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ABSTRACT 
 
There are a few strategies in debugging errors that arise during SAS® programming. Errors in programming can 
manifest as either syntax or logic errors. Syntax errors tend to be easily identified as they stop the program and 
generate error messages in the log window. While logic errors will not halt SAS during the DATA step compilation 
phase, this may result in data that is unintended. A useful tool in examining logic errors is invoking the DATA Step 
Debugger, which allows viewing of the Program Data Vector (PDV) during the execution of the DATA step. When the 
DATA Step Debugger is running, there are many options that can examine values of selected variables, suspend 
statements, display the values of any variables in the PDV, or other commands. This process can aid in identifying 
segments of code that may contain logic errors. This paper will highlight some techniques that are used by the DATA 
Step Debugger. 

 
INTRODUCTION 
 
Logic errors executed during the DATA step compilation phase will not stop SAS during the compilation phase, but 
the error can generate unwanted output. These errors can arise when programmers overlook what is being inputted 
by the PDV during a DATA step. The DATA Step Debugger allows the programmer to debug SAS DATA steps by 
adding the DEBUG option to the end of a DATA statement. During the DATA Step Debugger, SAS will first compile 
the DATA step, display the DEBUG windows, and interactively allow viewing and updating of the PDV using certain 
commands. 

 
APPLICATION OF THE DATA STEP DEBUGGER 
 
The following application uses a program (Program 1) to reshape the Radiation data (Table 1) that is currently stored 
in a long format to be placed into wide format, the Survival data set (Table 2), in preparation for survival analysis. 
Each participant in the study has received a different type of radiation at three different time points in the study. 

 
Program 1. Program Containing Logic Error 
 
data wide (drop=time radiation); set radiation; 
  by id; 
 retain rad1-rad3; 

if time=1 then rad1=radiation; 
else if time=2 then rad2=radiation; 
else rad3=radiation; 

if last.id; 
run; 

 

                      
Table 1. Radiation data Table 2. Survival data 
 

ID Time Radiation

X1 1 5

X1 2 4

X1 3 1

X2 1 2

X2 2 5

X3 2 6

X4 3 1

ID Rad1 Rad2 Rad3

X1 5 4 1

X2 2 5 .

X3 . 6 .

X4 . . 1
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Program 1 is the initial program to attempt to reshape the data, but this Program results in the values for each 
radiation value carried down for all individuals. For example, as shown in Output 1, ID X3 should be missing on the 
first radiation treatment time point, but its value appears to be carried down from ID X2. 

 

 
Output 1. Undesired Output from Program 1 

 
This logic error does not stop the SAS program, but it does not produce the desired output. The DATA Step 
Debugger can be initialized here. By adding a DEBUG option after the DATA statement and rerunning the statement, 
the debugger will be invoked. 
 
Two windows appear: the DEBUGGER LOG and the DEBUGGER SOURCE. 

 

 
Window 1. DEBUGGER LOG and DEBUGGER SOURCE windows  
 
The DEBUGGER LOG window highlights current program that is running. DEBUG commands can be entered directly 
into the LOG window in the command line. The command line is below the row of dashes (Window 1). 
 
The DEBUGGER SOURCE window holds the current DATA step program. The lines correspond to the lines of the 
current program in both the LOG and DEBUGGER LOG windows. The line to be executed by SAS is highlighted 
within the window, and in this instance, before line 20. All iterations will be run within the DEBUGGER SOURCE and 
LOG as each line is initialized and entered into the PDV. 

 
DEBUGGER COMMANDS 
 
Various DEBUGGER commands are highlighted below with commands and their shortcuts (in brackets) to be used in 
the DEBUGGER LOG window.  
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EXAMINE [e] 
The EXAMINE command displays the current value of the variable in the PDV. The SAS keyword _all_ can be used 
to display all variables. Because we are interested in the error in input of the rad1 variable, that unique variable name 
can be entered as well (Window 2). 
 
Examine _all_ 
 

 
Window 2. Application of the EXAMINE command 

 
STEP [st] 
The STEP command executes each line where the DATA Step Debugger pointer is. By default, the ENTER key also 
functions as the STEP command. The STEP command can be combined with a value to enter the command n times. 
 
step 3 

 
BREAK [b] 
The BREAK command suspends the DATA step with a certain condition. For example, setting a breakpoint can be 
done at a certain line. Multiple BREAK commands can be done in one DEBUG session.  Here the BREAK point is set 
at line 32, where an exclamation point is shown in Window 3. 

 
break 32 
 

 
Window 3. BREAK point entered into line 32  
 
More advanced commands including conditional statements like WHEN and group processing like DO. Here this 
BREAK command with DO and WHEN statements will examine ID X3 at line 32 to determine which value will be read 
by the PDV at the time. 
 
break 32 when ID="X3" do; examine _all_; end; 
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WATCH [w] 
The WATCH command displays both the old and new value for the specified variable that will be entered into the 
PDV (Window 4). For each variable to under the WATCH command, the DEBUGGER LOG window will show 
changes. 

 
watch rad1 

 

 
Window 4. WATCH command used to observe changes in variable rad1 

 
GO [g] 
The GO command will continue to execute the DATA steps until it reaches the specified BREAK point, WATCH 
points, or the completion of the DATA step if none of the previous commands are specified. The GO command issued 
with no line number will automatically run to the next BREAK or WATCH point. If a line number is entered, the 
debugger will run until it can reach the line, including running subsequent iterations. 

 
TRACE [t] 
This command displays all commands run in the DEBUGGER LOG window. The TRACE command needs to be 
initialized to work (the default is off). 

 
trace on 

 
When used in conjunction with GO and BREAK commands, it will display every continuous record and not only the 
most recent command executed. 

 
DELETE [d] 
With the DELETE command, unwanted break points and watched variables can be deleted. The following command 
will delete the break point set at line 32. 

 
delete break 32 

 
SET 
This will allow for manually setting values that are not initially part of the program submitted to the PDV. The current 
iteration the run by the DATA Step Debugger will be the value changed by the SET command. 

 
set rad1=3 

 
LIST [l] 
The LIST command lists all BREAK points, variables under WATCH, files, and data sets used in the DATA Step 
Debugger.  The variable list _all_ can explore all commands at once. 
 
QUIT [q] 
This ends the DATA Step Debugger and terminates the program. The DATA STEP program will stay open even if the 
program has completed running. This will reopen the original SAS program. 

 
CORRECTING THE DATA STEP LOGIC ERROR 
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After exploring the program using the DATA Step Debugger, specifically the WATCH and EXAMINE commands, it 
appeared that upon the iteration of the program for individual X3, the value was retained in the PDV from the previous 
individual. Therefore, a new program (Program 2) was written to initialize each new rad variable that was created to 
missing by each individual. This produces the desired output (Output 2). 
 
Program 2. Fixed program 
 
data wide (drop=time radiation); set radiation; 
 by id; 
 retain rad1-rad3; 
 if first.id then do; 
  rad1=.; rad2=.; rad3=.; 
 end; 

if time=1 then rad1=radiation; 
else if time=2 then rad2=radiation; 
else rad3=radiation; 

if last.id; 
run; 

 

 
Output 2. Corrected Output after Identifying Logic Error 
 
CONCLUSION 
 
Using the DATA Step Debugger can help to alleviate problems due to logic errors. Because logic errors do not stop 
the SAS program from compiling, the Data Step Debugger is an invaluable tool in diagnosing and eliminating logic 
errors that can arise. 
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