
1

Paper RF-06-2013

Reuse, Don't Reinvent: Extending Model Selection Using Recursive Macro
Anca M Tilea, University of Michigan, Ann Arbor, MI

Philip L Francis III, Eastern Michigan University, Ypsilanti, MI

ABSTRACT

The existing SAS
®
 macro: %MODEL_SELECT - used recursively to select the “best” model based on the R

2
 selection

method - is performing great for specific data and specific variables. The steps of the macro %MODEL_SELECT are
as follows: perform a BEST SUBSETS selection based on R

2
 to get the list of candidate models, calculate the

estimates and associated p-values, eliminate the covariates that are never significant, and repeat. This macro does
not allow for multilevel variables to be considered for model selection, it does not allow for hierarchical modeling, and
it only considers one model selection method: R

2
. This paper aims to enhance existing SAS

®
 methods, specifically,

by allowing various model selection methods (e.g., adjusted-R
2
, Mallows's Cp, etc.) and the inclusion of categorical

variables with multiple levels. The added capabilities will allow the macro to still be user friendly, yet be more robust.
Several PROCEDURES, CALL SYMPUT, SCAN, DO-LOOP, IF-THEN-ELSE statements and functions, and various
Output Delivery System (ODS) statements are used in expanding the %MODEL_SELECT macro. This paper is
intended for the intermediate SAS

®
 user, with intermediate statistical skills and SAS

®
 9.1 or above.

INTRODUCTION

The existing SAS
®
 macro: %MODEL_SELECT - used recursively to select the “best” model based on the R

2
 selection

method - is performing great for specific data and specific variables. For example, if the goal is to find predictors of a
continuous outcome (thus using PROC REG), the existing macro performs very well and provides comprehensive
information on various candidate models. However, if the outcome is defined as binary categorical – thus requiring
PROC LOGISTIC, the existing macro, as is, will not be a good tool. The selection process for PROC LOGISTIC
would entail a similar algorithm to the one for PROC REG, and given that the existing macro was designed for
eventual reuse and/or extension, we set out to extend the %MODEL_SELECT macro and make it more robust. Most
of the code was adapted quite easily to meet the specifications of PROC LOGISTIC, and eventually, more
procedures.

In the design of the outer wrapper, several factors had to be considered. The first factor was the outcome type:

numeric versus character. If the
outcome is numeric, PROC REG is
called; if the outcome is categorical,
PROC LOGISTIC is called. The
second factor was the type of the
covariates: if the list provided by the
user contains categorical covariates,
then for each categorical variable with
n levels this enhanced macro will
automatically create n-1 dummy
variables; if the list provided by the
user contains only continuous
covariates, then the list provided is
used as-is in the model.

Figure 1: Logical flowchart of the proposed macro

As the aim of this paper is not to provide details of the %MODEL_SELECT macro, the focus shall be placed on the
outer wrapper logic. Two new, rather elegant macros have been written to aid in satisfying the two aforementioned
design factors (i.e., outcome type and covariates type).

SAS® CODE

The additional code logic that extends the %REGRESSION_MODEL_SELECT macro is described.

2

The first step of the macro is to assess the outcome type. The type of a given variable is easily extracted from the
SAS

®
 table that PROC CONTENTS could output. However, there is one problem: there exists the possibility that the

variable name that the user has entered (the outcome) does not syntactically match the name of the variable as it is

found (i.e., spelled) in the data set (i.e., typographical difference). For example, below is an excerpt from a PROC
CONTENTS data output.

If the user enters outcome = LAB_8, everything will work as planned,
but if the user enters outcome = lab_8, there will be no way to match
a value in the NAME column with a value in the TYPE column.
Thus, instead of placing a restriction on the user to carefully enter the
outcome as it really is in the data set, we developed a small macro,
%ISOLATE_OUTCOME that “matches” (PROC regardless of the
letter case) what the user entered with how it is spelled in the data
set. Below the details of the %ISOLATE_MACRO follow:

%MACRO ISOLATE_OUTCOME();

%LET REAL_VAR = ;

PROC SQL;

 SELECT NAME INTO: TABLE_VARS SEPARATED BY " "

 FROM DICTIONARY.COLUMNS

 WHERE LIBNAME = "%UPCASE(%SCAN(&DSNAME.,1, "."))" &

MEMNAME = "%UPCASE(%SCAN(&DSNAME.,-1, "."))";

QUIT;

%LET NUM_OF_VARS = %EVAL(%SYSFUNC(COUNTW(&TABLE_VARS.)));

DATA TEMP;

 LENGTH ONE_VAR $200;

 %DO I = 1 %TO &NUM_OF_VARS.;

 ONE_VAR = "%SCAN("&TABLE_VARS.", &I., " ")";

 OUTPUT;

 %END;

RUN;

DATA _NULL_;

 SET TEMP;

 IF PRXMATCH("/^&OUTCOME.[\s]*$/i", ONE_VAR) THEN

 CALL SYMPUT ("REAL_VAR", ONE_VAR);

%MEND ISOLATE_OUTCOME;

 save the variable names as they
exist in SAS

®
 (from

DICTIONARY.COLUMNS) in a
macro variable called table_vars
(a string containing the variable
names separated by space)

 save the total number of

variables in the data set in a
macro variable num_of_vars and
create a temporary data set, with
one column: one_var containing
the variable names

 prxmatch is used to extract the

variable name as it is found in
the SAS

®
 data set (save the info

in macro variable real_var)

Another component of the proposed macro is to create DUMMY variables, if categorical variables are included in the
list of covariates. This could be accomplished easily via PROC FREQ followed by manipulation of data sets outputted
using ODS statements. However, there is one problematic scenario: a formatted categorical variable. For example,
there is a variable Age with four groups (“1”, “2”, “3”, and “4”) and the following format:

PROC FORMAT;

VALUE $ AGE_CAT "1" = "Age <= 55"

 "2" = "Age (55, 65]"

 "3" = "Age (65, 75]"

 "4" = "Age > 75"

;

Running PROC FREQ on this variable would result in the following
output, which will be a problem when trying to create DUMMY variables based on the listed categories.
For example, one way to create DUMMY variables is

…

DUMMY_AGE_1 = (AGE_CATEG = “Age <= 55”);

…

However, that would not work as intended! The “real” value of AGE_CATEG is actually 1, thus we need to:

1. create a copy of the data set provided
2. remove the formats from the copy (i.e., the original data is left intact)
3. use PROC FREQ to get the categories/levels for all categorical variables

3

4. create the DUMMY variables for each categorical variable in the copy data set
5. update the COVARIATES list with the DUMMY variables

Below is an explanation of key SAS
®

code that accomplishes the aforementioned points.

%MACRO COVARIATE_LEVELS();

PROC SQL;

CREATE TABLE TEMP_DATA (COMPRESS = YES) AS

SELECT * FROM &DSNAME.;

SELECT NAME, COUNT(NAME) INTO: CHAR_VARS SEPARATED BY " ",

:CHAR_CNT

FROM DICTIONARY.COLUMNS

WHERE LIBNAME = "%UPCASE(%SCAN(&DSNAME.,1, "."))" &

MEMNAME = "%UPCASE(%SCAN(&DSNAME.,-1, "."))" &

TYPE = "char";

SELECT NAME INTO: CHAR_FORMAT_VARS SEPARATED BY " "

FROM DICTIONARY.COLUMNS

WHERE LIBNAME = "%UPCASE(%SCAN(&DSNAME.,1, "."))" &

MEMNAME = "%UPCASE(%SCAN(&DSNAME.,-1, "."))" &

TYPE = "char" & FORMAT NE " ";

ALTER TABLE TEMP_DATA

MODIFY &CHAR_FORMAT_VARS FORMAT = $75.;

SELECT NAME INTO: TABLE_VARS SEPARATED BY " "

FROM DICTIONARY.COLUMNS

WHERE LIBNAME = "%UPCASE(%SCAN(&DSNAME.,1, "."))" &

MEMNAME = "%UPCASE(%SCAN(&DSNAME.,-1, "."))" ;

QUIT;

%DO I = 1 %TO &CHAR_CNT.;

PROC FREQ DATA = TEMP_DATA NLEVELS;

 TABLES %SCAN("&CHAR_VARS.", &I., " ");

 ODS OUTPUT NLEVELS = MY_LEVELS_&I.;

 ODS OUTPUT ONEWAYFREQS = MY_FREQ_&I.(KEEP = F_:);

RUN;

PROC SQL;

SELECT NAME INTO: FREQ_VARS SEPARATED BY ","

FROM DICTIONARY.COLUMNS

WHERE LIBNAME = "WORK" & MEMNAME = "MY_FREQ_&I.";

SELECT &FREQ_VARS. INTO: _LEVELS_&I. SEPARATED BY "**"

FROM MY_FREQ_&I.;

SELECT NLEVELS INTO: NUM_LEVELS_&I

FROM MY_LEVELS_&I.

WHERE TABLEVAR = "%SCAN(&CHAR_VARS., &I., " ")";

QUIT;

…

DATA FINAL_DATA;

SET TEMP_DATA;

%LET VAR = %SCAN(&CHAR_VARS., &I., " ");

%DO J = 1 %TO &&NUM_LEVELS_&I.- 1 ;

%LET CURRENT_LEVEL=%SCAN("&&_LEVELS_&I.",&J.," **");

%PUT &CURRENT_LEVEL.;

%LET VALUE = %SCAN(&CURRENT_LEVEL., &J., "**");

DUMMY_&VAR._&J. = (%SCAN(&CHAR_VARS., &I., " ") =

"&CURRENT_LEVEL.");

%END;

RUN;

%END;

…

 create a copy of the data set

 select the character variables
and the number (how many
there are) into two macro
variables CHAR_VARS and
CHAR_CNT

 separately select the variables
that have a format attached to
them in a macro variable called
CHAR_FORMAT_VARS

 modify the copied data set (from
above) and remove the formats

 select all variables existing in the
data set in a macro variable
called TABLE_VARS for later
use

 do-loop through all categorical
variables

 run PROC FREQ

 save the levels information in a
SAS

®
data set

 select the levels of each
categorical variable into a macro
variable (_LEVELS_&I.)
separated by **, and store the
corresponding number of levels
into a macro variable (_NUM-
LEVELS_&I.)

 create the DUMMY variables
and add to the copy data set

 using PROC SQL and a couple
of data steps, update the
covariates list by replacing the
categorical variables with the
newly created DUMMY variables

4

Once the outcome has been assessed and the covariates list has been scanned for categorical variables,
the %REGRESSION_MODEL_SELECT macro is ready to be employed. This macro uses several logical IF-
THEN-ELSE statements, as it was depicted in the flowchart.

The %REGRESSION_MODEL_SELECT macro takes five parameters:

 three are required:
o DATA SET NAME
o OUTCOME of interest
o COVARIATES list

 two are optional:
o SELECTION METHOD
o NUM_SUBSETS

If the selection method is not provided, the macro will use the R
2
 – for PROC REG, and the SCORE statistic for

PROC LOGISTIC. The top 5 models will be included if BEST option is not provided.

%MACRO REGRESSION_MODEL_SELECT(DSNAME = , OUTCOME = ,

COVARIATES = , SELECTION_METHOD = , NUM_SUBSETS =);

…

%ISOLATE_OUTCOME();

%COVARIATE_LEVELS();

…

%LET DSNAME = WORK.FINAL_DATA;

%IF &LEVELS. = 2 %THEN %DO;

%INCLUDE "&PATH.\MODEL_SELECT.SAS";

%IF &NUM_SUBSETS. NE %THEN %DO;

%MODEL_SELECT(MY_DATA = &DSNAME., outcome =

&OUTCOME.,covariates = &covariates, best =

&NUM_SUBSETS.);

%END;

%ELSE %DO;

%MODEL_SELECT(MY_DATA = &DSNAME., outcome =

&OUTCOME.,covariates = &covariates, best = 5);

%END;

%END;

…

%MEND REGRESSION_MODEL_SELECT;

 identify the OUTCOME variable
correctly

 modify COVARIATES list if

needed

 a series of IF-THEN-ELSE
statements are used to call either
PROC LOGISTIC with SCORE
selection method, or PROC REG
with &SELECTION_METHOD
(provided by the user)

SAMPLE OUTPUT

Sample results from the %REGRESSION_MODEL_SELECT macro are shown in Figure 2 with the following key
components:

1. Original Sample Size: the original size of the data set, with missing data included
2. Complete-case N: sample size for the BEST SUBSETS models (complete-case data including all

covariates of interest)
3. R-Square: Model-based R

2
 for the BEST SUBSETS models

4. Number in Model: total number of covariates in each model
5. Variables in Model: list of the covariates used in each model
6. Variables Significant in the Model: significant covariates from each model
7. Potential N: complete-case sample size for a model using a subset of variables (≥ Complete-case N)
8. Potential R-square: Model-based R

2
 for models based on Potential N.

5

The rest of the columns represent the individual estimates and p-values

Figure 2. Sample output result

LIMITATIONS

In the presence of multilevel categorical outcome, the current macro does not implement PROC GENMOD – mostly
due to its lack of model selection method(s). The authors pondered the possibility of creating (and running) ALL
possible models for a given set of covariates, but realized the run-time complexity and the logic still needed to be
thought through. Furthermore, the current macro does not handle time-varying data (i.e., PROC MIXED) or survival
models. A shell has been developed to implement a baseline PROC PHREG, and it is envisioned that it will shortly be
integrated in the current macro.

CONCLUSION

The updated macro makes the task of (manual) model selection much easier and time-efficient. The authors provided
a tool that will aid the analyst in the rather tedious process of selecting a model. The code in its entirety (and all the
macros) is available on the http://www-personal.umich.edu/~atilea website.

REFERENCES

1. Tilea AM, Francis PL III, Gillespie B PhD, Saran R MD. Model Selection Using Recursive Macro Enhancements
to R

2
 Selection in PROC REG. Article first published online:

http://www.mwsug.org/proceedings/2012/SA/MWSUG-2012-SA16.pdf (To be published in SAS
®
 Proceedings).

2. Christopher J. Bost, MDRC To FREQ, Perchance To MEANS
support.sas com resources papers proceedin s11 3-2 11 pd

ACKNOWLEDGMENTS

I am very grateful to MWSUG 2013 for allowing me to share my work with other SAS users. I would also like to thank
very much to Philip Francis for providing valuable programmatic feedback. I would also like to thank Flannery
Campbell, Deanna Chyn, and Sarah Casino for their time and positive feedback.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Anca M Tilea
University of Michigan
1415 Washington Heights 3645A
Ann Arbor, MI, 48104
734.763.6611
734.763.4004
atilea@med.umich.edu
http://www-personal.umich.edu/~atilea/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://www-personal.umich.edu/~atilea
mailto:atilea@med.umich.edu
http://www-personal.umich.edu/~atilea/

