Paper S1-01-2013
The Essence of DATA Step Programming

Arthur Li, City of Hope National Medical Center, Duarte, CA

ABSTRACT

The fundamental of SAS® programming is DATA step programming. The essence of DATA step programming is to
understand how SAS processes the data during the compilation and execution phases. In this paper, you will be
exposed to what happens “behind the scenes” while creating a SAS dataset. You will learn how a new dataset is
created, one observation at a time, from either a raw text file or an existing SAS dataset, to the program data vector
(PDV) and from the PDV to the newly-created SAS dataset. Once you fully understand DATA step processing,
learning the SUM and RETAIN statements will become easier to grasp. Relating to this topic, this paper will also
cover BY-group processing.

INTRODUCTION

A common befuddlement often facing beginning SAS programmers is that the SAS dataset that they create is not
what they intended to create; i.e. there are more or less observations than intended or the value of the newly-created
variable was not retained correctly. These types of mistakes are most commonly committed because programming
novices learn SAS language syntax without understanding the fundamental SAS programming concepts. The
purpose of this paper is to guide you through how DATA step programming operates, step by step, by way of
providing various examples.

DATA STEP PROCESSING OVERVIEW

A DATA step is processed in two-phase sequences: compilation and execution phases. In the compilation phase,
each statement is scanned for syntax errors. If an error is found, SAS will stop processing. The execution phase only
begins after the compilation phase ends. Both phases do not occur simultaneously.

In the execution phase, the DATA step works like a loop, repetitively executing statements to read data values and
create observations one at a time. Each loop is called an iteration. We can refer to this type of loop as the implicit
loop, which is different from the explicit loop, by using FOR or WHILE statements.

In Program 1 (below), you will see how DATA step processing works. Program 1 reads the raw data from a text file,
examplel.txt. There are two observations and three variables in this dataset, NAME (column 1 — 7), HEIGHT
(column 9 — 10), and WEIGHT (column 12 — 14). Notice that the WEIGHT variable for the first observation is entered
as “12D", which is a data entry error. Since each variable is occupied in a fixed field and the values for these
variables are standard character or numerical values, the column input method is best used to read the raw dataset.
You will also notice that a new variable, BMI, is created in this program.

Examplel.txt:

Barbara 61 12D
John 62 175

Program 1:
data exl1;

infile "C:\Users\Arthur\Documents\WUSS Proposal\Forms\examplel._ txt";
input name $ 1-7 height 9-10 weight 12-14;
BMI = 700*weight/(height*height);
output;
run;

COMPILATION PHASE

Since Program 1 reads raw datasets, the input buffer is created at the beginning of the compilation phase. The input
buffer is used to hold raw data (Figure 1). However, if you read a SAS dataset instead of a raw dataset, the input
buffer will not be created.

SAS also creates the PDV in the compilation phase (Figure 1). SAS uses the PDV, a memory area on your
computer, to build the new dataset. There are two automatic variables, _N_ and _ERROR_, inside the PDV. _N_
equaling 1 indicates the first observation is being processed, _N_ equaling 2 indicates the second observation is
being processed, and so on. The automatic variable _ERROR_ is an indicator variable with values of 1 or 0.
ERROR equaling 1 signals the data error of the currently-processed observation, such as reading the data with an
incorrect data type. In addition to the two automatic variables, there is one space allocated for each of the variables
that will be created from this DATA step. HEIGHT and WEIGHT are the variables that are read from the external raw
dataset. BMI is the variable that is created based on HEIGHT and WEIGHT.

Notice that some of the variables in the PDV are marked with (D), which stands for “dropped,” and some of the
variables are marked with (K), which stands for “kept”. The variables marked with (K) will be written to the output
dataset; on the other hand, the variables marked with (D) will not. All the automatic variables will not be written to the
output dataset.

During the compilation phase, SAS also checks for syntax errors, such as invalid variable names, options,
punctuations, misspelled keywords, etc.

Once the compilation is finished, the descriptor portion of the SAS dataset is created, which includes dataset name,
the number of observations, and the number, names, and attributes of variables.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ..
Inputbufferr [BJa|r [blalr Ja] Je6J1] J1J2]D]]..

N_(D) ERROR_(D) NAME (K) HEIGHT (K) WEIGHT (K) BMI (K)

PDV: |

Figurel. Input buffer and the PDV.

EXECUTION PHASE

At the beginning of the execution phase, the automatic variable _N__is initialized to 1, and _ERROR__is initialized to O
since there is no data error. The non-automatic variables are set to missing. Once the INFILE statement identifies
the location of the input file, the first data line is read into the input buffer. Then the INPUT statement reads data
values from the record in the input buffer according to instructions from the INPUT statement and writes them to the
PDV. When the OUTPUT statement is executed, the values from the PDV are copied as a single observation to the
SAS dataset ex1, but the values from the automatic variables and the variables that are marked (D) are not outputted.
Please see Figure 2a to see a detailed explanation of the process of each step for the first iteration.

At the end of the DATA step, the SAS system returns to the beginning of the DATA step to begin the next iteration.
The values of the variables in the PDV are reset to missing. The automatic variable _N__is incremented to 2 and
_ERROR_is setto 0. The second data line is read into the input buffer. See the illustration in Figure 2b for details.

At the end of the DATA step of the second iteration, the SAS system again returns to the beginning of the DATA step
to begin the next iteration (see Figure 2c). The values of the variables in the PDV are reset to missing. The
automatic variable _N_ is incremented to 3. Since there are no more records to read, the SAS system goes to the
next DATA or PROC step.

THE OUTPUT STATEMENT

In Program 1, the explicit OUTPUT statement was used, which tells SAS to write the current observation from the
PDV to a SAS dataset immediately, not at the end of the DATA step. Without using the explicit OUTPUT statement,
by default, every DATA step contains an implicit OUTPUT statement at the end of the DATA step that tells the SAS
system to write observations to the dataset. However, placing an explicit OUTPUT statement in a DATA step
overrides the implicit output; in other words, the SAS system adds an observation to a dataset only when an explicit
OUTPUT statement is executed. Once an explicit OUTPUT statement is used to write an observation to a dataset,
there is no longer an implicit OUTPUT statement at the end of the DATA step. Furthermore, more than one OUTPUT
statement in the DATA step can be used. You will see an example of using multiple OUTPUT statements later in this
paper.

FIRST ITERATION:
data exl1;
“N_(D) ERROR_(D) NAME (K) HEIGHT (K) WEIGHT (K) BMI (K)
PDV: | 1 | 0 | | o | . [.

. EXPLANATION: The automatic variable N_ is initialized to 1 and _ERROR_is initialized to O.
_The non-automatic variables are settomissing. |
infile "C:\Users\Arthur\Documents\WUSS Proposal\Forms\examplel.txt";
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
Inputbuffer: [BJa[r [bJa]r Ja] [6]12] J1]2]D]]..

. EXPLANATION: The INFILE statement identifies the location of the input file and the first data line
} is read into the input buffer. SAS uses the input pointer to read data from the input buffer to the |

_PDV. Atthe moment, the input pointer is positioned at the beginning of the input buffer. |
input name $ 1-7 height 9-10 weight 12-14;

N_(D) _ERROR (D) NAME (K) HEIGHT (K) WEIGHT (K) BMI (K)
PDV: | 1 | 1 | Barbara | 61 | . | .

EXPLANATION: The INPUT statement reads data values from the record in the input buffer
according to instructions from the INPUT statement and writes them to the PDV. First the INPUT
statement instructs SAS to read values from columns 1-7 from the input buffer and copies them to the
NAME slot in the PDV. The input pointer now rests in column 8, which is immediately after the last
value read. Then the INPUT statement instructs SAS to read values from columns 9-10 from the
input buffer and assigns them to HEIGHT. Next, SAS attempts to read values from columns 12-14
but 12D is not a valid numeric value; this causes WEIGHT to remain missing and _ERROR_is set to
1. Meanwhile, an error message will be sent to the SAS log indicating the location of the data error.

|

BMI = 700*weight/(height*height);
N(D) _ERROR_ (D) NAME (K) HEIGHT (K) WEIGHT (K) BMI (K)
PDV: | 1 | 1 | Barbara | 61 | . | .

, EXPLANATION: The assignment statement is executed and BMI will remain missing since i
I operations on a missing value will result in a missing value. [

output;
Ex1:
NAME HEIGHT WEIGHT BMI
Barbara 61

run;
(Ei(_PLANATION: The SAS system returns to the beginning of the DATA step to begin the next :
_iteration (see Figure 2b) J

Figure 2a. The first iteration of Program 1.

SECOND ITERATION:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

nputbuffer: [J Jo [h n] [| [I6]2] [1[715] ..
T
data exl;
N _(D) ERROR_(D) NAME (K) HEIGHT (K) WEIGHT (K) BMI (K)
PDV: | 2 | 0 | | o | . | .

EXPLANATION: The second line of data is read into the input buffer. The input pointer is
positioned at the beginning of the input buffer. The automatic variable _N__is initialized to 2 and
_ERROR_is initialized to O since there is no data error. The non-automatic variables are set to

infile "C:\Users\Arthur\Documents\WUSS Proposal\Forms\examplel._txt";
input name $ 1-7 height 9-10 weight 12-14;

N(D) _ERROR_ (D) NAME (K) HEIGHT (K) WEIGHT (K) BMI (K)
PDV: | 2 | 0 | John | 62 | 175 | .

BMI = 700*weight/(height*height);
N(D) _ERROR_(D) NAME (K) HEIGHT (K) WEIGHT (K) BMI (K)
PDV: | 2] 0 | John | 62 | 175 | 3.09573 |

output;

Ex1:

NAME HEIGHT WEIGHT BMI

Barbara 61 . .

John 62 175 31.8678

_EXPLANATION: The second observationiscreated.]
run;

‘ EXPLANATION: The SAS system returns to the beginning of the DATA step to begin the next .
_iteration (see Figure 2¢) _ J

igure 2b. The second iteration of Program 1.

THIRD ITERATION:
data exl;

N_(D) ERROR_(D) NAME (K) HEIGHT (K) WEIGHT (K) BMI (K)
PDV: | 3 | 0 | | o | . | .

non-automatic variables are set to missing. Since there are no more observations to read, the SAS
system goes to the next DATA or PROC step.

Figure 2c. The third iteration of Program 1.

THE DIFFERENCE BETWEEN READING A RAW DATASET AND READING A SAS DATASET

When creating a SAS dataset based on a raw dataset, SAS sets each variable value in the PDV to missing at the
beginning of each iteration of execution, except for the automatic variables, variables that are named in the RETAIN
statement, variables created by the SUM statement, data elements in a _TEMPORARY_ array, and variables created
in the options of the FILE/INFILE statement.

The dataset that is being created can be referred to as an output dataset. The output dataset is the one that follows
the keyword DATA. Often the output dataset is created based on the existing SAS dataset instead of from the raw
dataset. You can also call the existing SAS dataset that is used to create the output dataset the input dataset. The
input dataset is the one that follows the keyword SET. When creating a SAS dataset based on an input SAS dataset,
SAS sets each variable to missing in the PDV only before the first iteration of the execution. Variables will keep
(retain) their values in the PDV until they are replaced by the new values from the input dataset. These variables
exist in both the input and output datasets. Often when creating a new dataset based on the existing SAS dataset,
you will create new variables based on existing variables; these new variables are not from the input dataset. These
new variables will be set to missing in the PDV at the beginning of every iteration of the execution.

THE RETAIN AND SUM STATEMENTS

Suppose you would like to create a new variable that is based on values from previous observations, such as creating
a variable that accumulates the values from other numeric variables. Consider the following SAS dataset, ex2t.
Based on ex2, suppose you would like to create a new variable, TOTAL, that is used to accumulate the SCORE
variable.

Ex2:
ID SCORE
1 | A0l 3
2 | A02 .
3 | A03 4

In order to create an accumulator variable, TOTAL, you need to set the TOTAL to O at the first iteration of the
execution. Then at each iteration of the execution, add the value from the SCORE variable to the TOTAL variable.
Since TOTAL is a new variable that you want to create, TOTAL will be set to missing in the PDV at the beginning of
every iteration of the execution. In order to accumulate the TOTAL variable, you need to retain the value of TOTAL at
the beginning of each iteration of the execution. In this situation, you need to use the RETAIN statement.

THE RETAIN STATEMENT
The RETAIN statement has the following form:

RETAIN VARIABLE <VALUE>;

VARIABLE is the name of the variable that you will want to retain and VALUE is a nhumeric value that is used to
initialize the VARIABLE only at the first iteration of the DATA step execution. If you do not specify an initial value, the
retained variable is initialized as missing before the first execution of the DATA step. The RETAIN statement prevents
the VARIABLE from being initialized each time the DATA step executes. Here is program to create the TOTAL
variable by using the RETAIN statement.

Program 3:
data ex2_2;

set ex2;

retain total 0;

total = sum(total, score);
run;

The execution phase begins immediately after the completion of the compilation phase. At the beginning of the
execution phase, the variables ID and SCORE are set to missing (see Figure 3a); however, the variable TOTAL is
initialized to 0 because of the RETAIN statement. Next, the SET statement copies the first observation from the
dataset ex2 to the PDV. The RETAIN statement is a compile-time only statement; it does not execute during the
execution phase. Then the variable TOTAL is calculated. Finally, the DATA step execution reaches the final step.
Since there is no explicit OUTPUT statement in this program, the implicit OUTPUT statement at the end of the DATA

! A SAS file has an extension of “sas7bdat”, for example, ex2.sas7bdat. | will not write the extension in this paper for convenience
purposes

step tells the SAS system to write observations to the dataset. The SAS system returns to the beginning of the DATA
step to begin the second iteration.

FIRST ITERATION:
Ex2:
ID SCORE
A0l 3 < Reading
A02 .
A03 4
data ex2_2;
N(D) _ERROR_ (D) ID (K) SCORE (K) TOTAL (K)
PDV: | 1 | 0 | | o | 0
" EXPLANATION: _N_is initialized to 1 and _ERROR_is initialized to 0. The variables IDand i
_ SCORE are set to missing; TOTAL s initialized to 0 because of the RETAIN statement.]
set ex2;
N(D) _ERROR_ (D) ID (K) SCORE (K) TOTAL (K)
PDV: | 1 | 0 | A01l | 3 | 0
_EXPLANATION: The SET statement copies the first observation from ex2 to the PDV. |
retain total O;
_ EXPLANATION: The RETAIN statement does not execute during the execution phase. |
total = sum(total, score);
N(D) _ERROR_ (D) ID (K) SCORE (K) TOTAL (K)
PDV: | 1 | 0 | AO1l | 3 | 3
_EXPLANATION: TOTAL s caleulated. |
run;
Ex2_2
ID SCORE TOTAL
A01 3 3
| EXPLANATION: The implicit OUTPUT statement at the end of the DATA step tells the SAS system |
; to write observations to the dataset. The SAS system returns to the beginning of the DATA step to |
_begin the 2" iteration (see Figure3b) J

Figure 3a. The first iteration of Program 3.

At the beginning of the second iteration, since data is read from an existing SAS dataset, instead of reading from the
raw dataset, values in the PDV for variables ID and SCORE are retained from the previous iteration. The newly
created variable TOTAL is also retained because the RETAIN statement is used. See Figures 3b and 3c for the
process of the second and third iterations.

SECOND ITERATION:

Ex2:
ID SCORE
A01 3
A02 . < Reading
A03 4
data ex2_2;
N_(D) _ERROR_ (D) ID (K) SCORE (K) TOTAL (K)
PDV: | 2 | 0 | AO1 | 3] 3

| EXPLANATION: _N_isincremented to 2. ID and SCORE are retained from the previous iteration
' because data are read from an existing SAS dataset. TOTAL is also retained because the RETAIN
_statement is used.

___ |
set ex2;

N (D) ERROR_(D) ID (K) SCORE (K) TOTAL (K)
PDV: | 2 | 0 | A02 | . | 3
_ EXPLANATION: The SET statement copies the second observation from ex2 to the PDV.]
retain total O;
total = sum(total, score);

N_ (D) ERROR_(D) ID (K) SCORE (K) TOTAL (K)
PDV: | 2 | 0 | A02 | . | 3
TEBEFSIANA‘TT ON: TOTAL is calculated. When the SUM function is used instead of using the “+" sign, |
_the missing value istreatedasO0. J
run;
Ex2 2

ID SCORE TOTAL

AO01 3 3
A02 3
1‘Ei(b‘LKNA‘TTéN"T‘r}é'frh‘;il?c’&'é’ﬂﬁiﬁ';iéié;ﬁé‘ri{t'él'lé'{rié'é'/ié"s}'s‘t'e‘ri{ié'v‘v}fté‘b‘béé‘r'vé’t?c&ﬁ's‘ié'{ﬁé“;
i dataset. The SAS system returns to the beginning of the DATA step to begin the 3" iteration (see ;
L]

Figure 3b. The second iteration of Program 3.

THE SUM STATEMENT
The program above can be re-written by using the SUM statement instead of using the RETAIN statement. The SUM
statement has the following form:

VARIABLE + EXPRESSION]]

The SUM statement may seem unusual because it does not contain the equal sign. VARIABLE is the numeric
accumulator variable that is to be created. VARIABLE is automatically set to O at the beginning of the first iteration of
the DATA step execution and it is retained in following iterations. EXPRESSION is any SAS expression. In the
situation where EXPRESSION is evaluated to a missing value, it is treated as 0. Here is an equivalent version of
Program 3 using the SUM statement.

Program 4:
data ex2_3;

set ex2;
total + score;
run;

TRIRD ITERATION:

Ex2:
ID SCORE
A0l 3
A02 .
A03 4 < Reading
data ex2_2;
N_(D) ERROR_(D) ID (K) SCORE (K) TOTAL (K)
PDV: | 3 | 0 | A02 | . | 3
" EXPLANATION: _N_is incremented to 3. 1D and SCORE are retained from the previous iteration.
| TOTALisalsoretained.]
set ex2;
N(D) _ERROR_(D) ID (K) SCORE (K) TOTAL (K)
PDV: | 3 | 0 | A03 | 4 | 3

retain total O;
total = sum(total, score);

N(D) _ERROR_(D) ID (K) SCORE (K) TOTAL (K)
PDV: | 3 | 0 | A03 | 4 | 7

run;
Ex2_2:
ID SCORE TOTAL
A0l 3 3
A02 . 3
A03 4 7

EXPLANATION The observation from the PDV is written to the dataset. The SAS system returns to _:
the beginning of the DATA step to begin the 4" iteration. |

© In the 4™ and final iteration, there are no more observations to read; the SAS system goes to the
' next DATA or PROC step. |

Figure 3c. The third iteration of Program 3.

THE SUBSETTING IF STATEMENT
You can use the IF statement to continue processing only the observations that meet the condition
of the specified expression. The IF statement has the following form:

| IF EXPRESSION; |

The EXPRESSION in the IF statement can be any SAS expression. If the EXPRESSION is true for the observation,
SAS continues to execute statements in the DATA step and includes the current observation in the data set. The
resulting SAS data set contains a subset of the external file or SAS data set.

On the other hand, if the EXPRESSION is false, then no further statements are processed for that observation and
SAS immediately returns to the beginning of the DATA step. That is to say, the remaining program statements in the
DATA step are not executed and the current observation is not written to the output data set. An example will be
shown in the following section.

THE BY-GROUP PROCESSING IN THE DATA STEP

The examples that have been presented so far only contain one observation per subject. Sometimes you will also
deal with data with multiple observations per subject. This type of data often results from repeated measures for each
subject and is often called longitudinal data. For longitudinal data, sometimes it is useful to be able to identify the
beginning or end of measurement for each subject. This can be accomplished by using the BY-group processing
method. SAS locates the beginning and end of a BY-group by creating two temporary indicator variables for each BY
variable: FIRST.VARIABLE and LAST.VARIABLE. For example, suppose that the ID variable is the BY variable;
FIRST.ID and LAST.ID will be created. When FIRST.ID equals 1, SAS reads the first observation in an ID group.
Similarly, LAST.ID equals 1 indicates SAS reads the last observation in an ID group.

Since FIRST.VARIABLE and LAST.VARIABLE are temporary variables, they are not being output to the output
dataset. Ron Cody’s book Longitudinal Data and SAS® - A Programmer’s Guide provides practical examples for
managing and/or manipulating this type of data. Some of the examples in this paper are adapted from his book.

Consider the following SAS dataset, ex3. Each subject has multiple numbers of observations. The number of
observations for each subject differs. Suppose that you would like to calculate the total scores for each subject; see
Program 5 below. In this program, the SUM statement is used to accumulate the total score. For this problem, the
accumulation is completed for each subject, not for all of the subjects combined. Solving this problem can be
achieved in three steps: initializing the TOTAL to 0 when starting to read the first observation of each subject;
creating TOTAL by accumulating SCORE for each subject; outputting the TOTAL score when reading the last
observation of each subject. Therefore, utilize the BY-group processing and the ID will be the BY variable. To use
the BY-group processing in the DATA step, It is important to sort the data by the BY variable (ID) first.

Ex3:

ID SCORE
A01 3
A0l
AO01
A02
5 A02

Program 5:
proc sort data=ex3;

by id;
run;
data ex3_1 (drop=score);
set ex3;
by id;
if first.id = 1 then total = 0;
total + score;
if last.id = 1;
run;

AlWIN|IF

NI IN|[D>

Since the BY statement was used after the SET statement in the DATA step, two automatic variables, FIRST.ID and
LAST.ID, are created in the PDV. Both FIRST.ID and LAST.ID are initialized to 1 before the fist iteration of the DATA
step execution (see Figure 4a). ID and SCORE variables are set to missing, but TOTAL is set to 0 since TOTAL is
created by the SUM statement. When the SET statement executes, SAS copies the first observation from the sorted
ex3 to the PDV. Since this is the first observation for the A01 subject, FIRST.ID is setto 1. The LAST.ID is setto 0
since this is not the last observation. Next, TOTAL is assigned to 0 because this is the first observation for ID AO1
(SAS statement: if first.id = 1 then total = 0). The SUM statement accumulates the TOTAL variable.
Because the subsetting IF statement is evaluated to be false (LAST.ID does not equal 1), SAS immediately returns to
the beginning of the DATA step. That means the contents of the PDV are not output to the SAS dataset ex3_1.

The second iteration (see Figure 4b) is similar to the first iteration. During this iteration, both FIRST.ID and LAST.ID
are setto 0. TOTAL is then accumulated. But the PDV contents are not outputted to the SAS dataset either since
this is not the last observation for AO1.

In the third iteration (see Figure 4c), FIRST.ID is set to 0 and LAST.ID is setto 1. TOTAL is accumulated. The
subsetting IF statement is evaluated to be true. Then SAS reaches the end of the DATA step and the implicit
OUTPUT statement copies the contents from the PDV (ID and TOTAL) to the SAS dataset ex3_1 (SCORE variable is
dropped in the DATA statement). The rest of the iterations are similar to the iterations explained above. See Figures
4d- 4e for details.

FIRST ITERATION:
Ex3:

ID SCORE
A01
A0l
AO01
A02
A02

< Reading

N~ IN| W

data ex3_1;
N _(D) ERROR_ (D) FIRST.ID (D) LAST.D(D) ID(K) SCORE (D) TOTAL (K)

POV: | 1 | 0 | 1 | 1 | | o | 0
| EXPLANATION: Both FIRST.ID and LAST.ID are initialized to 1. The ID and SCORE variables are |
| setto missing, but TOTAL is set to 0 since TOTAL is created by the SUM statement. J
set ex3;

N(D) _ERROR_ (D) FIRST.ID (D) LAST.ID (D) ID (K) SCORE (D) TOTAL (K)
PDV: | 1 | 0 | 1 | 0 | A01 | 3] 0
- EXPLANATION: SAS copies the first observation from the sorted ex3 to the PDV. Since this is the |
i first observation for the AO1 subject, FIRST.ID is setto 1. The LAST.ID is set to O since this is not the :
| lastobservationforA0L. . |
by id;
if first.id = 1 then total = 0;

N(D) _ERROR_ (D) FIRST.ID (D) LAST.ID (D) ID (K) SCORE (D) TOTAL (K)
PDV: | 1 | 0 | 1 | 0 | A0l | 3 | 0
| EXPLANATION: TOTAL isassignedt00.]
total + score;

N_(D) _ERROR_ (D) FIRST.ID (D) LAST.ID (D) ID (K) SCORE (D) TOTAL (K)
PDV: | 1 | 0 | 1 | 0 | A0l | 3 | 3
| EXPLANATION: TOTAL isaceumulated.]
if last.id = 1;
i EXPLANATION: The subsetting IF statement is evaluated to be FALSE because LAST.ID # 1. :
| SAS returns to the beginning of the DATA step to begin the 2" iteration (see Figureb) J

Figure 4a. First iteration for Program 5.

10

SECOND ITERATION:
Ex3:

ID SCORE
AO01
AO01
A0l
A02
A02

< Reading

N[N |[W

data ex3_1;
N_(D) ERROR_(D) FIRST.ID (D) LAST.ID (D) ID (K) SCORE (D) TOTAL (K)

PDV: | 2 | 0 | 1 | 0 [Aol | 3 | 3
| EXPLANATION: _N_is incremented to 2. The values for the rest of the variables are retained. |
set ex3;

N _(D) ERROR_(D) FIRST.D(D) LAST.D(D) ID(K) SCORE (D) TOTAL (K)
PDV: | 2 | 0 | 0 | 0 | A0l | 4] 3
| EXPLANATION: SAS copies the second observation from the sorted ex3 to the PDV. Since thisis |
_not the first observation or the last observation for AO1, both FIRST.ID and LAST.ID are sett0 0. i
by id;
if first.id = 1 then total = 0;

N(D) ERROR (D) FIRST.ID(D) LAST.D(D) ID(K) SCORE (D) TOTAL (K)
PDV: | 2 | 0o | 0 | 0o | A1 [4 | 3
| EXPLANATION: FIRSTID # 1, sothere isnoexecution. |
total + score;

N_(D) ERROR_ (D) FIRST.ID(D) LAST.D(D) ID(K) SCORE (D) TOTAL (K)
PDV: | 2 | 0 | 0 | 0 | A0l | 4 | 7
| EXPLANATION: TOTALiscaleulated]
if last.id = 1;
___ .

EXPLANATION The subsetting IF statement is evaluated to be FALSE because LAST.ID # 1. i
SAS returns to the beginning of the DATA step to begin the 3" jteration (see Figure 4c) |

Figure 4b. Second iteration for Program 5.

11

THIRD ITERATION:
Ex3:

ID SCORE
AO01
A0l
A01
A02
A02

< Reading

NN~ [W

data ex3_1;
N_(D) ERROR_(D) FIRST.ID (D) LAST.ID (D) ID (K) SCORE (D) TOTAL (K)

PDV: | 3 | 0 | 0 | 0 | A0l | 4 | 7

| EXPLANATION: _N_is incremented to 3. The values for the rest of the variables are retained.]
set ex3;

N(D) ERROR_(D) FIRST.ID (D) LAST.ID (D) ID (K) SCORE (D) TOTAL (K)

PDV: | 3 | 0 | 0 | 1 | A0l | 2] 7

| EXPLANATION: SAS copies the third observation from the sorted ex3 to the PDV. Since this is not |
i the first observation, FIRST.ID is set to 0. However, LAST.ID is set to 1 since this is the last :
| ObservationforA0l. J

by id;
if first.id = 1 then total = 0;

"N_(D) ERROR (D) FIRST.ID(D) LAST.D(D) ID(K) SCORE (D) TOTAL (K)
PDV: | 3 | 0 | 0 | 1 | A01 | 2] 7

| EXPLANATION: FIRST.ID # 1, so there is no execution. J

total + score;
N_(D) ERROR_(D) FIRST.ID (D) LAST.ID (D) ID (K) SCORE (D) TOTAL (K)

PDV: | 3 | 0 | 0 | 1 | A0l | 2 | 9
| EXPLANATION: TOTAL iscaleulated.]
I Mast.ud = 15

i EXPLANATION: The subsetting IF statement is evaluated to be TRUE since LAST.ID equals 1. i

run;
Ex3_1:

EXPLANATION: SAS reaches the end of the 3" iteration. The implicit OUTPUT statement copies ID 1
and TOTAL from the PDV to the dataset ex3_1. The remaining variables are not copied since they
are marked with (D). The SAS system returns to the beginning of the DATA step to begin the 4"
iteration (see Figure 4d)

Figure 4c. Third iteration for Program 5.

12

FOURTH ITERATION:
Ex3:

ID SCORE
AO01
A0l
A0l
A02
A02

< Reading

N[N~ [W

data ex3_1;
N_(D) ERROR_(D) FIRST.ID (D) LAST.ID (D) ID (K) SCORE (D) TOTAL (K)

PDV: | 4 | 0 | 0 | 1 | A0l | 2] 9
| EXPLANATION: _N_is incremented to 4. The values for the remaining variables are retained. |
set ex3;

N _(D) ERROR_(D) FIRST.D(D) LAST.D(D) ID(K) SCORE (D) TOTAL (K)
PDV: | 4 | 0 | 1 | 0 | A02 | 4] 9

| EXPLANATION: SAS copies the fourth observation from the sorted ex3 to the PDV. FIRST.ID is set ﬁ:
i to 1 since this is the first observation for AO2. However, LAST.ID is set to 0. :

by id;
if first.id = 1 then total = 0;
N_(D) ERROR_(D) FIRST.ID (D) LAST.ID (D) ID (K) SCORE (D) TOTAL (K)

PDV: | 4 | 0 | 1 | 0 | A02 | 4 | 0
| EXPLANATION: Since FIRST.ID=1, TOTALissetto0. |
total + score;

N_(D) ERROR_ (D) FIRST.ID(D) LAST.D(D) ID(K) SCORE (D) TOTAL (K)
Pov: [4 | 0 | 1] 0 [A02 | 4 | 4
| EXPLANATION: TOTALiscalculated.]
if last.id = 1;
___ .

EXPLANATION The subsetting IF statement is evaluated to be FALSE because LAST.ID # 1. i
SAS returns to the beginning of the DATA step to begin the 5™ iteration (see Figure 4e) |

Figure 4d. Fourth iteration for Program 5.

13

FIFTH ITERATION:
Ex3:

ID SCORE
AO01
A0l
A0l
A02
A02

N[N~ [W

< Reading

data ex3_1;
N_(D) ERROR_(D) FIRST.ID (D) LAST.ID (D) ID (K) SCORE (D) TOTAL (K)

PDV: | 5 | 0 | 1 | 0 | A02 | 4 | 4
| EXPLANATION: _N_is incremented to 5. The values for the remaining variables are retained. |
set ex3;

N _(D) ERROR_(D) FIRST.D(D) LAST.D(D) ID(K) SCORE (D) TOTAL (K)
PDV: | 5 | 0 | 0 | 1 | A02 | 2] 4

| EXPLANATION: SAS copies the fifth observation from the sorted ex3 to the PDV. FIRST.ID is setto
. 0. LAST.ID is set to 1 since this is the last observation for A02. :

;‘St.id = 1 then total = 0;
N_(D) ERROR_(D) FIRST.ID(D) LAST.D(D) ID(K) SCORE (D) TOTAL (K)
PDV: | 5 | 0 | 0 | 1 | A02 | 2] 4

i EXPLANATION: FIRST.ID # 1, so there is no execution. i

total + score;
N_(D) ERROR_ (D) FIRST.ID (D) LAST.ID (D) ID (K) SCORE (D) TOTAL (K)

PDV: | 5 | 0 | 0 | 1 | A02 | 2 | 6
| EXPLANATION: TOTALiscaleulated.]
if last.id = 1;
___ .

EXPLANATION The subsetting IF statement is evaluated to be TRUE since LAST.ID equals 1. |

run;
Ex3_1:
ID TOTAL
A0l 9
A02 6

EXPLANATION SAS reaches the end of the 5" iteration. The implicit OUTPUT statement copies ID _:
| and TOTAL from the PDV to the dataset ex3_1. The SAS system returns to the beginning of the
I DATA step to begin the 6" iteration '

| Since there are no more observations to read in the 6" iteration, the SAS system goes to the next |
: DATA or PROC step.

Figure 4e. Fifth iteration for Program 5.

14

RESTRUCTURING DATASETS

Restructuring datasets denotes transforming data from one observation per subject (the wide format) to multiple
observations per subject (the long format) or transforming data from the long format to data in the wide format. The
purpose of the transformation to different formats is to suit the data format requirement for different types of statistical
procedures. This type of data transformation can be easily done by using more advanced programming techniques,
such as using ARRAY or using PROC TRANSPOSE. However, this can also be accomplished without advanced
techniques for more simple cases.

FROM WIDE FORMAT TO LONG FORMAT

Suppose that you are transforming data from the wide format to the long format such as the example below. Notice
that data in the long format has a variable, TIME, that is used to distinguish the different measurements for each
subject in the wide format. The original variables in the wide format, S1 — S3, become the variable SCORE in the
long format.

Long:
Wide: ID | TIME | SCORE
ID s1 | s2 | s3 1 | A0l 1 3
1 | Aol 3 4 5 y—> 2 | Ao1 2 4
2 | A02 4 . 2 3 | A0 3 5
4 | A02 1 4
5 | A02 3 2

Since only two observations need to be read from the wide dataset, there will be only two iterations for the DATA step
processing. That means you need to generate the output three times for each iteration. Also, any missing values in
variables S1 — S3 will not be outputted in the long dataset. Here is a solution for using multiple OUTPUT statements
in one DATA step.

Program 6:
data long (drop=sl1-s3);

set wide;

time = 1;

score = sl;

if not missing(score) then output;
time = 2;

score = S2;

if not missing(score) then output;
time = 3;

score = S3;

if not missing(score) then output;

run;

In Program 6, immediately after the SET statement, the TIME variable is set to 1. Next, the value from S1 is assigned
to the SCORE variable. Now all the elements for the first observation in the long dataset are ready for outputting.
Before outputting, check whether the SCORE value is missing or not; if it is not missing, use the explicit OUTPUT
statement to create the first observation for the long dataset. Next, assign value 2 to the TIME variable and assign
the value from S2 to SCORE and output the dataset again. Similar processes are repeated; assign 3 to TIME, assign
S3 to SCORE, and output. Within the first iteration of the DATA step processing, the values for TIME and SCORE
are being replaced three times. Once they are replaced, they are outputted to the final dataset. See Figure 5a for
more details.

The second iteration (see Figure 5b) is similar to the first iteration. The only difference is that S2 is missing. After the

value for S2 is assigned to SCORE, the contents in the PDV are not copied to the final dataset because SCORE
equals missing.

15

FIRST ITERATION:

Wide: ID S1 S2 S3

AO01 3 4 < Reading

A02 4 .
data long (drop=sl1-s3);

N_(D) ERROR_ (D) ID(K) S1(D) S2(D) S3(D) TIME (K) SCORE (K)
POV: | 1 | 0 e [e [e] o | .

L EXPLANATION: _N_is setto 1 and_ERROR_is sett0 0. Other variables are set to missing. ______|
set wide;

N_ (D) ERROR_(D) 1D (K) S1(D) S2(O) S3(D) TIME(K) SCORE (K)
pov: | 1 | o | A1 | 3 | 4 | 5 | e | e
| EXPLANATION: The first observation from the wide dataset is copiedtothePDV. _ |
time = 1; score = sl;

N_ (D) ERROR_(D) 1D (K) S1(D) S2(O) S3(D) TIME(K) SCORE (K)
pov: | 1 | 0 Aol] 3 | 4 | 5 | 1] s
| EXPLANATION: TIME is set to 1 and SCORE is setto 3 (from the value of S1).]
if not missing(score) then output;

Long: | EXPLANATION: ID, TIME, and SCORE are |

ID TIME SCORE | copied to dataset long since SCORE is not .
Aot ! S|imissing. }
time = 2; score = s2;

N(D) _ERROR_ (D) ID(K) S1(D) $S2(D) S3(D) TIME(K) SCORE (K)
pov: | 1] o | A1] 3] 4] 5] 2 T &
!_E?_(_'_’_'-_QN_A_T_'_Q_’_‘__T_'_'Y'_E__'§_§?_t_t_c!_2_EU‘?'__S_C?Q_R_'?_'_S_§_“3_t_t_c?_‘!_(_f[‘?if_‘_t_h_‘?_"_é"_‘i‘?_c_’f_S_?Z ___________________________ j
if not missing(score) then output;

Long: ikt |
| EXPLANATION: ID, TIME, and SCORE are copied |
D TIME SCORE ! to dataset long since SCORE is not missin 5
AO01 1 3| LTI IS gsince SLORE IS not missing 9.] |
A01 2 4
time = 3; score = s3;

N(D) _ERROR_ (D) 1D (K) S1(D) S2(O) S3(D) TIME(K) SCORE (K)
pov: | 1 | 0 A0l | 3 | 4 | 5 | 3] s
| EXPLANATION: TIME is setto 3 and SCORE is setto 5 (from the value of $3).]
if not missing(score) then output;

Long:
ID TIME SCORE EXPLANATION ID, TIME, and SCORE are copled
A01 1 3 't_o_!j.ﬁt_§§‘?£_|9F‘_9_$'I‘_€‘?_$_QQBE_'_S_DP_t_D?LStS_'ﬂ_Q ________ J
A01 2 4
A01 3 5
run;
| EXPLANATION: There is no more implicit OUTPUT statement. The SAS system retums tothe i
| beginning of the DATA step to begin the 2™ iteration (see Figure5a). J

Figure 5a. First iteration for Program 6.

16

SECOND ITERATION:

Wide: ID S1 S2 S3
A0l 3 4 5
A02 4 . 2 < Reading

data long (drop=sl1-s3);

N_(D) _ERROR_(D) ID(K) S1(D) S2(D) S3(D) TIME(K) SCORE (K)
PDV:|2|0|A01|3|4|5|.|.

EXPLANATION: _N_ isincremented to 2. ID and S1-S3 are retained from the previous iteration. The _i
newly-created variables, TIME and SCORE, are set to missing. :

set wide;

N(D) ERROR_ (D) ID(K) S1(D) S2(D) S3 (D) TIME (K) SCORE (K)
pOv: | 2 | o | A2 | 4 | .] | e [e

.-EXE’EE\@\E[@Eﬂ@iéieﬁciéhiﬂ}}iééi@é}iéh}{ciriEbﬁe&@iciéiééiéﬁséiEéiiééiééiicé}ﬁﬁeiﬁFiDYZ:::::::J
time = 1; score = sl;

N_(D) ERROR (D) ID(K) S1(D) S2(D) S3(D) TIME(K) SCORE (K)
pov: | 2 | o | A2 | 4 [e« | 2 [1 | 4
| EXPLANATION: TIME is setto 1 and SCORE is setto 4 (from the value of S1).]
if not missing(score) then output;
Long:

ID TIME SCORE it et

AOL 1 3 I EXPLANATION: ID, TIME, and SCORE are —i
’ ied to dataset long since SCORE is not :

z i | e |
AOL 3 5 | nussin L i
A02 1 4
time = 2; score = s2;

N_(D) ERROR (D) ID(K) S1(D) S2(D) S3(D) TIME (K) SCORE (K)
pov: | 2 | o | A2 | 4 [e | 2 [2 | .
| EXPLANATION: TIME is set to 2 and SCORE s set to missing (from the value of S2).]
if not missing(score) then output;
| EXPLANATION: No output is generated since SCORE equals missing. |
time = 3; score = s3;

"N (D) ERROR (D) ID(K) S1(D) S2(D) S3(D) TIME(K) SCORE (K)
pov: | 2 | o] A2 | 4 | o | 2] 3 | 2
| EXPLANATION: TIME is setto 3 and SCORE is setto 2 (from the value of $3). |
if not missing(score) then output;
Long:

ID TIME SCORE |
A01 1 3 | | EXPLANATION: ID, TIME, and SCORE are copied |
A01 2 4 | | todataset long since SCORE is not missing. _ _ | |
AO1 3 5
A02 1 4
A02 3 2
run;

EXPLANATION The SAS system returns to the beginning of the DATA step to begin the 3" jteration. |
! With no more observations to read in the 3rd iteration, SAS goes to the next DATA or PROC step. :

Figure 5b. Second iteration for Program 6.

17

FROM LONG FORMAT TO WIDE FORMAT
Transforming data from the long format to the wide format is a little more complicated. Details for each single step

will not be covered. However, if you attempt to draw the PDV yourself, you will be able to figure-out the contents of the
PDV within each iteration of the DATA step processing. The SAS code is listed below:

Long:

ID TIME SCORE
AO1L 3 Wide:
AOL :> ID S1 S2 S3
0L 1 A01 3 4 5
202 2 A02 4 . 2
AQ02

QA W |IN|F
WP W|IN|P
N[~ O A

Program 7:
proc sort data=long;

by id time;
run;
data wide (drop=time score);
set long;
by id;
retain s1-s3;
if first.id then do;
sl =.; sS2=._.; s83=.;
end;
if time = 1 then sl = score;
else if time = 2 then s2 = score;
else s3 = score;
if last.id = 1;
run;

Program 7 begins by sorting the long dataset by ID and TIME. Sorting the variable TIME within each ID is important
because it ensures the horizontal order of S1 — S3 in the wide dataset for each subject can be matched correctly with
the vertical order of SCORE in the long dataset.

Since you are reading five observations from the long dataset but only creating two observations, it means that you
are not copying data from the PDV to the final dataset at each iteration. As a matter of fact, you only need to
generate one observation once all the observations for each subject have been processed. That means that the
newly- created variables S1 — S3 in the final dataset need to retain their values; otherwise S1 — S3 will be initialized to
missing at the beginning of each iteration of the DATA step processing.

Notice that subject A02 is missing one observation for TIME equaling 2. The value of S2 from the previous subject
(A01) will be copied to the dataset wide for the subject A02 instead of a missing value because S2 is being retained.
To avoid this problem, initialize S1 — S3 to missing when processing the first observation for each subject.

USING THE PUT STATEMENT TO OBSERVE THE CONTENTS OF THE PDV DURING EACH STEP
If you are not sure what the contents of the PDV are during each step of the DATA step processing, use the PUT

statement inside the DATA step, which will generate the contents of each variable in the PDV on the SAS log. For
example,

Program 8:
data ex2_2;

put "1ST PUT" _all_;
set ex2;
put "2ND PUT" _all_;
retain total O;
put "3RD PUT" _all_;
total = sum(total, score);
put "4TH PUT" _all_;
run;

18

The PUT statement can combine text strings in quotations with the contents of the variable on the SAS log. The
keyword _ALL_ means that all the variables, including the automatic variables, will be output to the SAS log. Here is
the corresponding log from Program 8.

SAS log:
289 data ex2_2;
290 put "1ST PUT" _all_;
291 set ex2;
292 put "2ND PUT" _all_;
293 retain total 0;
294 put "3RD PUT" _all ;
295 total = sum(total, score);
296 put "4TH PUT" _all ;
297 run;

1ST PUTid= score=. total=0 _ERROR_=0 _N_=1
2ND PUTid=A01 score=3 total=0 _ERROR_=0
3RD PUTid=A01 score=3 total=0 _ERROR_=0
4TH PUTid=A01 score=3 total=3 _ERROR_=0
1ST PUTid=A01 score=3 total=3 _ERROR_=0
2ND PUTid=A02 score=. total=3 _ERROR_=0
3RD PUTid=A02 score=. total=3 _ERROR_=0
4TH PUTid=A02 score=. total=3 _ERROR_=0
1ST PUTid=A02 score=. total=3 _ERROR_=0
2ND PUTid=A03 score=4 total=3 _ERROR_=0
3RD PUTid=A03 score=4 total=3 _ERROR_=0
4TH PUTid=A03 score=4 total=7 _ERROR_=0
1ST PUTid=A03 score=4 total=7 _ERROR_=0

Il
-

|
|
I
-

Il
-

|
ZZZZZZ|ZZZZZZ

1]
A WWOWWWNMDMNODNDN

CONCLUSION

To be a successful SAS programmer, you must be able to thoroughly comprehend how DATA steps are processed.
The most important part of DATA step processing is to understand how data is transformed to the PDV and how data
is copied from the PDV to a new dataset.

REFERENCES
Li, Arthur. 2013. Handbook of SAS® DATA Step Programming. Chapman and Hall/CRC.

CONTACT INFORMATION
Arthur Li
City of Hope National Medical Center
Department of Information Science
1500 East Duarte Road
Duarte, CA 91010 - 3000
Work Phone: (626) 256-4673 ext. 65121
Fax: (626) 471-7106
E-mail: arthurli@coh.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

19

