
1

Paper S1-02-2013

SAS®: The Power of Macros
Audrey Yeo, Aviva USA, West Des Moines, Iowa

Abstract
The SAS® Macro facility is an extremely powerful tool that should be in the toolbox of every

SAS programmer. However, without some proper training it is difficult to implement, or when it

is implemented it often results in hard to understand code. On the other hand once you have

mastered the macro facility, it opens up a whole new world. This paper will show some examples

of creating using SAS macros to help simplify coding and reduce repetition or duplication of

code.

Introduction
This paper will give some simple examples on what Macros can do for us.

Advantages of using Macros
Macros are extremely useful tools. It allows us to update codes easily. For example, if we have a

code that creates multiple reports with dates as part of the title of the reports, it can be quite

troublesome to go through the whole code to update the dates (assuming that we’re creating the

code on a daily, monthly, or yearly basis). We might even miss some of the dates that need to be

updated. Macros will allow us to change the date in just one location and automatically updates

the other date locations.

Also, Macro codes are transferable. Sometimes we find ourselves having to rewrite a code that

was written before in another SAS code, and we know that this part of the code will be re-written

again in SAS code C, SAS code D, and so on. We can create Macro codes so that we do not have

to rewrite that part of the code, instead, we could just call the Macro functions in the other codes.

This allows us to transfer part of a code from one code to another code easily.

Furthermore, if we have a long code that consists of repetitive codes, Macros can help us shorten

the long codes by removing those repetitive codes. In addition, Macros allows us to apply logical

statements on DATA steps (vs. within DATA steps) and finally, using Macros makes us sound

smart.

Macro Variables and Macro Statements
Macro variables are used to store and manipulate character strings. They follow the same naming

rules as SAS. Macro variables are stored in memory.

Macro statements begin with a % sign, followed by a macro keyword and ends with a semicolon.

It is used to assign values, substitute values and change macro variables.

%let macro variable keyword = assignment value;

Examples of macro variables and macro statements are as follows:

2

In the examples above, we are setting macro variable keywords yyyy = 2012; month = 08; and

name = Bob. Next step is to check and see whether the macro keywords were set to values that

we’ve assigned to them.

Displaying Macro Variables
The %put statement will display the macro variable in the log window. %put is the easiest way to

display and debug macros. In the first set of code and log output below, we used the %put

statement to check the macro variables and we see in the corresponding log output, the output is

not what we have assigned earlier.

Code1: Log1:

This is because, in order to activate the substitution, we have to put an ampersand (&) sign in

front of the macro variable keyword. This can be seen in the second set of code and log output

below. We see that by adding the ampersand sign before the macro variable keyword, the

substitution was activated.

Code2: Log2:

Easy to Update Codes
This example shows how easy it is to update codes using Macros. Looking at code3 below, we

see some repetitions in the code, specifically, the dates. This will work if we are producing the

report only once.

Code3:

3

However, if this is not the case, and we need to create this report on a monthly basis, we have to

go through the whole code to change the dates, and there may be times where we might miss

some parts of the code. This is where Macros come in handy.

Code4: Log4:

Making Macro Codes Transferable
It can be intimidating to create a macro code if you have never tried that before. An easy way to

create macro code is to first write the code as it is, as shown in code5. Once you have the code

that you want to use repetitively, add a %macro macro-code-name at the beginning of the code

and a %mend macro-code-name at the end of the code, as shown in the macro code below. That

is how we create macro codes. To call the macro code, we just need to put a percent (%) sign in

front of the macro-code-name.

Code5: Macro Code1:

4

Now we have a code that can be used repetitively without retyping the whole code. All we need

to do is to call the macro code (%importInforce, in the example above) whenever you need it.

Remove Repetition (Folder example)

We have a folder that looks like the figure above, and in each folder, we have datasets that we

want to access. In order to do this, you can type out the following code.

Code6:

Again, the code above works if we only need five years worth of information (2008 – 2012).

What if we need ten, twenty, or even thirty years worth of information? Typing all of it will

make it a long code. We could even mistype something. So what can we do then? Well, we can

use macro and a do loop to remove the repetition. We see in code6 above that everything is the

same except for the year, and the year is from 2008 to 2012.

5

Macro Code2:

Looking at macro code2 above, we have the base code (as shown below).

Using a do loop and setting i from 2008 to 2012, we’re able to remove the repetitive code. Please

take note that we are able to do a do loop on the libname because macros allows us to do that

outside of DATA steps. By invoking the macro code using %allyears, we see the log output

below that both libname and libref are assigned successfully.

Log (Macro Code2):

To make the code more versatile, we can do the following.

6

Macro Code3:

Instead of hard-coding the start year and end year in the code, we can create a macro statement to

assign the start year and end year. This can be put at the beginning of the code, and the macro

code 3 can be placed anywhere in the code and we’re still able to update the years without

having to hunt down the do loop. The log output below shows that we get the same results as

macro code2 above.

Log (Macro Code3):

We could also set the parameters next to the macro-code call.

7

Macro Code4:

This way, if we are trying to set different sets of libnames throughout the code, we can do that

easily. The log output shown below has the same output results as the macro codes before.

Log (Macro Code4):

8

Remove Repetition Example 2:

Now, let’s say we want to access monthly data for the year 2012 (as seen in the figure above).

Again, we could code it as shown below

9

Or, we can use macros and do loop again to shorten and simplify the code. We’ll start with the

base code again, as shown below,

and adding a do loop into the mix, we have the macro code (seen in macro code5) below.

Macro Code5:

Log (Macro Code5):

Looking at the log output for macro code5, we see that only libref M10, M11, and M12 was

assigned successfully, whereas libref M1 to M9 is no successful. Looking at the figure above, we

see that this is because the folders are named 01 to 09, as opposed to, 1 to 9.

10

Macro Code6:

Making a slight change to the code by adding a second do loop; one for i from 1 to 9, and the

second from 10 to 12, like above, we’re able to correct the problem. The libref for 1 to 9 has a 0

at the front, while libref 11 to 12 stays the same. Running the code produced the log output

below, and here, we see that all the librefs are assigned successfully.

Log (Macro Code6):

Instead of using two do loops, we can still get by with using one do loop. This can be done by

adding if-else statements, as shown in macro code7 below,

11

Macro Code7:

Using a do loop for i from 1 to 12, we can set that if i is from 1 to 9, then add a zero at the front,

else, do not add a zero in the front. The log output for macro code7 is shown below and the result

is the same as the result from macro code7.

Log (Macro Code7):

Again, we can use parameter calls to set the months instead of hard coding it.

12

Marco Code8:

If we want the last month to be set as November instead of December, using the parameter call,

we can set the last month to be anything we want easily, rather than searching through the whole

code to change it. The output of the code shows that we have successfully assigned eleven librefs,

from January to November.

Log (Macro Code8):

Another way of assigning librefs using macros is as follows.

13

Macro Code9:

What we did in macro code9 is to assign a macro variable to the parameter call. Here, we only

want to assign librefs from January to June. The log output below shows that all six librefs are

assigned successfully.

Log (Macro Code9):

What if we want to set librefs from January to December for both year 2008 and year 2009. We

can type out all 24 lines of code, or we can use macros and do loops to create the librefs for us.

14

Macro Code10:

To do that, we need to use two do loops, one to iterate for year, and a second do loop, nested

within the first, for month iterations, like macro code10 above. The log output below shows that

all librefs are assigned successfully.

Log (Macro Code10):

To make the code more versatile, we can use parameter calls to do that.

15

Macro Code11:

By using the parameter call, we can easily update the code or even used the macro code multiple

times in a code.

Log (Macro Code11):

16

Macro Code12:

Log (Macro Code12):

The log output for macro code12 shows some error messages. This is because we did not set the

beginning and end year; and beginning and end month.

17

Macro Code13:

Log (Macro Code13):

By assigning macro statements with staring year as 2008, ending year as 2012, beginning month

as January and ending month as December, we are able to successfully create the librefs that we

need, as shown in the log output for macro code13.

18

Now that we’ve seen some short examples such as macro assignment statements, how to build

macro codes that are transferable, how to remove repetitive codes, using do loops and if-else

statements, let’s put everything together.

Code7:

Code7 creates a grand premium dataset, called premium, which contains premium information

from December 2009 and December 2010, pulled from amerustran122009, quincyultrans200912,

amerustran122010 and quincyultrans201012 respectively.

This is a simple and easy code to write since it only needs two years worth of information. What

if we need five, ten, even fifteen years of information? That is going to be a long and repetitive

code. Macro code 14 below shows an equivalent code for code7 but minus the repetitiveness by

using macros, do loops, and if-else statements.

We see in code7 that everything is the same except for the years (2009 and 2010). So we’ll start

by creating macro assignments for 2009 and 2010 as the start and end years.

Using a do loop with start macro keyword assigned to 2009, we create a libname called inf2009.

We then create a dataset called premium2009 by pulling premium transactions from

inf2009.amerustran122009 and inf2009.quincyultrans200912. Next, since i, which is 2009 is

equals to &starts. (2009), we will set the premium datasets as premium2009. This will end if-else

statement and end the do loop.

Next, the end macro keyword is assigned as 2010. The inf2010 libname is then created. We then

pull the premium transaction information from inf2010.amerustran122010 and

inf2010.quincyultrans201012. Since i, which is assigned as 2010 now, does not equal to &start.

(2009), the if-else statement will skip the if section of the code and go to the else section of the

code and set the premium dataset as the previous premium dataset (premium2009) and

premium2010.

19

The if-else statement is needed in the code or else the premium dataset will always be

overwritten with the new premium dataset.

Macro Code14:

Conclusion
To summarize, Macros is a very powerful and useful tool. It not only allows us to update our

codes easily, but also makes our codes easily transferred between different codes. In addition,

Macros also helps us shorten our codes by allowing us to remove repetitive parts. Finally, it also

enables us to apply logical statements on DATA steps as oppose to just using logical statements

with DATA steps.

Contact Information

Name: Audrey Yeo

Enterprise: Aviva USA

Address: 7700 Mills Civic Parkway

City, State, ZIP: West Des Moines, IA 50316

Work Phone: 515-342-3759

E-mail: audrey.yeo@avivausa.com

mailto:audrey.yeo@avivausa.com

20

Trademark Citations

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

