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ABSTRACT: 
On occasions, a SAS user might find themselves in the position where they need to write a SAS® program that can 
read and process files in a specific directory.  In this case, the contents are all excel spreadsheet files. All these files 
need to be read and converted into SAS datasets. This paper illustrates how to do this in a step by step process using 
the DATA step. 
 
INTRODUCTION: 
There are four functions that are especially useful when performing this task.  They are DOPEN, DNUM, DREAD, and 
DCLOSE.   
 

 The DOPEN function - opens a directory and returns the directory identifier.      syntax:     
DOPEN(fileref)                     example:   directory_id = 
DOPEN(fileref) ;                                                            * you must associate a fileref with 
the directory before using the DOPEN function.                        

 The DNUM funtion    - returns the number of members in a directory        
 syntax:     DNUM(directory_id)             
 example:   number = DNUM (directory_id) ;   

    
 The DREAD function - returns the name of a directory member          

 syntax:    name = DREAD(directory_id, member-number)       
 example:   filename=DREAD(directory_id,  i ) ; 

 
 The DCLOSE function – closes a directory opened by the DOPEN function.      

 syntax:      DCLOSE (directory_id)           
 example:   rc=DCLOSE(directory_id);      

 
 
All the spreadsheets are located in the C:\Sales Reports directory.  (See Figure 1.) 
 
 

 
 
Figure 1.  - The directory. 
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STEP 1:  Write a DATA Step that will read this directory and each file within it.  Use the DOPEN,  DNUM, and 
DREAD functions to process a directory.  (See figure 2.)   This step is just a proof on concept to see if we are actually 
reading the contents correctly.  The results are written to the log.      
 

 
 Figure 2.  The DATA step.   
 
 

 
Figure 3.  The SAS Log.  
 
 
Everything appears to be working fine, so let's modify the DATA step to create a SAS dataset that contains an 
observation for each spreadsheet name.  
 
 
 
 
STEP 2:  Modify the program to create a dataset that contains the spreadsheet names. 
 

 
 
Figure 4.  The modified DATA step.   
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The contents of the SS_List dataset is shown in figure 5.   

 
Figure 5.   The SS_List data set. 
 
 
Notice the names of the spreadsheets.  They are not spelled consistently.  Sometimes this happens when different 
people create each one. 
 
 
STEP 3:  Write a PROC IMPORT program to read the first spreadsheet and create the first SAS dataset. . 

 

 
Figure 6.  The PROC IMPORT step. 
 
Notice the name of the dataset that is created.  Notice how it differs slightly from name of the spreadsheet itself. Valid 
spreadsheet names are not always valid SAS dataset names.  
 
 
 
STEP 4:  Modify the PROC IMPORT step so that parameters can be passed to it.  
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Figure 7.   Macro variables added to the PROC IMPORT step. 
 
STEP 5:  Convert the PROC IMPORT step into a macro program that can accept KEYWORD parameters. 
 

.  
Figure 8.   The macro program, 
 
Notice the name of macro program and the way it is called in the %read_ss statement.   Again, notice the difference 
in the name of the spreadsheet  and the name of the SAS dataset.   The spreadsheet name is an invalid SAS name 
because it has dashes in it.   What we want to do is create valid SAS names from the spreadsheet names.       
 
 
 
 
STEP 6:  Write a DATA Step to create valid SAS names from the spreadsheet names.   

 
 
Figure 9.  The DATA step.  
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The TRANSLATE function has 3 arguments.  The first is the character value to process.   The second is the value to 
create, the third is the ‘from’ value.  This code creates a ‘_’ from a ‘-’.   The SCAN function returns the all the 
characters up to the first ‘.’ .    
 

 
 
Figure 10.  The SAS Log. 
 
 
The SAS Log verifies that the TRANSLATE function worked the way we wanted it to work.  The spreadsheet names 
were converted into valid SAS names.  
 
 
 
There is one more piece of information we need to complete this process.  We need to know about the CALL 
EXECUTE routine.   
 
The CALL EXECUTE routine resolves the argument and issues the resolved value for the next step boundary.    The 
syntax is:    
 
    CALL EXECUTE( argument );    
 
    argument: specifies a character expression or a constant that yields a macro invocation or a SAS   
  statement.  Argument can be: 
 
  1. a character string, enclosed in quotation marks. 
 
  2. the name of a DATA step character variable. Do not enclose the name of the DATA step  
      variable in quotation marks. 
 
  3. a character expression that the DATA step resolves to a macro text expression or a SAS  
      statement. 
 
If the argument resolves to a macro invocation, the macro executes immediately and DATA step execution pauses 
while the macro executes.  
 
 
 
STEP7:  Expand the DATA Step to execute the macro and pass to it values (parameters) that are read from the 
SS_LIST dataset.  
 

   
Figure 11.   The modified DATA step.  
 



6 

This DATA step executes once for every observation in the SS_List dataset (4 times).   For every execution of this 
DATA step, an observation is read from the SS_List  dataset,  a valid SAS name is created from the spreadsheet 
name, then those values are passed into the macro program %read_ss.    View the SAS Log…  
 

 
 
Figure 12.  The SAS Log.  
 
This log shows the results of the first execution of the DATA step.  
  
 
 
 
CONCLUSION 
This seven step process outlined here shows how to write a DATA step to read a directory's contents, and create a 
SAS dataset that contains the names of all the spreadsheets in the directory.  Next a macro program is created to 
read the spreadsheets and create a SAS dataset.  And finally, a DATA step is used to execute the macro program 
and pass values to it that were read from the SAS dataset.  Some of the power and flexibility of the DATA step is 
shown in this paper/presentation.    
 
 
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS  
Institute Inc. in the USA and other countries.  ® indicates USA registration.  
  
Other brand and product names are trademarks of their respective companies.  
 
 
The author can be reached at:  
Ben Cochran 
The Bedford Group  
3224 Bedford Avenue 
Raleigh, NC 27607  
(919) 741-0370  
bencochran@nc.rr.com  
 
 
 
 
 
 
 
 


