When there is not a
comma present, the report has only one dimension (column). When there is only one comma in the TABLE
statement, there are two dimensions (row, column). When there are two commas in the TABLE statement, there are
three dimensions (page, row, column).

GETTING STARTED

This paper presents a several examples of PROC TABULATE ranging from fairly simple to more complex that
illustrate the power and flexibility of this procedure. The data that is used is derived from the SASHELP.PM
dataset. Only the first 18 rows are shown here.

Obs= Hub Country TYPE City INCOME OVERHEAD Year
1 London Australia MD11 fActon 288.24 230.59 Last
2 London Australia MD11 fActon L23.24 418.59 This
3 London fiustralia MD11 fAicton 1,500.24 1,200.19 This
4 London Australia MD11 fActon 1,660.57 1,328.45 This
LY London Australia DC10 fActon 499. 24 394 .40 Last
[London Australia DC10 fActon L23.24 413. 36 This
Fil London Australia DC10 fActon 804 .24 635. 35 This
8 London Australia DC10 fActon 874.62 690,95 This
9 San Fran Australia A300 fActon 198.24 152 .64 Last
10 San Fran Australia A300 fActon L23.24 402 .89 This
11 San Fran Australia A300 fActon 1,308.24 1,007.34 This
12 San Fran Australia A300 fActon 1,340.82 1,032.43 This
13 Hew York Australia MD11 Me lbourne £29.00 322.69 Last
14 Hew York Australia MD11 Me lbourne 1,170.00 f13.70 This
15 Hew York Australia MD11 Me lbourne 1,596.00 973.56 This
16 Hew York Australia MD11 Me lbourne 1,876.61 1,144.73 This
17 Sydney Australia DC10 Me lbourne 628.71 421.24 Last
18 Sydney Australia DC10 Me lbourne 251.29 168.36 This

Figure 1.

EXAMPLE 1:

Use multiple TABLE statements in one step to generate multiple reports.

PROC TABULATE data = SASHELP.pm;
class hub ;
var income;
table hub * n;
table hub * Income * sum ;
run;

Example 1 program.

Hub
Frankfrt London HNew York San Fran Sydney Tokyvo
N | | N N |
32.00 ¥6.00 96.00 76.00 112.00 60.00
Hub
Frankfrt London Hew York San Fran Sydney Tokyvo
INCOME INCOME INCOME INCOME INCOME INCOME
Sum Sum Sum Sum Sum Sum
99128.02 161560, 84 73164.91 102212.65 238586.14 133330.27

Example 1 Output.

Because there are NO commas in either TABLE statement, both reports are only one dimensional (column). There
is a column for each value of HUB. The first TABLE statement (Table HUB * N ;) generates a report that shows a
frequency count (N statistic) per HUB. The default format, 12.2, controls the number of decimal places. The second
TABLE statement (Table HUB * INCOME * SUM ;) generates a report that has a column for each HUB and displays
the total INCOME for that HUB.

EXAMPLE 2:
Use multiple CLASS variables to generate a two dimensional report.

PROC TABULATE data = SASHELP.pm format=commal2.2;
class year type ;
var income;
where type in (777", "747%);
table year, type * Income * sum ;
run;

Example 2 program.

TYPE
747 [
INCOME INCOME
Sum Sum
Year
Last 23,999.19 45,720.71
This 131,694 .67 177,846.53

Example 2 output

The FORMAT = option on the PROC statement controls the appearance of the whole report. On the TABLE
statement, there is one comma, which means the report has 2 dimensions. Starting with the keyword TABLE and

moving to the left, everything up to the comma goes in the row dimension. Everything after the comma goes in
the column dimension. You can have a third, or page, dimension in your report, but this paper only shows one and
two dimensional reports.

EXAMPLE 3:
Display multiple statistics and use an OUT = option to create a SAS dataset,

PROC TABULATE data = SASHELP.pm format=commal2.2 out = pm;
class hub ;
var income;
table hub, income * (n sum mean max mode);

run;

Example 3 program.

This step generates two forms of output. The first is the report that is generated from the procedure, and the second
is the output dataset created from the OUT= option on the PROC statement. Both types of output are shown in this
paper.

- VIEWTABLE: Work.Pm

Hub _TYPE_
Franldrt 1
London 1
Mew Yorc 1
1
1
1

INCOME_N

(s

[X=]

San Fran
Sydrey
Tokyo

ey | em | | e [P | —

—_

—_ e i
—

0 =

(=T RN = - I

Example 3 output — the WORK.PM dataset

INCOME
| Sum Mean Max Mode

Hub

Frankfrt 92.00]| 99,128.02 1,077.48 4,703.86 435.15
London ¥f6.00|161,560.84 2,125.80| 19,833.95 523.24
New York 96.00| 73,164.91 762.13 3.615.85 556.00
San Fran f6.00(102,212.65 1,344.90 7,100.00

Sydney 112.00|238,586.14 2,130.23| 14,595.25 428 .40
Tokvo 60.00(133,330.27 2,222.17| 17,300.80

Example 3 output — the report.

EXAMPLE 4:
Use an '=' operator to create blank labels for TYPE and SUM.

PROC TABULATE data = SASHELP.pm format=commal2.2 ;
class hub type;

var income;
where type in("777%, "747%);
table hub, type = " " * income * sum = " *;

run;

Example 4 program.

The '=' can be used to display text in the report. On the TABLE statement, it is used twice: once after the TYPE
variable, and once after the SUM statistic. Both times, the text is set to a blank. This has the effect of 'blanking' out
the words TYPE and SUM. Notice that they are in Example 2 output. TYPE is at the top of the report in line one,
and SUM is on line 3 of that report. In this example, those words are not displayed. .

747 e

| NCOME INCOME
Hub
Frankfrt 40,993 .42 6,290.07
London 14,024 .67 26,122.65
New York 14,547.88 15,100.79
San Fran 24,174 .57 32,769.05
Sydney 56,210.43 63,354.74
Tokvo 5,742 .90 ¥9.929.94

Example 4 output.

EXAMPLE 5:
Enhance the program by adding the 'f=" and the rts option. Include the special ALL variable.

PROC TABULATE data = SASHELP.pm format=commal2.2 ;
class hub type;
var income;
where type in("777%, “747%);
table hub all, type * income * sum
all = "Total®™ * income * sum

" " f=dollarl2.2 / rts = 12;

run;

Example 5 program

TYPE

47 i Total

INCOME INCOME INCOME
HUB
FRANKFRT 40,993 .42 6,290.907 547 ,283.48
LONDON 14,024 .67 26,122 .65 540,147 .32
NEW TORK 14,547.88 15,100.79 $29,648.68
SN FRAN 24,174.57 32,769.0% $56,943.61
SYDHEY 56,210.43 63,354 .74| %119,565.17
TOKYO 5,742.90 79,929.94 585,672.84
fll 155,693 .86 223,567 _24| %379,261.10

Example 5 output.

Column and row totals were added to this example by using the special variable ALL in both dimensions. ALL creates
in either the row or the column dimension. In the column dimension, the ='Total' option was used so that ALL

totals
is not

displayed like it is in the row dimension. Also, the f= option is used in the column dimension to control the

format for the total column. Notice the ALL column is the only column where dollar signs appear.

Output Delivery System (ODS) components can be used to enhance this report. Although there are many

components to ODS, this paper only looks at the STYLE= option. The screen capture below illustrates the type of

things that can be done to add color to the last report.

Flights 747 ™

INCOME ECDM?‘@COHE
CLASSLEV statement ... {background=orange]

FRANKERT [)«0993.42| 620007| sen2mss] - CLASSLEV statement ... {background=pink]

The STYLE = (COMPONENT) = {attribute = value } syntax can also be
used to control the appearance of the report.

The following 'COMPONENTS’ can be controlled by the STYLE = option:

Box = option {background=cxbbffbb)

CLASS statement .. {background=red]
'/VAR statement ... [background=yellow]

New
Total

LONDON 1402467| 26122854570,147 32

NEW YORK | s #735] 1500079 | s2964863) _ ry\WORD statement . [background=cxffffaal
SANFRAN | [2417457| 3276005 | $56333-67]

SYDNEY 56,1043 | 63,354345119,565 17

TOKYO J 5740301 7992994 | 58567284

All

T o1 86 | 223 56724 | $379,261.10

This chart serves as the 'gameplan’ for the next report.

EXAMPLE 6:
Use the STYLE = options in the PROC TABULATE step to produce a ‘colorful' report.

ods pdf file="mypdf.pdf’;

proc tabulate data=sas_1.pm format =
class hub type / style={font_face=arial hackgrnund =red];
classlev hub / style={background=pink};
classlev type / stylE=[hackgruund=urangel;
var income /' style={background=yellow};
keyword all !/ style={background=cxffffaal;
vhere type in('747°,'777°);
table hub all, type * income *sum='
all="Total' * income * sum=" ‘*f=
/S rts=12 box={1abel="New Flights'
style={background=cxbbffbb font face=arial font size=4}};

run;

ods pdf close;

Example 6 program.

New
Flights 747 777 Total

INCOME |INCOME | INCOME

FRANKEIRT | 4099342 6,290.07 | 34728348
LONDON 1402467 | 2512265 | 14014732
NEWYORK | 14354788 1510079 | 12064868
SAN FRAN 2417457 | 3276905 | 15694361

SYDNEY 56,21043 | 6335474 (5119356517
TOKYO 574290 | 7992904 185672384
All 155,693 86 | 22356724 | $379261.10

Example 6 output.

EXAMPLE 7:

Modify the program by using different style attributes. Define a URL to be used as a hyperlink in the BOX= option.
Link the PROC TABULATE output to a spreadsheet. Note: The ODS statements directing this output to a PDF
are not included in this screen capture.

proc tabulate data=sas_1.pm T=15.2 s={font_face=arial } ;

var income;

class hub type;

where type in('747', '777');

keyword all;

table hub all, type * income * sum=' '
all='Total' * income * sum = ' ' * f=dollari2.2 /
rts=12 box={label='New Flights' style=
{ url='c:\newflights.x1ls' background=light yellow} } ;

run;
Example 7 program.

Notice the URL= option within the BOX=option. This creates a link for the label '‘New Flights'. When this label is
selected in the report, the newflights.xls spreadsheet opens.

TYPE
New Flights 747 777 Total
INCOME |[INCOME | INCOME

HUB
FRANKFRT | 4099342 6230.07| $47.283.48
LONDON 14024 67| 2612265 34014732
NEW YORK | 14547.88| 15100.79| 3$29.648.68
SANFRAN | 2417457 | 32769.05| 556,943.61

SYDNEY 5621043 63354.74| 511956517
TOKYO 574290 7992994 38567284
All 155693.86 | 223567.24| $379.261.10

Example 7 output.

The text 'New Flights' has been defined as the link to the spreadsheet. When you click on 'New Flights', the
spreadsheet below opens.

[#] Results Viewer - newflights
H11 | =
A, B C O E
1 Hub Type Location Time
Z |Frankfort Deparing Faris 8:30
3 |Frankfort Departing Krakow 9:30
4 |Frankfort | Arriving Faris 14:30
b |Frankfort Arriving Krakow 16:45
b | Tokyo Deparing | Sydney B30
/| Tokyo Deparing |Osaka 730
B |Tokyo Arriving oycney 11:30
8 Tokyo Arriving Osaka 1315
10 |London Departing harrakesh 10:22
|11 |Londan Departing Dukblin 11:15
12 |London Arriving tdarrakesh 15:22
13 |London Arriving Dublin 19:45
14
M4 4 ¥ M new

NewFlights.xIs.

DOING MORE WITH STATISTICS
The TABULATE procedure can calculate the following descriptive statistics:
e COLPCTN COLPCTSUM NMISS MIN MAX VAR CV MODE
¢ KURTOSIS ROWPCTN ROWPCTSUM SUMWGT CSS USS RANGE STD
¢ SKEWNESS REPPCTN REPPCTSUM STDERR SUM MEAN STDERR N
o LCLM UCLM PAGEPCTN PAGEPCTSUM PCTN PCTSUM STD STDDEV
Starting with example 8, the SASHELP.CLASS dataset is used to generate PROC TABULATE reports.

EXAMPLE 8:
lllustrate the N, SUM, PCTN and the PCTSUM statistics. Note: the following program was run in Enterprise Guide.
The STYLE = option on the TABLE statement gives the TOTAL row a yellow background.

proc tabulate data = sashelp.class Tormat=commaiz.Z2;
class sex age;
var height ;
table age all='Total' * [
height * (n sum pctn pctsum);
keyword all /[style = {background=yellow};

[style = | background=yellow]] J.

run;

Example 8 program

Example 8 output.

PCTN and PCTSUM are calculated as follows:

The TOTAL number of observations (N) is 19. For each cell in the PCTN column the formula is:
PCTN (cell) =N /19 * 100.

The SUM of all the student’s HEIGHT is 1,184.40.
PCTSUM (cell) = SUM / 1184 * 100.

EXAMPLE 8B:

lllustrate the N, SUM, ROWPCTN and the ROWPCTSUM statistics. A second class variable (SEX) is added to the
TABLE statement to give the report a two dimensional appearance. Because the new class variable is in the column
dimension, there will be a group of columns for each gender.

-proc tabulate data = sashelp.class format=commai2.2;
class sex age:
var height :
table age, sex * height * (n sum rowpctn rowpctsum)
run;

Example 8B program.

Sex
F M
Height Height

N[Sum | RowPctN | RowPctSum N| Sum | RowPctN | RowPctSum
Age
11 11 51.30 50.00 47151 57.50 50.00 5285
12 | 2| 116.10 40.00 39.06(3[181.10 60.00 60.94
13 | 2| 121.80 66.67 66.09| 1| 62.50 33.33 33.91
14 | 2| 12710 50.00 4896 2| 132.50 50.00 51.04
15 | 2| 129.00 50.00 4914 2| 133.50 50.00 50.86
16 1 7200 100.00 100.00)

Example 8B output.

10

When the two RowPctN columns are added together, they total 100. Also, when the two RowPctSum columns are
added together, they also total 100. For RowPct statistics, the formula is as follows:

RowPctN = N (single cell) / Row Total for N.

RowPctSum = SUM (single cell) / Row total for Sum.

EXAMPLE 8C:

Use the denominator definitions as an alternative way to create percentages that add to 100 across the row. Prior to
the development of RowPctN and RowPctSum, denominator definitions ' < >" were used to control the calculation of
the statistics.

- proc format;
picture pfmt low-hight = ' 009.99%" ;
- proc tabulate data = sashelp.class format=commai2.2;
class sex age;
var height ;
table age, sex * height * (n sum pctn<sex> pctsum<=sex>*fT=pTmt.)};
run;

Example 8C program.

Notice the use of Proc FORMAT to create a Percent 'picture’. It is applied only to the PctSum column.

Sex
F M
Height Height
N| Sum | PctN [PctSum [N| Sum | PctN | PctSum
Age

11 1 51.30|50.00) 4715%| 1| 57.50| 50.00| 52.84%
12 | 2| 11610 40.00| 39.06%| 3| 181.10] 60.00| 60.93%
13 | 2| 121.80|66.67| 66.08%| 1| G2.50| 33.33| 33.91%
14 | 2| 12710\ 50.00| 48.95%| 2| 132.50] 50.00(51.04%
15 | 2| 129.00\50.00| 4914%| 2| 133.50] 50.00| 50.85%

1

16 72.001 100.00{ 100.00%

Example 8C output.

EXAMPLE 8D:

Modify the previous program by adding STYLE = options and the Keyword ALL to the Column dimension. Note that
STYLE = can be abbreviated as S=.

11

- proc tabulate data = sashelp.class fTormat=commaiz.Z;

class sex age;

var height ;

table age, sex * height * (n sum rowpctn®*[s=[background=pink]]

rowpctsum*[style=[background=yellow]] }
all * height * (n sum rowpctn='Percent'*[s=[background=orange]]):
keyword rowpctn [/ style=[background=red];
run;

Example 8D program.

Also notice that since both RowPctN and RowPctSum add up to 100, only one statistical column is used in the ALL
section of the column dimension.

Sex
F M All
Height Height Height
N| Sum iﬂanctSum N| Sum iﬂanctSum N| Sum

Age
11 | 1] 51.30 50.00 47.15| 1| 57.50 50.00 52.85| 2| 108.80
12 | 2| 116.10 40.00 39.06(3] 181.10 60.00 60.94| 5| 297.20
13 | 2 121.80 66.67 66.09(1] 62.50 33.33 33.91| 3| 184.30
14 | 2{ 12710 50.00 48.96| 2| 132.50 50.00 51.04| 4| 259.60
15 | 2] 129.00 50.00 49.14| 2| 133.50 50.00 50.86| 4| 262.50
16 A1 7200 100.00 100.00) 1] 72.00]

Example 8D output.

EXAMPLE 9:
Write a PROC TABULATE step that illustrates the use of the ColPctN and ColPctSum statistics.

-proc tabulate data = sashelp.class Tormat=commai2.Z2;
class sex age;
var height ;
table age all, sex * height * (n sum colpctn colpctsum);

r"un;
Example 9 program.

Notice that the keyword ALL has been added to the ROW dimension. The ColPctN and ColPctSum columns add
up to 100 percent within each value of the SEX variable.

12

Sex
F M
Height Height

N| Sum |ColPctN | ColPctSum | N| Sum |ColPctN | ColPctSum
Age
11 11 51.30 1111 941 1| 57.50 10.00 9.00
12 | 2| 116.10 2222 21.29(3| 181.10 30.00 28.34
13 | 2| 121.80 2222 2234 1| 62.50 10.00 9.78
14 | 2| 12710 22.22 2331 2| 132.50 20.00 20.73
15 | 2| 129.00 2222 23.66(2| 133.50 20.00 20.89
16 : . . A 1 T2.00 10.00 11.27
All | 9] 54530 100.00 100.00] 10| 639.10 100.00 100.00

Example 9 output.

CONCLUSION

TABULATE is a very useful procedure in the SAS report writing arsenal. It can deploy many statistics to crunch the
numbers, then display them in a number of ways. The addition of ODS as an enhancement with version 8 SAS
makes this procedure even more valuable.

ACKNOWLEDGMENTS

As always, | would like to thank the people in the Technical Support department of SAS Institute for their kind and
helpful assistance for this past year. Their knowledge helped make this presentation possible.

CONTACT INFORMATION
If you have any questions or comments, the author can be reached at:
Ben Cochran
The Bedford Group
3224 Bedford Avenue
Raleigh, NC 27607
Work Phone: 919.741.0370
Email: bencochran@nc.rr.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

13

