
1

Paper RF-11-2013

Don’t Get Blindsided by PROC COMPARE
Joshua Horstman, Nested Loop Consulting, Indianapolis, IN

Roger Muller, Data-to-Events.com, Carmel, IN

ABSTRACT
"NOTE: No unequal values were found. All values compared are exactly equal." That message is the holy grail for
the programmer tasked with independently replicating a production dataset to ensure its correctness. Such a
validation effort typically culminates in a call to PROC COMPARE to ascertain whether the production dataset
matches the replicated one. It is often assumed that this message means the job is done. Unfortunately, it is not so
simple. The unwary programmer may later discover that significant discrepancies slipped through. This paper
surveys some common pitfalls in the use of PROC COMPARE and explains how to avoid them.

INTRODUCTION
PROC COMPARE is a SAS® procedure which provides the programmer with a simple facility for comparing two
datasets. While the procedure is capable of providing exhaustive listings of the differences between two datasets, it
is frequently the case that the programmer is simply interested in confirming that two datasets are the same.

For example, a programmer may compare an output dataset to a previous version of the same dataset to verify that
changes to the code which produced the dataset have had no unintended consequences. When accuracy of results
is critical, datasets are often “double programmed”. The specified output is independently constructed by two
separate programmers and the results are then compared.

In any case, the programmer often scans the PROC COMPARE output for a note at the bottom saying “No unequal
values were found. All values compared are exactly equal.” This note is taken as a definitive statement that the two
datasets are absolutely identical. This is a serious mistake which can result in the programmer being blindsided.

Fortunately, there are ways to avoid being caught in this trap. Just as a rearview mirror provides a driver with
additional information to help avoid being struck by an unseen vehicle, so the COMPARE procedure output provides
the programmer with additional information to help avoid being struck by unseen data discrepancies. In both cases,
the operator needs to be looking in the right places to eliminate any blind spots.

In this paper, we will review some of the common blind spots that occur in PROC COMPARE and describe where the
savvy programmer should be looking to avoid them. The examples use clinical trial data, but the concepts here apply
broadly to any industry or type of work.

BLIND SPOT #1: MISSING VARIABLES
Our first example will use the two demography (DM) datasets shown below. We have a production dataset,
DM_PROD, and a validation or QC dataset, DM_QC. The validation programmer wishes to use PROC COMPARE to
determine if the two datasets are the same.

Observe that the QC dataset does not contain all of the variables that are in the production dataset. Specifically, the
SEX variable is not present. Below are the PROC COMPARE code and output.

proc compare base=dm_prod compare=dm_qc; run;

DM_PROD Dataset

SUBJID AGE SEX
101 45 M
102 37 F
103 61 F

DM_QC Dataset

SUBJID AGE
101 45
102 37
103 61

Don’t Get Blindsided by PROC COMPARE, continued

2

Output 1. Output from PROC COMPARE of DM_PROD and DM_QC.

 The COMPARE Procedure
 Comparison of WORK.DM_PROD with WORK.DM_QC
 (Method=EXACT)

 Data Set Summary

 Dataset Created Modified NVar NObs

 WORK.DM_PROD 30MAR13:17:23:18 30MAR13:17:23:18 3 3
 WORK.DM_QC 30MAR13:17:23:18 30MAR13:17:23:18 2 3

 Variables Summary

 Number of Variables in Common: 2.
 Number of Variables in WORK.DM_PROD but not in WORK.DM_QC: 1.

 Observation Summary

 Observation Base Compare

 First Obs 1 1
 Last Obs 3 3

 Number of Observations in Common: 3.
 Total Number of Observations Read from WORK.DM_PROD: 3.
 Total Number of Observations Read from WORK.DM_QC: 3.

 Number of Observations with Some Compared Variables Unequal: 0.
 Number of Observations with All Compared Variables Equal: 3.

 NOTE: No unequal values were found. All values compared are exactly equal.

Notice the last line of the procedure output: “NOTE: No unequal values were found. All values compared are exactly
equal.” The careless programmer will interpret this to mean that the job is finished. However, a more thorough
inspection of the procedure results reveals an important blind spot.

PROC COMPARE alerts us to the blind spot in two different ways. In the first section of the report, the “Data Set
Summary”, we see that one dataset has 3 variables while the other has only 2. Further down in the “Variables
Summary”, the report indicates that there is 1 variable in WORK.DM_PROD but not in WORK.DM_QC.

These items are red flags to the programmer. Even though “all values compared are exactly equal,” not all values
were compared. The COMPARE procedure simply compares the datasets based on the variables in common and
reports its findings based on that comparison. If the goal of the validation programmer was to ensure that the SEX
variable was derived correctly in the production dataset, that goal has not been accomplished.

BLIND SPOT #2: MISSING OBSERVATIONS
Our second example will use the two vital signs (VS) datasets shown below. We have a production dataset,
VS_PROD, and a validation or QC dataset, VS_QC. As before, the validation programmer wishes to use PROC
COMPARE to determine if the two datasets are the same.

VS_PROD Dataset

SUBJID VISITNUM SYSBP DIABP
101 1 120 80
101 2 126 84
102 1 132 90

102 2 131 85

VS_QC Dataset

SUBJID VISITNUM SYSBP DIABP
101 1 120 80
101 2 126 84
102 1 132 90

Don’t Get Blindsided by PROC COMPARE, continued

3

Observe that the QC dataset does not contain all of the observations that are in the production dataset. Specifically,
the record for subject 102 at visit 2 is not present. Below are the PROC COMPARE code and output.

proc compare base=vs_prod compare=vs_qc; run;

Output 2. Output from PROC COMPARE of VS_PROD and VS_QC.

 The COMPARE Procedure
 Comparison of WORK.VS_PROD with WORK.VS_QC
 (Method=EXACT)

 Data Set Summary

 Dataset Created Modified NVar NObs

 WORK.VS_PROD 30MAR13:17:23:18 30MAR13:17:23:18 4 4
 WORK.VS_QC 30MAR13:17:23:18 30MAR13:17:23:18 4 3

 Variables Summary

 Number of Variables in Common: 4.

 Observation Summary

 Observation Base Compare

 First Obs 1 1
 Last Match 3 3
 Last Obs 4 .

 Number of Observations in Common: 3.
 Number of Observations in WORK.VS_PROD but not in WORK.VS_QC: 1.
 Total Number of Observations Read from WORK.VS_PROD: 4.
 Total Number of Observations Read from WORK.VS_QC: 3.

 Number of Observations with Some Compared Variables Unequal: 0.
 Number of Observations with All Compared Variables Equal: 3.

 NOTE: No unequal values were found. All values compared are exactly equal.

We find that familiar note at the bottom of the procedure output: “NOTE: No unequal values were found. All values
compared are exactly equal.” Once again, however, a more careful reading of the output is necessary.

Notice the “Data Set Summary” indicates one dataset contains 4 observations while the other has only 3. We also
see the “Observation Summary” that there is 1 observation in WORK.VS_PROD but not in WORK.VS_QC. Again,
these are red flags. The comparison was performed based only on the observations in common. If there are any
problems with the last record in the production dataset (the record that is missing from the QC dataset), we won’t
discover it because we have a blind spot.

Those familiar with the COMPARE procedure may be wondering if this blind spot can be avoided though the use of
the ID statement. The ID statement is used to specify key variables that the COMPARE procedure should use to
match observations. The logical ID variables in this example would be SUBJID and VISITNUM because the
combination of these two variables uniquely identifies an observation. While the ID statement is extremely useful in
certain situations, it does not help us here. The resulting report is very similar and still concludes with “NOTE: No
unequal values were found. All values compared are exactly equal.”

Don’t Get Blindsided by PROC COMPARE, continued

4

BLIND SPOT #3: CONFLICTING TYPES
For our third example, consider the two laboratory results (LB) datasets shown below. We have a production dataset,
LB_PROD, and a validation or QC dataset, LB_QC. Once again, the validation programmer wishes to use PROC
COMPARE to determine if the two datasets are the same.

This time, the difference is more subtle. In the production dataset, LBORRES (the original lab result) is a numeric
variable, but in the QC dataset, it is a character variable. In addition to this difference, the results themselves have
been altered in the QC dataset to highlight the danger here. Below are the PROC COMPARE code and output.

proc compare base=lb_prod compare=lb_qc; run;

Output 3. Output from PROC COMPARE of LB_PROD and LB_QC.

 The COMPARE Procedure
 Comparison of WORK.LB_PROD with WORK.LB_QC
 (Method=EXACT)

 Data Set Summary

 Dataset Created Modified NVar NObs

 WORK.LB_PROD 30MAR13:18:57:21 30MAR13:18:57:21 4 4
 WORK.LB_QC 30MAR13:18:57:21 30MAR13:18:57:21 4 4

 Variables Summary

 Number of Variables in Common: 4.
 Number of Variables with Conflicting Types: 1.

 Listing of Common Variables with Conflicting Types

 Variable Dataset Type Length

 lborres WORK.LB_PROD Num 8
 WORK.LB_QC Char 12

 Observation Summary

 Observation Base Compare

 First Obs 1 1
 Last Obs 4 4

 Number of Observations in Common: 4.
 Total Number of Observations Read from WORK.LB_PROD: 4.
 Total Number of Observations Read from WORK.LB_QC: 4.

 Number of Observations with Some Compared Variables Unequal: 0.
 Number of Observations with All Compared Variables Equal: 4.

 NOTE: No unequal values were found. All values compared are exactly equal.

LB_PROD Dataset

SUBJID VISITNUM LBTESTCD LBORRES
101 1 ALB 3.6

101 1 ALP 47.2
101 1 AST 13.5
101 1 BILI 0.8

LB_QC Dataset

SUBJID VISITNUM LBTESTCD LBORRES
101 1 ALB 13.6
101 1 ALP 57.2
101 1 AST 23.5
101 1 BILI 10.8

Don’t Get Blindsided by PROC COMPARE, continued

5

Despite the fact that the two datasets contain completely different results for LBORRES, we once again see the
message “No unequal values were found. All values compared are exactly equal.” Even checking the number of
variables and the number of observations in the “Data Set Summary” does not help us here.

We must look further down to the “Variables Summary” to see that there is 1 variable with conflicting types. The
report also contains a new section called “Listing of Common Variables with Conflicting Types.”

What is important to note here is that variables with conflicting types are excluded from the comparison. This is a
huge blind spot! The inattentive validation programmer is at serious risk here of declaring valid a production dataset
that may in fact be erroneous.

BLIND SPOT #4: MISMATCHED ID VARIABLES
One solution sometimes suggested to avoid some of the blind spots described so far is to include an ID statement in
the call to PROC COMPARE. Without an ID statement, PROC COMPARE simply matches observations based on
their positions within the two datasets. The ID statement specifies one or more key variables PROC COMPARE will
use to match observations. For that reason, the set of variables included in the ID statement should have a unique
combination of values for every record within each dataset.

While the ID statement can be very useful, it is not foolproof. In fact, it can potentially introduce a new blind spot.
Consider the drug exposure (EX) datasets below. Again, we have a production dataset, EX_PROD, and a validation
or QC dataset, EX_QC. As before, the validation programmer wishes to use PROC COMPARE to determine if the
two datasets are the same.

The two datasets differ only in the last record. Note that both the visit number and the dose differ. In this example,
the programmer uses an ID statement to ensure PROC COMPARE matches the records properly. Since there
should only be one record for a given subject at a particular visit, the SUBJID and VISITNUM variables are included
on the ID statement. The code and output are given below:

proc compare base=ex_prod compare=ex_qc;
 id subjid visitnum;
run;

EX_PROD Dataset

SUBJID VISITNUM DOSE
101 1 3
101 2 4
102 1 5
102 2 6

EX_QC Dataset

SUBJID VISITNUM DOSE
101 1 3
101 2 4
102 1 5
102 3 7

Don’t Get Blindsided by PROC COMPARE, continued

6

 Output 4. Output from PROC COMPARE of EX_PROD and EX_QC.

 The COMPARE Procedure
 Comparison of WORK.EX_PROD with WORK.EX_QC
 (Method=EXACT)

 Data Set Summary

 Dataset Created Modified NVar NObs

 WORK.EX_PROD 31AUG13:14:55:43 31AUG13:14:55:43 3 4
 WORK.EX_QC 31AUG13:14:57:58 31AUG13:14:57:58 3 4

 Variables Summary

 Number of Variables in Common: 3.
 Number of ID Variables: 2.

 Observation Summary

 Observation Base Compare ID

 First Obs 1 1 subjid=101 visitnum=1
 Last Match 3 3 subjid=102 visitnum=1
 Last Obs 4 . subjid=102 visitnum=2
 . 4 subjid=102 visitnum=3

 Number of Observations in Common: 3.
 Number of Observations in WORK.EX_PROD but not in WORK.EX_QC: 1.
 Number of Observations in WORK.EX_QC but not in WORK.EX_PROD: 1.
 Total Number of Observations Read from WORK.EX_PROD: 4.
 Total Number of Observations Read from WORK.EX_QC: 4.

 Number of Observations with Some Compared Variables Unequal: 0.
 Number of Observations with All Compared Variables Equal: 3.

 NOTE: No unequal values were found. All values compared are exactly equal.

Even though the two datasets have different values in the fourth observation, we are presented with the message “No
unequal values were found. All values compared are exactly equal.” As with the previous example, checking the
number of variables and the number of observations in the “Data Set Summary” doesn’t indicate the problem either.

However, if we dig into the “Observation Summary” section of the output, there are a few clues. In particular, PROC
COMPARE explicitly tells us that EX_PROD contains 1 observation not in EX_QC, and vice-versa. It also tells us
that there are 3 observations in common, even though each dataset contains 4 observations.

Why then are we told that all values compared are exactly equal? Since we included an ID statement, PROC
COMPARE only matches observations based on the values of those ID variables. If one dataset contains an
observation with ID variables having a combination of values that does not appear in the other dataset, then no
comparison can be made. That record is effectively excluded from the comparison. This is yet another stunning
blind spot that can easily leave vulnerable even an experienced programmer.

RECOMMENDATIONS
In order to avoid leaving yourself exposed to one of the above blind spots, there are several good habits the SAS
programmer should develop.

First, “know thy data”. Know what variables you have in each dataset and their types. Know how many observations
are in each dataset and where they came from. Examine your datasets carefully to make sure they contain what you
are expecting. While automated tools like the COMPARE procedure are tremendously powerful, they are no
substitute for a good, working knowledge of the data.

Don’t Get Blindsided by PROC COMPARE, continued

7

Second, always review the entire PROC COMPARE output, particularly if your goal is to confirm that two datasets are
identical. Don’t be lulled into a false sense of security by seeing “NOTE: No unequal values were found. All values
compared are exactly equal.” Check the number of variables and the number of observations. If these don’t match,
all other conclusions about the data are suspect. Carefully inspect the “Variables Summary” and “Observations
Summary” sections of the output to see if anything is amiss.

Finally, if your validation dataset contains extraneous variables that aren’t part of the production dataset being
validated, drop them before you call PROC COMPARE. In so doing, you will be able to more easily recognize when
one dataset is missing variables because the variable counts won’t match.

CONCLUSION
Just as a skilled craftsman must be thoroughly familiar with the proper use of his tools, so the SAS programmer must
understand how the various SAS procedures work. It’s not enough to throw input at a procedure and blindly trust that
the results mean what you think they should mean. In the case of PROC COMPARE, this means understanding what
is actually being compared and what is not being compared.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Name: Joshua M. Horstman
Company: Nested Loop Consulting
Phone: 317-815-5899
E-mail: jmhorstman@gmail.com

Name: Roger D. Muller
Company: Data-to-Events.com
Phone: 317-846-5782
E-mail: rdmuller@hotmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

	Abstract
	Introduction
	Blind spot #1: missing variables
	Blind spot #2: missing observations
	blind spot #3: conflicting types
	Blind spot #4: mismatched id variables
	RECOMMENDATIONS
	Conclusion
	Contact Information
	Name: Roger D. Muller Company: Data-to-Events.com Phone: 317-846-5782 E-mail: rdmuller@hotmail.com

