
1

Paper RF-02-2013

Does foo Pass-Through? SQL Coding Methods
and Examples using SAS® software

Stephen Crosbie, UM (Universal McCann), Birmingham, MI

ABSTRACT

Rapid Fire: Processing data between SAS® software and a DBMS, such as Netezza® or DB2®. Application of the
SQL Procedure with the CONNECT Statement (requires SAS/CONNECT® software) and use of the PROC SQL
Pass-Through Facility.

While a SAS library reference gives PROC SQL access to DBMS tables (requires SAS/ACCESS® software), using
Pass-Through SQL coding instead can often provide faster results. This paper provides useful examples of queries
that were passed-through to a DBMS to take advantage of greater processing resources or better query optimization.

INTRODUCTION

This paper includes fundamental information about pass-through SQL for SAS programmers analyzing data stored
outside the SAS environment. SAS/ACCESS software for the specific DBMS must be installed for the code to work.

Sections include definitions and various examples of pass-through SQL. Examples follow the best practice of
ensuring that data processing is pushed-down to the DBMS as much as possible, before returning data to SAS
(Dinsmore et al).

DBMS DATA ACCESS METHODS

This section includes basic examples of SAS code and pass-through SQL. A library reference or the CONNECT
statement (as part of the SQL procedure) are valid ways for SAS to retrieve data from a DBMS.

IMPLICIT PASS-THROUGH SQL (USING A LIBRARY REFERENCE)

One easy way to access data from a DBMS is to use the LIBNAME statement:

options sastrace=',,,d' sastraceloc=saslog;

LIBNAME nz netezza server=&NZServer database=&NZdb user=&NZUser password=&NZPass

BULKUNLOAD=YES /*connection=global*/;

Using the above library reference (libref), the DATA step or SQL procedure can build a SAS data set—as illustrated
in Figure 1. SAS/ACCESS Interface for Netezza executes both of these examples in the same way:

1. Open a connection using the settings listed in the libref (assuming the global connection was not specified)
2. Translate the request into DBMS-native SQL and send for in-DBMS processing (where possible)
3. Receive the output from the DBMS and temporarily store it when further processing by SAS is needed
4. Write the data set or output the results

The “behind-the-scenes” translation in step 2 above is known as “implicit pass-through SQL” (Capobianco, p.1)

DATA step with libref to a DBMS Table PROC SQL with libref to a DBMS Table

DATA fig_1a;

 set nz.srctable;

run;

PROC SQL;

 create table fig_1b as

 select *

 from nz.srctable ;

%PUT &SQLXRC; %PUT &SQLXMSG;

QUIT;

Figure 1. Examples of implicit pass-through SQL (using a library reference)

Although outside the scope of this paper, it is important to note that the SAS/ACCESS interface enables many
procedures to efficiently process “in-database” via a libref (SAS Institute 2012, p.74). With SAS/ACCESS version 9.3,
even more DBMS interfaces are available, including Hadoop—a “big-data” platform (SAS Institute 2012, p.xi).

2

EXPLICIT PASS-THROUGH SQL (THE CONNECT STATEMENT)

Similar to a library reference, PROC SQL can be used with the CONNECT statement to retrieve DBMS data, as seen
in Figure 2. The CONNECT statement uses similar SAS/ACCESS settings as the libref; however, “netezza” is an
alias to the specific DBMS connection made.

In this example, the query syntax between the parentheses is passed directly to the DBMS—without translation. In
other words, the query is passed-through “explicitly.”

Explicit Pass-Through SQL to Manipulate Data
PROC SQL noerrorstop;

connect to netezza(server=&NZServer database=&NZdb user=&NZUser

 password=&NZPass BULKUNLOAD=YES);

create table fig_2 as

select * from connection to netezza

(select * from srctable

);

%PUT &SQLXRC; %PUT &SQLXMSG;

disconnect from netezza;

QUIT;

Figure 2. Explicit pass-through SQL used to extract DBMS data to a SAS data set

A slightly different form of explicit pass-through SQL uses the EXECUTE statement within PROC SQL to allow any
valid SQL commands to be passed to the DBMS, as seen in Figure 3. SQL code from a DBMS query tool such as
Aginity (for Netezza) or AQT (for DB2) can be pasted inside the EXECUTE statement.

In this example, the syntax does not allow for query results to be returned to SAS.

Explicit Pass-Through SQL for DBMS Execution
PROC SQL noerrorstop;

connect to netezza(server=&NZServer database=&NZdb user=&NZUser

 password=&NZPass /*BULKUNLOAD=YES*/);

execute(

create temporary table fig_3 as /*NOTE: TABLE CREATED INSIDE DBMS*/

select count(*) as cnt

from srctable

) by netezza;

%PUT &SQLXRC; %PUT &SQLXMSG;

disconnect from netezza;

QUIT;

Figure 3. Explicit pass-through SQL used to send DBMS execution instructions

While executing command-line code such as RUNSTATS on a table is beyond the scope of this paper, note that
explicit pass-through SQL cannot accomplish this. A properly configured SAS server can do it via the X command.

EFFICIENT PASS-THROUGH SQL EXAMPLES

While the examples from Figures 1 and 2 perform the simple task of creating a SAS data set from one DBMS table,
tasks requiring more data manipulation on the DBMS-side are most efficiently written with some form of explicit pass-
through SQL. The examples in this section emphasize the best practice of completing DBMS-side processing before
returning results to SAS (Dinsmore et al).

AVOIDING A SAS-NATIVE FUNCTION IN A WHERE CLAUSE

A well-known foible of implicit pass-through SQL is that not all SAS-native functions have translations to the DBMS-
native SQL. When no translation exists for a function located in the where clause, SAS/ACCESS usually downloads
the entire table from the DBMS for local processing and takes a really long time to return results (Rhoads, p.10).

Even when SAS translates the function properly, hiccups can prevent obtaining the desired result. In this case,
explicit pass-through SQL should be used with the equivalent SQL function to ensure DBMS-side processing.

In this example, SAS returns a count of 0 (zero) records for the implicit pass-through SQL that uses the SAS-native
INDEX function; however, the explicit pass-through SQL using the Netezza-native strpos function works as expected.
Upon further inspection of the log (using the SASTRACE option), the INDEX function was translated properly.

3

Implicit Pass-Through SQL Explicit Pass-Through SQL

PROC SQL;

select count(*) as cnt_recs

from nz.internetHits

where hitmonth="01JUN2013"d

AND

INDEX(DOMAIN_NAME,'mwsug.org')>0

;

%PUT &SQLXRC; %PUT &SQLXMSG;

QUIT;

PROC SQL noerrorstop;

connect to

netezza(server=&NZServer

database=&NZdb user=&NZUser

password=&NZPass BULKUNLOAD=YES);

select * from connection to

netezza

(select count(*) as cnt_recs

 from nz.internetHits

 where hitmonth='2013-06-01'

AND

strpos('mwsug.org',DOMAIN_NAME)>0

);

%PUT &SQLXRC; %PUT &SQLXMSG;

disconnect from netezza;

QUIT;

RESULT: 0 RESULT: 483

Figure 4. SAS-native function inhibits results, while explicit pass-through SQL does not

KEEPING TABLE CREATION ON THE DBMS-SIDE

In this example, a DBMS table is created from a join of two other DBMS tables. The approach with the DATA step will
take much longer because SAS must download and sort each table, and then upload the new table back to the
DBMS. It makes sense to use explicit pass-through SQL when all the data to be processed resides on the DBMS.

SAS-Side Processing (DATA step) Explicit Pass-Through SQL

PROC SORT data=nz.srctable1

 out=srctable1;

 by thekey;

run;

PROC SORT data=nz.srctable2

 out=srctable2;

 by thekey;

run;

DATA nz.fig_5a;

 merge srctable1 (in=a)

 srctable2 (in=b);

 by thekey;

 if a AND b;

run;

PROC SQL noerrorstop;

connect to

netezza(server=&NZServer

database=&NZdb user=&NZUser

password=&NZPass

BULKUNLOAD=YES);

execute(

create table fig_5b as

select a.*

 , b.*

from srctable1 a

 inner join srctable2 b

 using(thekey)

) by netezza;

%PUT &SQLXRC; %PUT &SQLXMSG;

disconnect from netezza;

QUIT;

Figure 5. SAS-side processing is slow compared to explicit pass-through SQL

PROCESSING BETWEEN TWO DBMS USING SAS

The following example includes a mixture of coding methods illustrating how SAS can work between two DBMS,
taking advantage of their processing power. The objective of this code was to apply suppressions to a large contact
list stored in one DB2 server, using a small-sized suppression list from a separate DB2 server.

libname cust db2 dsn=&myDSN uid=&DB2User pwd=&DB2Pass; /*Customer database*/

libname calls db2 dsn=&myDSN uid=&DB2User pwd=&DB2Pass; /*Call-center database*/

/*LOAD SMALL SUPPRESSIONS LIST INTO BIG CUSTOMER DATABASE*/

DATA cust.list_suppress;

 set calls.list_suppress;

run;

4

/*CREATE A NEW TABLE WITH CUSTOMERS APPROVED FOR CONTACT*/

PROC SQL noerrorstop;

CONNECT to db2 (NOPROMPT="DSN=&myDSN;UID=&DB2User;PWD=&DB2Pass;");

execute(

create table SCHEMA.APPROVED_CONTACT (CUSTOMER_ID DECIMAL(10,0)) in myTABLESPACE

) by db2;

execute(

insert into table SCHEMA.APPROVED_CONTACT (

 select foo.*

 from LIST_CUSTOMERS foo

 left join LIST_SUPPRESS bar on foo.CUSTOMER_ID=bar.CUSTOMER_ID

 where coalesce(bar.CUSTOMER_ID,99999)=99999

)

) by db2;

DISCONNECT from db2;

QUIT;

CONCLUSION

Explicit pass-through SQL is an essential part of SAS/ACCESS that enables programmers to process data within
another DBMS and return results to SAS for further manipulation. Even when a programmer writes a DATA step to
access DBMS data, implicit pass-through SQL is created behind-the-scenes by SAS.

For the programmer seeking efficient processing of data, the constant challenge is to follow best practices by
ensuring that data manipulation on DBMS tables is done in the DBMS, wherever possible.

REFERENCES

 Capobianco, Frank. Explicit SQL Pass-Through: Is It Still Useful? SGF 2011 Proceedings, Paper 105-2011
http://support.sas.com/resources/papers/proceedings11/105-2011.pdf

 Dinsmore et al. “Leveraging IBM Netezza Data Warehouse Appliances with SAS: Best Practices Guide for SAS
Programmers”
http://www.sas.com/partners/directory/ibm/NetezzaDWAppliances-withSAS.pdf

 Rhoads, Mike. Avoiding Common Traps When Accessing RDBMS Data. SGF 2009 Proceedings, Paper 141-
2009
http://support.sas.com/resources/papers/proceedings09/141-2009.pdf

 SAS Institute Inc. 2012. SAS/ACCESS® 9.3 for Relational Databases: Reference, Second Edition. Cary, NC:
SAS Institute Inc.
http://support.sas.com/documentation/cdl/en/acreldb/65247/PDF/default/acreldb.pdf

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Stephen Crosbie
Enterprise: UM (Universal McCann)
Address: 805 E. Maple Rd
City, State ZIP: Birmingham, MI 48009
Work Phone: 248-554-4374
Fax:
E-mail: Stephen.crosbie@umww.com
Web: http://www.umww.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/resources/papers/proceedings11/105-2011.pdf
http://www.sas.com/partners/directory/ibm/NetezzaDWAppliances-withSAS.pdf
http://support.sas.com/resources/papers/proceedings09/141-2009.pdf
http://support.sas.com/documentation/cdl/en/acreldb/65247/PDF/default/acreldb.pdf

