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ABSTRACT 

Measuring trace levels of contaminants in chemicals or gases can be difficult. When the signal is very small, it can be 
lost in the noise. Chemical analyses are characterized by their accuracy, precision, and linear range. A detection limit 
is the smallest amount the can be reliably detected by the procedure. The procedure can be used on a blank, with no 
amount of the substance, or on a sample containing the substance to be measured. Various methods of estimating a 
detection limit are compared. We will examine the use of prediction intervals on measurements on blanks, as well as 
regression approaches, including the use of linear regression by ordinary and weighted least squares. A 
contamination example will be demonstrated, using Fit Y by X, and Fit Model in JMP. Responses below the detection 
limit can be included in your data analysis. Ad hoc approaches produce biased estimates and should be avoided. 
Such responses are censored data, and likelihood methods exist to handle censoring. An example of a designed 
experiment is handled using the Parametric Survival personality in Fit Model in JMP.  

INTRODUCTION 

To learn about a system or a process, there must be variation. If the characteristics or outcomes never change, then 
it is impossible to learn anything. Thus, we design experiments to provoke a large change in the response, in the 
hope that the analysis will be more informative, both in kind (factor effects) and degree (precision). The determination 
of the response requires a measurement that is accurate (unbiased) and precise over a useful range. Many physical 
quantities are bounded by zero and all measurements are limited by noise. The background signal, when the 
response is absent or zero, can be translated in various ways into an upper bound on measurement, or limit of 
detection (LOD).  How do you estimate the limit of detection? What value should you use in your analysis for a 
response reported to be below the limit of detection? 

PART 1: LIMIT ESTIMATION 

The concentration of an element in a substance (an analyte) may be a key characteristic of the quality of a chemical 
process. Analytical chemistry provides information about the concentration of the analyte. To estimate the detection 
limit of the measurement method, we would like to find the lowest level of concentration where the results become 
indistinguishable from a zero reading. This is the point at which we would start to see signals for zero concentrations. 
Different methods for finding the LOD exist in the literature. Industry standards, including SEMI C10 (Guide for 
Determination of Method Detection Limits), ISO:11843 (Capability of Detection), and the IUPAC Compendium of 
Analytical Nomenclature, discuss methodologies for determining the detection limit. These and others are listed in the 
References. 

Most authors advise the use of the calibration curve to fit a linear model. The levels of the known concentrations are 
spaced over the range of interest, including a zero level, or blank. After measuring concentrations for these known 
samples, a regression line is fit to the data.  

A common method of estimating the detection limit is to first estimate the standard deviation of the response at the 
zero level. Estimation methods include the standard deviation of the data at the zero level, the square root of the 
mean square error of the regression line, or the standard deviation of the y-intercept of the regression line. Then use 
a multiple of this estimated standard deviation of the response at the zero level divided by the slope of the calibration 
curve to find the detection limit. 

In this paper, we recommend a different approach. We will examine various methods to fit a linear model to a 
calibration curve, followed by estimating a prediction interval for future observations at the zero level, and finally using 
inverse prediction of the upper bound to estimate the LOD. Our recommendation is to use ordinary least squares 
(OLS) regression to fit a linear model to the calibration curve. Other methods popular in the literature are based on 

weighting schemes. 

A 100(1–)% prediction interval is a range of values of a variable with the property that if many such intervals are 

calculated for many samples, 100(1–)% of them will contain one observation from a future realization of the process. 
A prediction interval is different from a confidence interval. A confidence interval gives limits in which we expect a 
population parameter, such as a mean or variance, to lie. A prediction interval gives limits in which we expect a future 
individual observation to lie. 
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Formulas for prediction interval calculations can be found in the literature. The formula depends on the number of 
future observations to be predicted. See Ramirez1 for an accessible discussion of statistical intervals. 

As an example, consider an inductively coupled plasma-mass spectrometry (ICP-MS) system that performs trace 
element analysis for the purpose of determining the amount of contaminants in a sample. A sample containing a 
known amount of a contaminant is measured, and the response is signal intensity, measured in counts per second 
(cps). The experiment is repeated for four known levels, including no contaminant at all. 

 

A graph of the measured values against the known values shows that the data seem to follow a linear trend. It is 
notable that the variability at the zero concentration level is much less than that at other levels.  

 

It can be hard to see the difference in variability at the zero level by using a scatterplot of the data. Instead, fit a line to 
the data and examine a plot of the residuals by the predictor variable. This residual plot clearly shows the variance is 
much higher where the element exists than where it doesn’t. 

                                                           
1 Ramírez, José G., “Statistical Intervals: Confidence, Prediction, Enclosure,” retrieved from 

http://www.jmp.com/software/whitepapers/ 
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Many physical characteristics show heteroskedasticity, or the variance of the response changing over the range of 
the data. The variability of physical data often increases as the response increases. Ordinary least squares 
regression makes the assumption of homoskedasticity, or equal variances across the range of data. Therefore, 
naively, it might make sense to pursue methods to stabilize the variance. 

One method of variance stabilization is to use weighted least squares regression, which weights the data by the 

inverse of the variance within each group. Most calibration problems do not use samples that are large enough to 
estimate group variances with low uncertainty. Therefore, another popular method is to actually model the variance 
as well as the mean. JMP implements this model using the LogLinear Variance personality of Fit Model. We will 

demonstrate OLS and the two methods of WLS regression.  

Heteroskedasticity does not affect the bias of the regression coefficients (slope and intercept) using ordinary least 
squares. It does affect the standard errors of the regression coefficients. However, for typical data like our simulated 
data, the variance of the cps for the blank is much less than that for the non-blanks, and the variance of the non-
blanks is what we would like to use to find prediction intervals for the detection limit. Therefore, we recommend the 
use of ordinary least squares regression to find the prediction interval, followed by inverse prediction of the upper 
prediction limit to the regression line as shown in the following graphic. 

 

The Fit Y by X platform can be used to visualize the prediction intervals. From the red triangle next to Bivariate Fit, 
select Fit Line. From the red triangle next to Linear Fit, select Confidence Curves Indiv and Confidence Shaded 
Indiv. 
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JMP does not provide the means to save the prediction interval from the Bivariate platform, so we will use it for 
visualization only, and use Fit Model to gain more information about the fit. 
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After running the model, save the prediction formula and prediction interval. From the red triangle next to Response 
Counts per Second, select Save Columns → Prediction Formula and Save Columns → Individual Confidence 
Limit Formula. 

 

The estimate of the upper 95% prediction limit at zero is 109. Use inverse prediction to estimate the true 
concentration at this value. Return to the Fit Least Squares report. From the red triangle next to Response Counts 
per Second, select Estimates → Inverse Prediction… . Enter 109 in the first blank space and click OK. 

  

The predicted value of the response is 9.6, and that is our estimate of the detection limit. 
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Some industry standard documents, notably SEMI C10, recommend weighted least squares (WLS) regression. Let’s 
compare the inverse prediction from the OLS prediction interval with that derived from WLS. 

Weighted least squares uses weights on the data in order to stabilize the variance. An ad hoc method for weighting is 
to use the inverse variance of groups as the weights. To find the variance of each group, summarize the data using 
Tables → Summary. Add the Standard Concentration as a grouping column and select Counts per Second then 
click Statistics → Variance to ask for the variance of cps by group. Click OK. 
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Next, add a new column containing a formula to the summary table. This formula will contain the reciprocal of the 
variance of each group. 
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The summary table contains the grouping variable, the sample size and variance for each group, and the inverse 
variance for each group. 
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The inverse variance needs to go back into the original data table. Return to the original table and use Tables → 
Join to add the column of inverse variances. 
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The resulting table contains the columns from the original table in addition to the new weighting column. 
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The regression model can now be fit again, this time using the Inverse Variance column in the Weight role. 

 

Again, save the prediction formula and prediction interval to the data table by clicking the red triangle and selecting 
Save Columns → Prediction Formula and Save Columns → Indiv Confidence Limit Formula. The OLS 

regression prediction columns have been hidden in the screenshot below. 
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The estimate of the upper 95% prediction limit at zero is 0.03, four orders of magnitude smaller than that found by 
using OLS regression! Use inverse prediction once again to find the estimate of the detection limit. From the red 
triangle, select Estimates → Inverse Prediction… . Enter 0.03 and click OK. 
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The prediction is 0.0014, which is the estimate of the detection limit. This number is much smaller than that given by 
OLS regression (9.6). It may seem like a smaller number would be better, but WLS can lead to estimates that are 
known to be ridiculously small by the practitioner. For example, matching systems is sometimes done using the LOD. 
LODs that are too small can lead to systems that are not matched statistically, but for all practical purposes, can be 
considered to measure the same. This can lead to problems justifying the use of good systems with auditors. 

One reason the prediction limit is so small, and thus so is the estimated detection limit, is that the group variance for 
the zero level is much less than the group variance for the other levels. Therefore, the inverse variance of the zero 
level is huge compared with the others. One remedy for this is to model not only the mean response but the variance 
of the response as well. This method is particularly useful if you can assume the variance is proportional to the mean, 
for example.  

Using Fit Model, specify the Loglinear Variance personality. Select the Variance Effects tab and add the Standard 
Concentration, then run the model. 
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Save the prediction formula and prediction interval by clicking the red triangle next to Loglinear Variance Fit and 
selecting Save Columns → Prediction Formula, then again, Save Columns → Indiv Confidence Interval. 
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The upper prediction limit is 81. The Fit LogVariance report does not allow for inverse prediction, but it is simple to 
do with the Profiler. Return to the Fit LogVariance window. From the red triangle, select Profilers → Profiler. Drag 
the Standard Concentration slider to the left until the prediction of Counts per Second is near 81. You can adjust 

the scale of the x axis if necessary to zoom in on the region of interest. 

 

The inverse prediction is around 6.9, still a smaller number than 9.6 that was found using OLS regression, but much 
more reasonable than 0.0014 found using inverse variance weights. 

In any case, we recommend OLS regression simply because we don’t want the variance of the zero level to 
overwhelm the calculation of the prediction interval at the zero level. We have shown that the variance of the zero 
level lead to very small estimated detection limits when using the inverse variance as weights. This even happens 
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when modeling the variance explicitly, with the LogLinear Variance personality. Using OLS regression leads to a 

more conservative estimate of the detection limit. 

PART 2: DATA MODELING 

There are many intuitive practices for selecting the value for analysis when the response is below this threshold. 
Some analysts use 0, other analysts use the LOD itself, and still others split the difference and use half of the LOD. 
Finally, some analysts regard such a case as indeterminate and so leave the value missing. These ad hoc 

approaches unfortunately do not address the central problem but instead introduce bias in any estimates, such as 
model parameters. A missing value reduces the sample size and, therefore, the power of the analysis, as if nothing is 
known about the response when, in fact, there is information available. Using 0 biases your estimates downward, 
using the LOD biases your estimates upward. Using half the LOD might average out the bias, if you are optimistic 
and tend to be lucky. Isn’t there a better way? Isn’t there a rigorous approach based on statistical theory that 
eliminates this bias and allows you to use all of the data? 

The solution is found in an unrelated field of study that has nothing to do with chemistry or any other physical science. 
Investigators encountered the same problem in the beginning of formal survival analysis. In this analysis, the 
response is the life time or the time-to-event where the event is death or the onset of disease. Subjects often survive 
or never incur the disease during the study period. What do to with their data? Ignoring it or using an arbitrary value 
would introduce bias as described above. Analysts realized that two kinds of data existed in these studies: for one 
kind, the actual life time is known, and for the other kind, it is a lower bound on the actual life time. The second kind is 
called censored data. These life times are right-censored because the actual life time is greater than the observation 
and would appear farther to the right on a number line. In the same way, the responses that are below the LOD are 
called left-censored data. 

Ordinary least squares regression is not able to analyze censored responses but maximum likelihood estimation 

accommodates censoring directly through the likelihood function. 

JMP provides a parametric analysis of survival models with multiple factors, which suits the case of our experiment. 
The normal distribution is not available for the likelihood function but the log-normal distribution is available to model 
the statistical errors. We merely transform the response by exponentiating the response as ey for the analysis and 
then transform back using the natural logarithm after fitting the model for prediction. The following fictitious example 
illustrates the points above and shows how to use JMP for such an analysis. 

A hypothetical experiment will be used to demonstrate censoring with responses below the LOD. The experiment 
includes four continuous factors, X1-X4. The response Y is simulated without censoring and then an arbitrary LOD is 

applied. Perhaps Y is the level of a chemical impurity that you intend to minimize through judicious selection of levels 
for the factors in a purification process. An arbitrary LOD (15) was selected to cause a few responses to become 
censored. A thorough study of this matter would involve many simulated data sets. The single simulated set of 
responses here is presented only to illustrate the problem and how to deal with it. 

The setup for this problem in JMP is simple. The original columns for the experiment are in the left red box in the 
figure below. Three columns were added to facilitate the analysis as seen in the right box in the figure below. We use 
interval censoring for this analysis. That is, we specify a lower and upper bound for each response in two new 
columns, here called Right Censored Y and Left Censored Y, respectively. These values are the same as the 
exponentiated Y when it is above the LOD as seen in the first row. The right-censored value is missing and the left-

censored value is the exponentiated LOD for censored responses as seen in the second row. Finally, we add a new 
indicator variable for censoring, here called Below LOD. It is set to 0 if Y is the actual response or 1 if it is censored. 

Here are the first five rows in this example 

 

Examine the bias caused by using one of the ad hoc corrections before examining the results of using the correct 
analysis. The data were fit to a second order polynomial function with all two factor interaction terms using ordinary 
least squares regression. The parameter estimates in column Fit Y used the simulated response levels before 
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imposing the LOD. This regression represents the best we could do (unbiased estimates of model parameters) if 
there was no limit of detection. It is our benchmark for comparison with different ways of handling a LOD. 

Then the OLS regression analysis is repeated with three different versions of the response Y. 

1. The parameter estimates in column Fit Y2 used 0 for Y if the simulated response was below the LOD. 

2. The parameter estimates in column Fit Y3 used half way between 0 and LOD (7.5 in this case) for Y if the 

simulated response was below the LOD. 

3. The parameter estimates in column Fit Y4 used the LOD (15 in this case) for Y if the simulated response 

was below the LOD. 

The prediction formulae from all four OLS regressions are saved to the data table. The estimates for the parameters 
that are active in the simulated response are compiled from each of these four regressions in the following table 
along with the true value from the simulation in the following table. 

 

Parameter True Value Fit Y Fit Y2 Fit Y3 Fit Y4 

Intercept 30 29.4077 28.982 29.2763 29.57 

X1 5 4.85517 5.60608 4.887 4.1679 

X2 -8 -8.31617 -9.3121 -8.4699 -7.6277 

X4 7 6.55928 7.14137 6.4476 5.7539 

X22 -6 -6.84832 -7.9906 -7.013 -6.0356 

X1*X4 -5 -5.46217 -4.7999 -4.7129 -4.626 

 

Notice that the estimates are close to the true value in the absence of a LOD (Y). On the other hand, the application 
of one of the three ad hoc methods when the response is below the LOD results in estimates that are not as close to 
the true value. 

Now try the parametric survival model. It is initiated in Fit Model by changing the fitting Personality from Standard 
Least Squares to Parametric Survival, selecting the Lognormal for the Distribution, using the Right Censored Y 
and Left Censored Y in the Time to Event role, and using Below LOD in the Censor role. The terms in this model 

(Location Effects) are the same as the terms used in the OLS regression above. There are no terms for the Scale 
Effects so this situation treats the variance as a constant, independent of factor levels. 
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The statistics and model estimates are in terms of the exponentiated response and the results are phrased or labeled 
in terms from survival or reliability analysis, but they can be translated as follows. The linear model determines the 
mean of the log-normal distribution and sigma estimates the standard deviation of the same distribution. The 
response is supposed to be the time to event, so the results are in terms of survival or failure time (time quantile), not 

the continuous response that we analyzed. That is not what we would call it, but it still works. 

The second aspect that must be translated is the survival probability and time quantile. In survival analysis, you might 
ask a question such as, “What is the probability of survival after 100 days?” or “How many days before the probability 
of survival reaches 0.5?” For our original purpose, we are interested in the mean, so we will use a probability of 0.5. 
We can save the prediction formula for the time quantile, which is the response: click the red triangle at the top of the 
platform and select Save Quantile Function and enter 0.5 for the probability. A new column called Fitted Failure 
Quantile is added to the data table. You can rename this column, of course, to reflect the original response. 

The last step is to edit the prediction formula to transform back to the original response. This step is easy. When you 
open the formula editor for the new column, the entire formula is already selected. Simply click on the 
Transcendental group of functions and select Log, then save the new formula. 



19 

Here are the first five rows of the original response Y and the columns creating by saving the prediction formula for 
the four OLS regressions and the parametric survival regression. Notice that the Fitted Failure Quantile prediction is 
much closer to that from Pred Formula Y, the first OLS regression or our benchmark. 

 

Examine the correspondence between the observed response and the predicted response from all of the models so 
far. Make a plot of these predicted responses over-laid in a scatter plot and add the identity line (Y=X) for reference. 

 

The markers closest to the Y=X line are those from the first OLS regression (no LOD imposed) and the parametric 
survival regression. The discrepancy becomes worse as the response approaches the LOD. 

Perhaps a better way to see the distinctions between these different approaches is with a residual plot. 
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The residuals closest to 0 are those from the first OLS regression (no LOD imposed) and the parametric survival 
regression. The large residuals from the models using ad hoc adjustments to the response (increased bias) indicate 
that these models are less valuable if you need predictions near the LOD, as in the case of optimizing factor levels to 
reduce an impurity. 

CONCLUSION 

In conclusion, we have demonstrated the use of inverse prediction from a prediction interval from an ordinary least 
squares regression as an analytical tool to estimate a limit of detection. This method is superior to more advanced 
methods that seek to stabilize the variance of a response over a grouping variable. 

We have also demonstrated that ad hoc methods for using a response below the detection limit result in biased 
parameter estimates and model predictions. On the other hand, using interval censoring with a parametric survival 
model avoids these problems. The survival model is easy to fit, the transformations allowing the log normal 
distribution to model the errors is easy, and the prediction formula may be used with tools such as the Prediction 
Profiler to find optimal settings. Further note that the same approach could be used when the limiting response is an 
upper bound by substituting a missing value for the Left Censored Y value. 
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