Paper S1-02-2013
SAS®: The Power of Macros
Audrey Yeo, Aviva USA, West Des Moines, lowa

Abstract

The SAS® Macro facility is an extremely powerful tool that should be in the toolbox of every
SAS programmer. However, without some proper training it is difficult to implement, or when it
is implemented it often results in hard to understand code. On the other hand once you have
mastered the macro facility, it opens up a whole new world. This paper will show some examples
of creating using SAS macros to help simplify coding and reduce repetition or duplication of
code.

Introduction
This paper will give some simple examples on what Macros can do for us.

Advantages of using Macros

Macros are extremely useful tools. It allows us to update codes easily. For example, if we have a
code that creates multiple reports with dates as part of the title of the reports, it can be quite
troublesome to go through the whole code to update the dates (assuming that we’re creating the
code on a daily, monthly, or yearly basis). We might even miss some of the dates that need to be
updated. Macros will allow us to change the date in just one location and automatically updates
the other date locations.

Also, Macro codes are transferable. Sometimes we find ourselves having to rewrite a code that
was written before in another SAS code, and we know that this part of the code will be re-written
again in SAS code C, SAS code D, and so on. We can create Macro codes so that we do not have
to rewrite that part of the code, instead, we could just call the Macro functions in the other codes.
This allows us to transfer part of a code from one code to another code easily.

Furthermore, if we have a long code that consists of repetitive codes, Macros can help us shorten
the long codes by removing those repetitive codes. In addition, Macros allows us to apply logical
statements on DATA steps (vs. within DATA steps) and finally, using Macros makes us sound
smart.

Macro Variables and Macro Statements
Macro variables are used to store and manipulate character strings. They follow the same naming
rules as SAS. Macro variables are stored in memory.

Macro statements begin with a % sign, followed by a macro keyword and ends with a semicolon.
It is used to assign values, substitute values and change macro variables.

%Iet macro variable keyword = assignment value;

Examples of macro variables and macro statements are as follows:
5let yyyy = 2012;
3 let month = 03;
3 let namwe = EBob:

In the examples above, we are setting macro variable keywords yyyy = 2012; month = 08; and
name = Bob. Next step is to check and see whether the macro keywords were set to values that
we’ve assigned to them.

Displaying Macro Variables

The %put statement will display the macro variable in the log window. %put is the easiest way to
display and debug macros. In the first set of code and log output below, we used the %put
statement to check the macro variables and we see in the corresponding log output, the output is
not what we have assigned earlier.

Codel: Logl:
] _ . 13 ¥put F¥F¥ = TFFF:
%F-lt- YVYY = WYVYe TTFYT = FTFT
. TR T 20 %¥put month = month:
Fput month month; anth - month
21 ¥put name = name;

fput name = name; =
rname = rname

This is because, in order to activate the substitution, we have to put an ampersand (&) sign in
front of the macro variable keyword. This can be seen in the second set of code and log output
below. We see that by adding the ampersand sign before the macro variable keyword, the
substitution was activated.

Code2: Log2:
Tput yyvy = EYYYY.? 30 %put vy = Everro
iput month = &month.; 3 %put onth = Smenth. -
32 = =& -
fput name = &name.; 32 ¥put name = Ename

Easy to Update Codes

This example shows how easy it is to update codes using Macros. Looking at code3 below, we
see some repetitions in the code, specifically, the dates. This will work if we are producing the
report only once.

Codea3:
title "Account Value as of August 05, 20127;
data a2;

set a;

code...:

ran;

title "Premium=s as of August 0%, 20127;

data a3:;
zet a;
code...;
ran;
title "Surrender Value as of August 05, 20127;
data a4;
zet ai;
code...;

ran;

However, if this is not the case, and we need to create this report on a monthly basis, we have to
go through the whole code to change the dates, and there may be times where we might miss
some parts of the code. This is where Macros come in handy.

Code4: Log4:
(let dd = 09;
(let MthName = August;

tlet wvyyy = 2012; 673 ZXput EMthMame. &dd., &yvwwy.;
ugust 09, 2012

title "RAccount Value as of aMchMName. &dd., &yvyvy.";
data az2;

zet a;

code...;

rMmn;

title "Premium=s a=s of &MthName. &dd., &yvyy.":
data a3;

et ad;

code...;

rmn;

title "Surrender Value as ofsMthName. &dd., &vvyv.":
data a4;

zet a3;

code...;

rmn;

tput &MthMame. &dd., Eyvyvy.:

Making Macro Codes Transferable

It can be intimidating to create a macro code if you have never tried that before. An easy way to
create macro code is to first write the code as it is, as shown in code5. Once you have the code
that you want to use repetitively, add a %emacro macro-code-name at the beginning of the code
and a %mend macro-code-name at the end of the code, as shown in the macro code below. That
is how we create macro codes. To call the macro code, we just need to put a percent (%) sign in
front of the macro-code-name.

Codeb: Macro Codel:

data inforce: smacro IimporkEInforce:

. data inforoce:;
set tm.inforce;]
£ "y o get tm.inforce:
1 t e = azse" ; .
¥p if type = "EBase™:
rum. rumn;
smend importInforce;

imporEInforce:

Now we have a code that can be used repetitively without retyping the whole code. All we need
to do is to call the macro code (%importinforce, in the example above) whenever you need it.

Remove Repetition (Folder example)
& |ife

File Edit Miew Favorites Tools Help

@Back - @ - LE ;\J Seatch b Folders v

Address |[7) 5:\DATA MANAGEMENT!Life

Marne
File and Folder Tasks = 1997
1995

Iﬂ Rename this folder D

. 1999
t& Miove this Folder 3)z000
Copy this Falder 32001
&N Publish this folder to the Cz00z
weh 2003
() E-mail this Folder's files yzo04
¥ Delete this Folder [Chzo0s
[View previous versions (2006
[C)z007
[C)z00s
Other Places S [C)z009
C)z010
|E:'| DATS MANASEMEMT [E]ZEIII
My Documents)20z

We have a folder that looks like the figure above, and in each folder, we have datasets that we
want to access. In order to do this, you can type out the following code.

Code6:

libnamwe infz2008 'S:%WDATL MANAGEMEMNT), Life'2008%12':
libnamwe infz2009 '3:%WDATL MANAGEMEMNT), Life'2009%12':
libname infz010 '2:%WDATL MANAGEMEMNTY, Life'20O10%12':
libname infz011 '2:%WDATL MANAGEMEMNTY, Life'20O11%12':
libname infz012 '2:%WDATL MANAGEMEMNTY, Lifeh 20124 12':

Again, the code above works if we only need five years worth of information (2008 — 2012).
What if we need ten, twenty, or even thirty years worth of information? Typing all of it will
make it a long code. We could even mistype something. So what can we do then? Well, we can
use macro and a do loop to remove the repetition. We see in code6 above that everything is the
same except for the year, and the year is from 2008 to 2012.

Macro Code2:
smacro allyvears:

2do i = 2008 %:to 2012;
libhame inf&i. "S:4%DATL MANAGEMENT: Life) &£i’12™;
zend;
smend allvyears;

tallyears:

Looking at macro code2 above, we have the base code (as shown below).

libname inf "S:4Data ManagementhLife® Wizw;

Using a do loop and setting i from 2008 to 2012, we’re able to remove the repetitive code. Please
take note that we are able to do a do loop on the libname because macros allows us to do that
outside of DATA steps. By invoking the macro code using %allyears, we see the log output
below that both libname and libref are assigned successfully.

Log (Macro Code2):

736 ZEmacro allyears;

a7 do i = 2008 Xto 2012;

738 libname inf&i. "S:.“DATA MANAGEMENT'Life"&i'\12";
739 %end ;

740 ZEmend allyears;

741

742 Xallvears;
OTE: Libname INF2008 refers to the same physical library as IF200812.
OTE: Libref INF2008 was successfully as=zigned as follows:

Engine: vy

Phyvsical Name: S5:.DAaTA MANAGEMENTLife' 200812
OTE: Libname INF2009 refers to the same physical library as IF200912.
OTE: Libref INF2009 was successfully aszs=zigned as follows:

Engine: vy

Phyvsical Name: S5:'.DAaTA MANAGEMENTLife' 200912
OTE: Libname INF2010 refers to the same physical library as IF201012.
OTE: Libref INF2010 was successfully aszs=zigned as follows:

Engine: vy

Phyvsical Name: S5:.DAaTA MANAGEMENTLife 2010412
OTE: Libname INF2011 refers to the same physical library as IF201112.
OTE: Libref INF2011 was successfully aszs=zigned as follows:

Engine: vy

Phyvsical Name: S5:.DAaTA MANAGEMENTLife 2011412
OTE: Libname INF2012 refers to the same physical library as IF201212.
OTE: Libref INF2012 was successfully aszs=zigned as follows:

Engine: vy

Phyvsical Name: S5:.DAaTA MANAGEMENTLife 2012412

To make the code more versatile, we can do the following.

Macro Code3:
Y 1let start = 2003:;

Y1let end = 2012:

smacro allyears:

2do 1 = &£3tart. Zto &end.;
libname infe&i. "3:%DATAR MANAGEMEMNT,Lifeh £ih 12';
Lend:

smend allyears:;

tallyvears:

Instead of hard-coding the start year and end year in the code, we can create a macro statement to
assign the start year and end year. This can be put at the beginning of the code, and the macro
code 3 can be placed anywhere in the code and we’re still able to update the years without
having to hunt down the do loop. The log output below shows that we get the same results as
macro code2 above.

Log (Macro Code3):

43 Xlet start = 2008;
44 Elet end = 2012;

745

746 ZXmacro allyears;

47 Ado i = E&start. Xto &end. ;

748 libname inf&i. "S5:.DATA HANAGEMENTLife' &i\12";
419 #end ;

750 Xmend allwvears;

[

75?2 Xallyears;

MOTE: Libref INF2008B was successfully assigned as follows:
Engine: vy
Phvsical Hame: 5:.DATA MANAGEMENTLife' 200812

MOTE: Libref INF2009 was successfully assigned as follows:
Engine: vy
Phvsical Hame: 5:.DATA MANAGEMENTLife'2009%12

MOTE: Libref INF2010 was successfully asszigned as follows:
Engine: vy
Phvsical Hame: 5:.DATA MANAGEMENTLife'2010%12

MOTE: Libref INFZ2011 wasz successfully aszigned az follows:
Engine: vy
Phy=sical Name: S:.DATA MANAGEMENT\Life'“2011%12

MOTE: Libref INF2012 waz =zuccessfully aszigned az follows:
Engine: v
Phy=sical Name: S:.DATA MANAGEMENT'.Life'2012%12

We could also set the parameters next to the macro-code call.

Macro Code4:
smacro allyears(start=,end=):

Ydo i = g=start. %to &£end.:
libnamwe infe&i. "3:%DATR MANASEMENT, Lifeh £i% 12'™;
Zend:

smend allyears:

tallyears(start=2008,end=2012) ;

This way, if we are trying to set different sets of libnames throughout the code, we can do that
easily. The log output shown below has the same output results as the macro codes before.

Log (Macro Code4):
753 Zmacro allyears(start=,end=);

%] Ado i = E=tart. Xto fend.:

755 libname inf&i. "5:.DATA MANAGEMENT'.Life‘&i"12";
756 Zend ;

757 #mend allyears;

758

759 ZXallyears(start=2008,end=2012);

MOTE: Libref INF2008 was successfully aszigned asz follows:
Engine: L

Physical Hame: S:%“DATA MANAGEMENTL ife' 200812
MOTE: Libref IHF2009 wasz successfully assigned as follows:
Engine: Ve

Phy=sical Mame: 5:"DATA MANAGEMENT.L ife"\ 200912
MOTE: Libref INF2010 waz successfully assigned azs follows:
Engine: L

Physical Hame: S:%.DATA MANAGEMENT.L ife' 201012

MOTE: Libref IHNF2011 wazs successfully assigned azs follows:
Engine: v

Phy=sical Mame: 5:.DATA MANAGEMENT.Life'\2011%12

MOTE: Libref INF2012 waz successfully assigned az follows:
Engine: L

Physical Hame: S5:%.DATA MANAGEMENT.Life' 201212

Remove Reietition Examile 2:

File Edit ‘“iew Favorites Tools Help

eﬁack - 'k,_,:;l Lﬁ ﬁSearch H__i‘ Folders v

Address |3 SDATA MAMAGEMENTILiFe) 2012

Mame
File and Folder Tasks 0t

0z
03

-ﬁ Make a new Folder

Publish this Falder ba the
@ b 04

@ View previous versions

05
)08
07
Other Places 08
09
Iy Life D10
B My Diocurnents 1
H My Camputer iz
‘ﬂ My Metwork Places () Other

Now, let’s say we want to access monthly data for the year 2012 (as seen in the figure above).
Again, we could code it as shown below

libnawre w0l 'S:%DATA MAMNAGEMEMT'Life'ZZO012%01':
libname wl2 'S:YDATA MANAGEMENT'Life' 20124 0Z';
libnawme w03 'S:YDATA MAWNAGEMENTY Life'2012%03';
libnare w04 'S:%DATA MAMNAGEMENT' Life'ZO12%04';:
libnare w05 'S:Y"DATA MAMNAGEMENTLife'\ZO124%W0OS5';:
libnsre wl6 'S:YDATA MAMNAGEMENTLife'\ZO12W0g':
libname w07 '3:%DATL MANAGEMENT,Life\2ZO12%07':
libnagne w08 'S:4DATA MANAGEMENT' Life'\2Z0124%035';:
libnawme wl9 'S:YDATA MAMNAGEMENTY Life'2Z0124%09';
libnare wl0d 'S:YDATA MAMNAGEMENT' Life'ZZO12%10';:
libnare mwll 'S:%"DATA MAMNAGEMENTLife'ZZO12%11':
libnarme ml2 'S:YDATA MANAGEMEMTWLife'ZZO124%1Z';

Or, we can use macros and do loop again to shorten and simplify the code. We’ll start with the
base code again, as shown below,

libname m "S:\Data ManagementhLifeh2012%_ ":

and adding a do loop into the mix, we have the macro code (seen in macro code5) below.

Macro Code5:
tmacro allMonths:

(3do 1 = 1 3to 12;
libname mei. "s:data managementannuityh 20124 £1.™:
tend:;

mend alllMonths:

tallmonths;

Log (Macro Code5):

674 Hmacro allMonths;

LT

676 Ado i = 1 Zto 12;

GYT libname m&i. "=s:‘.data management'annuity"2012%8&i.";

678 Xend;

b¥a

680 ZEmend allMonths;

681

682 Xallmonths;

OTE: Library M1 does not exist.

OTE: Library M2 does not exist.

OTE: Library M3 doesz not exist.

OTE: Library M4 does not exist.

OTE: Library M5 does not exist.

OTE: Library M6 does not exist.

OTE: Library M7 does not exist.

OTE: Library M8 does not exist.

OTE: Library M3 does not exist.

OTE: Libref M10 was successful ly assigned as fol lows:
Engine: Vg
Physical Name: =s:‘data management'annuity' 201210

OTE: Libref M11 was succeszfully azzigned asz follows:
Engine: vg
Physical HName: =:‘data management'annuity'2012%11

OTE: Libref M12 was succes=fully aszsigned aszs follows:
Engine: vg
Phy=sical Hame: =:‘data management'annuitsy' 201212

Looking at the log output for macro code5, we see that only libref M10, M11, and M12 was
assigned successfully, whereas libref M1 to M9 is no successful. Looking at the figure above, we
see that this is because the folders are named 01 to 09, as opposed to, 1 to 9.

Macro Code6:
“macro allMonths:

Zdo i = 1 %to 9;

libname mi&i.

Tend:

¥cdo 1 = 10

libname mei.

Tend:

to 12;

mend =llMonths:

tallmorkths;

"a:hdata managementhannuityy 20124081, ";

"a:hdata management’ annuityy 2012 £1. 7

Making a slight change to the code by adding a second do loop; one for i from 1 to 9, and the
second from 10 to 12, like above, we’re able to correct the problem. The libref for 1 to 9 has a 0
at the front, while libref 11 to 12 stays the same. Running the code produced the log output
below, and here, we see that all the librefs are assigned successfully.

Log (Macro Code6):

684
685
686
687
688
689
690
691
692
693
694
695
696

NOTE :

NOTE :

NOTE :

MNOTE :

NOTE :

NOTE :

NOTE :

NOTE :

NOTE :

NOTE :

NOTE :

NOTE :

Zmacro allMonths;

Zdo i = 1 Zto 9;

libname m0&%i. “s:‘data management'annuity'201240&i.";
Zend;
do i = 10 Xto 12;

libname m&i. “s:‘data management‘annuity' 201248 . "

Zend ;

Zmend al 1Months;

Zal lmonths;
Libref M0l was
Engine:
Physical Hame:
Libref M0Z2 was
Engine:
Physical Hame:
Libref M03 was
Engine:
Physical Hame:
Libref M04 was
Engine:
Phyvsical Hame:
Libref M05S was
Engine:
Phv=sical Hame:
Libref M0OE was
Engine:
Physical Hame:
Libref MO7 was
Engine:
Physical Hame:
Libref M0OB was
Engine:
Physical Hame:
Libref M09 was
Engine:
Phv=sical HName:
Libref M10 was
Engine:
Physical Hame:
Libref M11 was
Engine:
Physical Hame:
Libref M12 was
Engine:
Physical Hame:

success=ful ly assigned as follows:
v

=:"data management'annuity"2012%01
success=ful ly assigned as follows:
vg

=:"data management'annuity’ 201202
successfully assigned as follows:
va

=:"data management'annuity’ 201203
successful ly assigned as follows:
va

s:'data management'annuity’ 201204
success=ful ly assigned as follows:
va

s:'%data management'annuity’ 201205
success=ful ly assigned as follows:
v

=:"data management'annuity’ 201206
success=ful ly assigned as follows:
va

=:"data management'annuity’ 201207
successfully assigned as follows:
va

=:"data management'annuity’ 201208
success=ful ly assigned as follows:
va

=:'%data management'annuity’2012%09
success=ful ly assigned as follows:
va

s:'%data management'annuity 201210
success=ful ly assigned as follows:
v

=:"data management'annuity"2012%11
success=ful ly assigned as follows:
va

=:"data management'annuity’ 201212

Instead of using two do loops, we can still get by with using one do loop. This can be done by

adding if-else statements, as shown in macro code7 below,

10

Macro Code7:
tmacro a11Months:

)

-

do i =1 3to 12;
21if £i. <= 9 Zthen %do;
libnawe mlEi. "=:%vdata mahagementhanhuityy 20125081, ™
fend;
telse 3do;
libname mei. "a:hdata managementhannuicyh Z2012% £1.7;

Yend:

Zend:

fmend all1Months;

tallmonths;

Using a do loop for i from 1 to 12, we can set that if i is from 1 to 9, then add a zero at the front,
else, do not add a zero in the front. The log output for macro code7 is shown below and the result

is the same as the result from macro code?.

Log (Macro Code7):

697 Zmacro allMonths;

698
699
700
701
702
703
704
705
706
707
708
709
710

Again, we can use parameter calls to set the months instead of hard coding it.

NOTE :

Zmend allMonths;

%

NOTE :

HOTE :

MNOTE :

MOTE :

NOTE :

NOTE :

HOTE :

MNOTE :

MOTE :

NOTE :

NOTE :

Zdo i = 1 Zto 12;
Zif &i. <= 9 Zthen Zdo;
libname m0&i. "s:‘data management‘\annuity%2012%0&i.";
Zend;
%else Xdo;
libname m&i. “s:“data management'annuity'2012.&i.";
%end;
Zend;

allmonths;
Libref M0l was
Engine:
Physical Hame:
Libref M02 was
Engine:
Physical Hame:
Libref M03 was
Engine:
Phy=sical Hame:
Libref M04 was
Engine:
Phy=zical Hame:
Libref MO05 was
Engine:
Physical Hame:
Libref MOE was
Engine:
Physical Hame:
Libref MO7 was
Engine:
Physical Hame:
Libref M08 was
Engine:
Phy=sical Hame:
Libref M09 was
Engine:
Phy=sical Hame:
Libref M10 was
Engine:
Physical Hame:
Libref M11 was
Engine:
Physical Hame:
Libref M12 was
Engine:
Physical Hame:

successfully assigned as follows:

s:'data management'annuity'2012%01
successfully assiogned as follows:

s:\data management'annuity'\2012%02
successful ly assigned as follows:
va

s:'data management'annuity'2012%03
successful ly assigned as follows:
va

=:\data management'annuity'2012%04
successfully assigned as follows:
va

s:'data management'annuity’2012%05
successfully assigned as follows:
va

s:data management'annuity'2012%06
successfully assiogned as follows:
va

s:\data management'annuity'\2012%07
successful ly assigned as follows:
va

s:'data management'annuity’2012%08
successful ly assigned as follows:
va

=:!\data management'annuity'2012%09
successfully assigned as follows:
va

s:'\data management'annuity"2012%10
successfully assigned as follows:
va

s:'data management'annuity'2012%11
successfully assigned as follows:

v
s:\data management'annuity'2012%12

Marco Code8:
fmacro allMonths (endMM=);

(do 1 = 1 (to LendMM:
(if &i le 9 :3tchen 3do;
libname ml&i "=:'data management)annuityh 20124%0&1.";
fend;
(else :do;
libname mei "s:idata managementhannuityh2012% £1.7;
fend;
Yend;
fmend allMonths:

tallmonths (endMM=11) ;

If we want the last month to be set as November instead of December, using the parameter call,
we can set the last month to be anything we want easily, rather than searching through the whole
code to change it. The output of the code shows that we have successfully assigned eleven librefs,
from January to November.

Log (Macro Code8):

711 Zmacro allMonths(endti=);

712 Zdo i = 1 %to ZendMMH;

713 Zif &i le 9 Zthen Xdo;

714 1ibname m0&i s:%data management‘annuity'2012%0&i.";
715 %end;

716 Zel=e Zdo;

717 libname m&i “s:‘data management‘annuity'20124&i.";
718 %end;

719 Zend;

720 Xmend allMonths;

721

722 Zallmonths(endMM=11);

OTE: Libref M0l was successfully assigned a= follows:
Engine: vy
Physical Hame: s:‘data management‘annuity'2012%01
OTE: Libref M02 was successfully assigned as follows:

Engine: vy

Physical Name: =s:‘data management‘annuity'2012%02
OTE: Libref M03 was successfully assigned as follows:

Engine:

Physical Mame: s:‘.data management'annuity'2012%03
OTE: Libref M04 was successfully assigned as follows:

Engine: va

Physical Name: s:‘.data management'annuity'201204
OTE: Libref M05 was successfully assigned as follows:

Engine: va

Physical Mame: =:‘.data management'‘annuity'2012%05
OTE: Libref MO6 was successfully assigned as follows:

Engine: vy

Phy=ical Mame: s:‘data management'anniity'2012%06
OTE: Libref MOY was successfully assigned as follows:

Engine: vy

Physical Hame: s:‘data management'‘.annuity'2012%.07
OTE: Libref M08 was successfully aszsigned as follouws:

Engine: vy

Physical MName: s:‘data management‘annuity'2012%.08
OTE: Libref M09 was successfully assigned as follows:

Engine: vy

Physical Name: s:‘data management'annuity’201209
OTE: Libref M10 was successfully assigned as follows:

Engine:

Physical Name: s:‘.data management'annuity’2012%10
OTE: Libref M11 was successfully assigned as follows:

Engine: va

Physical Name: s:‘.data management'annuity’2012%11

Another way of assigning librefs using macros is as follows.

12

Macro Code9:
fmacro allMonths (endMM=):

3do 1 = 1 3to &endMM;
3if £1i le 9 %then %do:
libnsme ml&i "=:%dats management' annuityy 20085081,
Yend;
(else %do:
likhnate mei "s:%data mahagewent’ annuicyy 2008% &1,
Yend:

*end;

mend =llMonths;

G
zallmonths (endMM=gmm.) ;

Z1let mm =

What we did in macro code9 is to assign a macro variable to the parameter call. Here, we only
want to assign librefs from January to June. The log output below shows that all six librefs are
assigned successfully.

Log (Macro Code9):
723 Zmacro allMonths(endMM=1];

7314 Xlet mm = 6;

Engine:
Phy=zical Mame:

724 #do i = 1 Xto &endll;

72h Zif &i le 9 Zthen Fdo;

726 libname m0&i "s:'“data management'annuity’200840&i.";
Ter #end ;

[ig=d:] %else Xdo;

729 libname m&i "'s:\data management'.annuity' 2008\ &i.";
730 Zend;

31 %end ;

732 Zmend allMonths;

733

735 Xallmonths(endMi=%mm.]);
MOTE: Libref M0l was successfully assigned as follows:
Engine: vg
Physical Name: s:‘data management‘annuity’ 2008%01
MOTE: Libref M02 wasz zuccessfully as=signed az follows:
Engine: va
Physical Hame: =:“data management'annuity' 2008402
MOTE: Libref M03 was successfully assigned as follows:
Engine: Vg
Physical Hame: s:‘data management'annuity’ 2008403
MOTE: Libref M04 was successfully assigned as follows:
Engine: va
Phy=sical NHame: s:‘data management‘annuity’ 2003804
MOTE: Libref H05% was successfully assigned as follows:
Engine:
Physical Hame: s:%data management'annuity’ 200805
MOTE: Libref M0O6 was successfully assigned as follows:

s:data management‘annuity’ 200806

What if we want to set librefs from January to December for both year 2008 and year 2009. We
can type out all 24 lines of code, or we can use macros and do loops to create the librefs for us.

13

Macro Codel0:
tmacro yearsandmonth:
(3cdo 1 = 2008 %to 2009;
2do J = 1 %to 12;
$if &j. <= 9 %(then %do;

libneswe if&i.0&j. "5:%DATL MAWNAGEMENT W Lifeh&i.WwO&£j."™:

&

Yend;

o

(elze :do;

libneme if&i.&). "Z:%WDATL MANAGEMENTYLife' £i.h%&3.'":

o

(end;
tend;
(end;
smend vearsandmonth:

ryearsandmonth;

To do that, we need to use two do loops, one to iterate for year, and a second do loop, nested
within the first, for month iterations, like macro codel10 above. The log output below shows that

all librefs are assigned successfully.

Log (Macro Codel0):

760 ZXmacro y@arsandmonth'

H
761 Fdo i = 2008 Fto 2009;

762 Fdo j = 1 Zto 12;

763 Zif &j. <= 9 Zthen Xdo;

764 libname if&i.0&j. "S:\DATA MANAGEMENT L ife'&i . %\0&j.";
765 Zend ;

766 Zelse Zdo;

767 libname if&i.&j. "S:wDATA MANAGEMENT'Life \&i . “W&j.";
768 Fend ;

769 #end ;

770 Zend ;

(XAl mend yearszandmonth;

7r2

773 Ayearsandmonth;

HMOTE: Libref IF200801 was successfully assiogned as follows:
Engine: v
Physical Name: S:.DATA MANAGEMENT.Life'2008%01

HOTE: Libref IF200802 was successfully assigned as follows:
Engine: uvg
Physical Name: 5:.DATA MANAGEMENTLife 2008402

MOTE: Libref IF200803 was succeszsfully assigned asz follows:
Engine: v
Physical Name: S:'.DATA MANAGEMENTYLife'2008%03

HMOTE: Libref IF200804 was successfully assiogned as follows:
Engine: v
Physical Name: S5:.DATA MAMAGEMENT.Life' 200804

HOTE: Libref IF200805 was successfully assigned as follows:
Engine: uvg
Physical Name: 5:.DATA MANMAGEMENTLife ' 2008%05

MHOTE: Libref IF200806 was successfully assigned as follows:
Engine: v
Physical NHame: S:.DATA MANAGEMENTYL i fe'2008%06

HMOTE: Libref IF200807 was successfully assiogned as follows:
Engine: v
Physical Name: S5:.DATA MAMAGEMENT.Life'2008%07

MOTE: Libref IF200808 was successfully assigned as follows:
Engine: uvg
Physical Name: 5:.DATA MANMAGEMENTLife ' 2008%038

HOTE: Libref IF200809 was successfully assigned as follows:
Engine: vg
Physical Name: S:.DATA MANAGEMENTYL i fe'2008%09

HMOTE: Libref IF200810 was successfully assiogned as follows:
Engine: v
Physical Name: S5:.DATA MAMAGEMENT.Life'2008%10

MOTE: Libref IF200811 was successfully assigned as follows:

v

Engine: a

Physical Name: §5:.DATA MANAGEMENTLife“.2008%11
HOTE: Libname IF200812 refers to the same physical library as INF2008.
MOTE: Libref IF200812 was succeszsfully assigned asz follows:

Engine:

vg
Physical Name: S:'.DATA MANAGEMENT.Life'2008%12
MOTE: Libref IF200901 was successfully assigned as follows:
Engine: vg
Physical Name: S:.DATA MANAGEMENT.Life'.2009%01
HMOTE: Libref IF200902 was successfully assigned as follows:
Engine: v
Physical Name: 5:.DATA MANAGEMENT.Life'.20089%02

To make the code more versatile, we can use parameter calls to do that.

14

Macro Codell:

fmacro yearsandwonth (years=, yeare=,months=,monthe=] ;
3do 1 = &years. (to &yeare.;
3do j = &months. %to &monthe. ;
(if &7. <= 9 %then %do;
libname if&i.0&j. "3:%DATL MAMNAGEMENT, Life' &i.\0&£j."™:
Fend;
(else %do;
libname if&£i.&j. "23:\DATL MAWNAGEMEMTWLife'&i.%“&j.™:
Fend;
Yend;
Fend;
smend vearsandmonth;

tyearsandmonth (vears=2008, yeare=2012 , months=1, wmonthe=12) ;

By using the parameter call, we can easily update the code or even used the macro code multiple
times in a code.

Log (Macro Codell):

774 Zmacro yearszandmonth(years=,yeare=,months=,monthe=1];

775 Fdo i = &wears. Xto &veare.;

776 Ado j = &months. Xto &monthe.;

7T Zif &j. <= 9 Zthen Zdo;

778 libname if&i.0&j. "S:.DATA MANAGEMENT.Life"2i . 0&j.";
779 Fend;

f80 “else ¥Xdo:

781 libname if&i.&j. “S:“DATA MANAGEMENT L ife . &i.“&j.";
782 Fend;

F83 #end;

784 Zend ;

785 ZXmend wearsandmonth;

786

787 Ayearsandmonth(years=2008,yeare=2012 ,months=1,monthe=12);

HOTE: Libref IF200801 was successfully assigned as follows:
Engine: vq

Physical Hame: S:.DATA MANAGEMENT.Life'. 200801

HOTE: Libref IF200802 was successfully assigned as follows:

Engine:

Physical Hame: S:%DATAa MANAGEMENT.L ife' 200802

MOTE: Libref IF200803 was successfully assigned as follows:

Engine: ug

Physical Name: 3:%DATA MANAGEMENT.L ife" 200803

MOTE: Libref IF200804 was successfully assigned as follows:

Engine: ug

Physical Name: S5:%DATA MANAGEMENT.L ife" 200804

NOTE: Libref IF200805 wa=s successfully assigned a=s follows:

Engine: ug

Physical Name: S:%DATA MANAGEMENT\L ife" 200805

NOTE: Libref IF200806 wa=s successfully assigned a=s follows:

Engine: va

Physical Name: S:%DATA MANAGEMENT.L ife" 200806

NOTE: Libref IF200807 was successfully assigned as follows:

Engine: ua

Physical Name: S:%DATA MANAGEMENT.L ife" 200807

NOTE: Libref IF200808 was successfully assigned as follows:

Engine: ua

Physical Name: S:.DATA MANAGEMENT.L ife' 200808

NOTE: Libref IF200809 was successfully assigned as follows:

Engine: ua

Phy=zical MName: S:.DATAa MANAGEMENTL i fe' 200809

NOTE: Libref IF200810 was successfully assigned as follows:

Engine:

Physical Name: S:%DATA MANAGEMENT.L ife' 2008%10

NHOTE: Libref IF200811 was successfully assigned as follows:

Engine: v

Physical Hame: S:.DATA MANAGEMENT.Life'. 200811

NHOTE: Libname IF200812 refers to the same physical library as INF2008.

MOTE: Libref IF200812 was successfully assigned as follows:
Engine: ug
Physical Name: 3:%DATA MANAGEMENT.L ife' 2008%12

NOTE: Libref IF200901 was successfully assigned as follows:
Engine: ug
Physical Name: 5:%DATA MANAGEMENT.Life" 200901

NOTE: Libref IF200902 was successfully assigned a=s follows:
Engine: ug

15

Macro Codel2:
tmacro yearsandmonthk:
3cdo 1 = &years. Lo &yeare.:
3do j = &months. %to &monthe.;
3if £j. == 9 %Zthen %do;
libnesme if&i.0&3. "3:%DATL MAWAGEMENT,Life) &£i."O&3.":
fend;
(el=se %do;
libname if&i.&3. "S:%DATL MAWNAGEMENT Life' £i.h%&j."™:
tend;
(end;
%end;
tmend vyearsandmonth;

s yearsandmonth:

Log (Macro Codel?2):

047 Zmacro vearsandmonth;

5048 Zdo i = &vears. Zto &veare. ;

L0049 #do j = Zmonths. Xto &monthe.;

5050 Zif &£]. <= 9 Zthen %do;

5051 libname if&i.0&j. "S:.DATA MANAGEMENTLife'&i."0&j.";
5052 Zend ;

L0053 Zelse Xdo;

G054 libname if&i.&j. "S:"DATA MANAGEMENT'.Life'&i. " &j.";
5055 Zend ;

5056 Zend;

5057 Zend ;

058 Zmend vearsandmonth;

L0600 Fyearsandmonth;

AAM ING : fipparent symbolic reference YTEARS not resolved.

RROR: A character operand was found in the ZEVAL function or ZIF condition
RROR: The %FROM walue of the D0 | loop is inwvalid.

fARN ING : fApparent symbolic reference YEARE not resolved.

RROR: A character operand was found in the ZEVAL function or ZIF condition
RAROR: The XT0 wvalue of the %D0 | loop i= invalid.

RAROR: The macro YEARSANDMONTH will stop executing.

The log output for macro codel2 shows some error messages. This is because we did not set the
beginning and end year; and beginning and end month.

16

Macro Codel3:

Tmacro yearsandmonth:
tdo 1 = &vears. (to &veare.;
:cdo] = &months. $to &monthe.
2if &£3. <= 9 Zthen :%do;
libname if&i.0&7. "3:4DATA MAWNAGEMENT, Life' &i.W0&j."™:
tend;
relze (do;
libname if&i.&£j. "S:%DATAE MAWNASEMENTWLifeh &£i.hWw&j.'™:
tend;
Fend;
rend:
smend vearsandmonth:

2let years=Z005;
tlet yeare=z201Z2:
% let months=1;

2 let monthe=1:2;
kvearsandmonth:

Log (Macro Codel3):

816 Zmacro wearsandmonth;

817 Zdo i = &years. Xto Eyeare.;

818 #*do j = &months. Xto &monthe.;

819 Aif &j. <= 9 XAthen %do;

820 libname if&i.0&j. "S:.DATA MANAGEMENT'\Life“&i."0&j).";
821 Zend;

g2z *elszse ¥do;

823 libname if&i.&j. "S:.DATA MANAGEMENT.L ife'\&i."&j.";
824 xend;

825 Xend;

826 %end; |

827 ZEmend yearsandmonth;

828

829 Xlet yvear==2008;
830 Xlet yeare=2012;
831 Xlet months=1;
832 Xlet monthe=12;
833 Zvear=zandmonth;
HNOTE: Libref IF200801 was successfully assigned as follows:
Engine: va
Phy=ical Hame: S:.DATA MANAGEMENTLife'. 200801
HOTE: Libref IF200802 was successfully assigned az follows:
Engine: v
Physical Name: S:.DATA MANAGEMENT'Life 200802
HOTE: Libref IF200803 was successfully assigned as follows:
Engine:
Physical MName: S:.DATA MANAGEMENT'\L ife" 200803
HOTE: Libref IF200804 was successfully assigned as follows:
Engine:
Physical MName: 5:.DATA MANAGEMENTLife' 200804
HNOTE: Libref IF200805 was successfully assigned as follows:
Engine: va
Phy=ical Name: S:.DATA MANAGEMENT.Life'. 200805
HOTE: Libref IF200806 was successfully assigned as follows:
Engine: va
Physical Name: S:.DATA MANAGEMENT'L ife 200806
HOTE: Libref IF200807 was =successfully assigned as follows:
Engine:
Physical MName: S:.DATA MANAGEMENT'L ife' 200807
HOTE: Libref IF200808 was successfully assigned as follows:
Engine:
Physical MName: S:.DATA MANAGEMENT'\L ife" 200808
HOTE: Libref IF200809 was successfully assigned as follows:
Engine: vg
Phy=zical Name: 5:.DATA MANAGEMENTLife'. 200809
HNOTE: Libref IF200810 was successfully assigned as follows:
Engine: va
Phy=ical Name: S:.DATA MANAGEMENT.Life'. 200810
HOTE: Libref IF200811 was successfully assigned as follows:
va

Engine:
Physical Name: S:.DATA MANAGEMENTLife'. 200811
MATE. 1 L f araaanta o _ . ____ elva.. S =2 "4 - e_wv_.._.

By assigning macro statements with staring year as 2008, ending year as 2012, beginning month
as January and ending month as December, we are able to successfully create the librefs that we
need, as shown in the log output for macro codel3.

17

Now that we’ve seen some short examples such as macro assignment statements, how to build
macro codes that are transferable, how to remove repetitive codes, using do loops and if-else
statements, let’s put everything together.

CodeT:
libnate inf2009 "3:%DATA MANASEMENTY, Life'ZZ0O09%1Z2'":
libnhatne inf2010 "3:%DATA MANASEMENTY, Life'4ZZ010%12':

data premiuwmzZ009;
get InfZ009.amerustranlZZ002 inf2009.quincyvultrans20091:2;
where tran type = 'PR';
keep polno tran type tran amt 1 system tran date;

rumn;

data premiwm2010;
set infi0l0.amerustranliZ0l0 inf2010.quineyultrans201012;
where tran type = 'PR';
keep polno tran type tran amt 1 system tran date;

rumn;

data premium:
set premiumZ002 premiuvmZ010;
run;

Code7 creates a grand premium dataset, called premium, which contains premium information
from December 2009 and December 2010, pulled from amerustran122009, quincyultrans200912,
amerustran122010 and quincyultrans201012 respectively.

This is a simple and easy code to write since it only needs two years worth of information. What
if we need five, ten, even fifteen years of information? That is going to be a long and repetitive
code. Macro code 14 below shows an equivalent code for code7 but minus the repetitiveness by
using macros, do loops, and if-else statements.

We see in code7 that everything is the same except for the years (2009 and 2010). So we’ll start
by creating macro assignments for 2009 and 2010 as the start and end years.

Using a do loop with start macro keyword assigned to 2009, we create a libname called inf2009.
We then create a dataset called premium2009 by pulling premium transactions from
inf2009.amerustran122009 and inf2009.quincyultrans200912. Next, since i, which is 2009 is
equals to &starts. (2009), we will set the premium datasets as premium2009. This will end if-else
statement and end the do loop.

Next, the end macro keyword is assigned as 2010. The inf2010 libname is then created. We then
pull the premium transaction information from inf2010.amerustran122010 and
inf2010.quincyultrans201012. Since i, which is assigned as 2010 now, does not equal to &start.
(2009), the if-else statement will skip the if section of the code and go to the else section of the
code and set the premium dataset as the previous premium dataset (premium2009) and
premium2010.

18

The if-else statement is needed in the code or else the premium dataset will always be
overwritten with the new premium dataset.

Macro Codel4:

Zlet =start = Z009;
Zlet =end = 2010;
Zlet mm = 12;

Smacro repeatbase;
Edo 1 = &start. %to gend.

A*F* preates the libname %%
libhname infegi. "I:%WDATLA MANALGEMENTWLifeh £i.% Lron. ™

AFFF preates the dataset hy wyear *F%F/7
data premiwn&i.
st infLi. JAmwmerustranl2ei. infLi. . .Puincyultranssi. 12
where tran type = 'PR':
keep polno tran type Cran amt 1 Ssystem tran date:

rumnr-

S EEF preates the grand dataset &+
Eif £i. = &start. %then %dor
data premium:
set premiuvwm&i. ;
rumn:
Zend:

Zelse %do:
data premiwuwm;
sSet premiuwm premiwnsi.
rumn:

Lend;:

Zend:
smenid repeathase;

% repeabbase;

Conclusion

To summarize, Macros is a very powerful and useful tool. It not only allows us to update our
codes easily, but also makes our codes easily transferred between different codes. In addition,
Macros also helps us shorten our codes by allowing us to remove repetitive parts. Finally, it also
enables us to apply logical statements on DATA steps as oppose to just using logical statements
with DATA steps.

Contact Information

Name: Audrey Yeo

Enterprise: Aviva USA

Address: 7700 Mills Civic Parkway

City, State, ZIP: West Des Moines, IA 50316
Work Phone: 515-342-3759

E-mail: audrey.yeo@avivausa.com

19

mailto:audrey.yeo@avivausa.com

Trademark Citations

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

20

