
Paper HW-02-2013

Fast Access Tricks for Large Sorted SAS Files

By Russ Lavery

ABSTRACT:

There are techniques for file access, of sorted files, that are described in the IT or Comp Science literature that most

SAS programmers do not study or consider for their use. This is, in general, a time efficient decision on the part of

the SAS programmer because we can trust SAS Institute to bring in useful techniques (e.g. indexing and hashing)

and to make them convenient for us to use. However, there are situations where coding your own access method

can be faster than a vanilla SAS access method. In addition, studying these techniques can be a reward in itself –

sometimes giving a programmer a new view of how SAS works. This paper will show nine techniques that can be

used on sorted files. Your performance will vary with the details of your SAS installation.

Code illustrating these techniques will be provided in a SAS abbrev file that can be installed by anyone (admin rights

not required) on their PC. This means a reader can easily access, and play with, these techniques at their leisure.

INTRODUCTION:

Thanks to Paul Dorfman and Mark Keintz for sharing these techniques and putting them in the public domain.

SAS, while a well-designed fourth generation language, and complete in itself, does not exist independently of other

programming languages/techniques. While the author is grateful that he has never had to program low-level tasks

(e.g. programming his own sort routine), it is, occasionally, useful to read and study some lower-level techniques that

exist in the main stream of what might be thought of as IT -- and to bring the techniques to SAS.

Many of the techniques in this paper involve programming a binary search in a SAS data step. In a binary search on

a sorted table (sorted by some “key variable like subject_id) the algorithm picks the observation in the middle of the

data set and checks to see if the subject_id found is the desired subject_id. If it is, the algorithm stops. If not, since

the table is sorted, the algorithm can determine if the desired observation is “above” or “below” the one found and re-

defines the search range to be half of the original file . The algorithm picks the observation in the middle of the new

search range and the process repeats. If the desired subject_id is not in the file, the process will repeat until there is

“no more file left to divide” and will stop.

Most of these techniques can only be applied to data sets with certain characteristics and will produce errors or

erroneous results if applied to data sets without those characteristics. The important characteristics to consider are:

1) is SMALL and/or LARGE sorted and 2) do SMALL and/or LARGE contain observations with duplicate values of the

key variables (can more than one row have the same value of the merge or key variable).

A binary search for a subject_id, that is not in the table, will take floor(log2(N)+1) searches. log2(N)−1 is the expected

number of searches if the subject_ID is the table and the maximum number of iterations in a successful search is just
one more, or log2(N), Searching a table with a million rows will never take more than twenty iterations and so
searching is relatively insensitive to N.

Since binary searches are fast, and insensitive to both the file size and gaps in the distribution of subject_ids in the

table, one might ask “why does SAS not provide this feature?”. The answer is that SAS does provide this feature in

ways that are hidden. SAS uses binary searches inside PROC Format and inside a SAS index. With the fact that

SAS uses binary searches internally, as a recommendation for the usefulness of the technique, this paper will show

how to apply this technique through data step coding.

This paper will show nine different
techniques and the code can be found
in the abbrev file provided.

To access the sample code in the
abbrev file you must install the abbrev
file (see my web site russ-lavery.com).
After installing, select: tools 
Keyboard_Macros  Macros and you
will see the box to the right.

Scroll up and down until you find the
example code you wish to explore,
select the code (background will turn
blue) and click run.

The sample code will be pasted into
your editor.

While one, static picture is not a good replacement for the dozens of animated PPT slides in the lecture, pictures of

individual slides are provided in the paper because: 1) they show both data files (LARGE and SMALL) 2) they often

show the PDV 3) they often have little circles overlaid on the pictures of LARGE that show the limits of the searchable

rows 4) they often have annotations, pointing to specific lines of code. It is hoped that these single PPT slides will be

useful to the reader.

Techniques for which code is provided are:

Example 1: MavenMergeWOIndex

Example 2: MavenMergeWIndex

Example 3: Binary_SmallNotSortedLargeSortedNoDupes

Example 4: Binary_SmallSortedLargeSortedNoDupes

Example 5: Binary_DoNot DeleteMismatches

Example 6: Binary_DoNot DeleteMismatches

Example 7A: Compressed_Index_Basic

Example 7B: CompressedIndex_Index

Example 7C: Compressed_Index__IORC_into_The_Compressed_Index

There are some general principles, or patterns, we should look for as we study these programs.

1) If you reset L (Low end of range) and H (High end of range) to 1 and N for every observation in SMALL
a. For every obs. in SMALL, you will check ALL of LARGE.
b. You do not need to sort SMALL.
c. You can have duplicates in SMALL and get good results.

2) If the algorithm you pick has a “by merge” in it:
a. You must sort, or index, SMALL and LARGE.
b. You get a typical SAS merge. Remember that many to many merges are dangerous.

3) If you have duplicates in LARGE, you must add code to look “up” and “down” large, to check for duplicates,
after you find the first “Matching observation”

4) Many to many merges are a problem in SAS and if you have duplicates in both SMALL and LARGE, you
might have a problem in the program specifications that needs to be thought out.

5) Compressed indexes are cool and speedy and are designed to handle duplicates in LARGE.
6) You can combine these techniques to make things really hard on the next programmer to follow (e.g. putting

an index on the compressed index and using a where clause is, I think, a bit tricky).
7) If small is sorted you can use that fact, and some coding so that you do not have to search ALL of large for

every observation in SMALL and save time.

EXAMPLE 1: MavenMergeWOIndex

The image of the PPT slide, that is
to the right, is typical of the images
of slides to follow.

It shows both of the files being
“merged”, the code, the output
(white box in lower right hand
side) and the value stored in the
macro variable WhereCL.

Hopefully these pictures will make
the code easier to interpret.

SMALL (here called SWantinfo)
will be the table on the left and
LARGE (here called SBigLookIn)
will be the table on the right.

This example takes advantage of
the data engine (a subroutine that
“sits” close to the hard drive) to
remove observations that do not
pass the where filter.

We use SQL (yellow) to create a
macro variable of all the values of
the “By Variable” in SMALL and
then apply that list in a where
clause when LARGE is read.

The data engine can do simple
filtering as well as the managing of
an index.

The observations that do not meet
the where condition are filtered out
early in the process of reading the
data – the observations are filtered
out, by the data engine, before the
observations reach the PDV.

With the where clause filter in use
(see code with green background)
we see the top \note in the log
saying three observations are read
from LARGE..

If we commented out the green
line and uncommented the gray
line we would see the second note
in the log: It says that twenty
observations were read from the
hard drive.

However, when the log says three
observation were read it means
that three observations were read
by the data engine, and then
flowed up through the layers of
SAS and finally reached the PDV.

/**

Section:__ Example 1 Maven merge w/o index

We are merging by subject_id so both files must be sorted

***/

OPTIONS NOCENTER msglevel=i;

proc sql noprint;

/*the distinct de-dupes the where clause-

 duplicates not required for the where*/

 select distinct(quote(SID)) into :WhereCL separated by ', '

 from SWantInfo

 ;

quit;

%put &WhereCl;

Proc SQL;/*Be sure that there is no index on LARGE*/

 Drop index SID on BigLookIn;

quit;

options msglevel=i mprint symbolgen mlogic;

data Example1;

/*no index created on large yet, so top to bottom processing of

large, with where filtering in data engine*/

/*Use where to only read, from LARGE, the obs in SMALL*/

 merge SWantInfo (in=s)

 SBigLookIn (where=(SID in(&WhereCl)));

/* SBigLookIn ; */

 by SID;

 if s; run;

NOTE: There were 5 observations read

 from the data set WORK.SWANTINFO.

NOTE: There were 3 observations read from the data set

WORK.SBIGLOOKIN.

WHERE SID in ('0001', '2222', '3134', '3999', '7777');

NOTE: The data set WORK.MATCH2_TOP2BOTTOM has 5

observations and 3 variables.

NOTE: There were 5 observations read from the data set

WORK.SWANTINFO.

NOTE: There were 20 observations read from the data set

WORK.SBIGLOOKIN

With the where clause filter in the code. the hard drive did read SBIGLOOKIN, from top to bottom and saw every

subject_id, so that the data engine could see the values of subject_ID and do filtering. The hard drive processed all

the “hard drive pages” for 20 observations. It only passed three observations onto SAS and the PDV.

EXAMPLE 2: MavenMergeWIndex

In this example we add code to
create a SAS index on LARGE
and only SMALL must be sorted.
It must be sorted because of the
merge by subject_ID (SID).

The code, to right, is the same as
the code in the previous example,
but, since an index exists, the data
engine will, if it determines that it
makes sense to do so, make use
of the existing index.

Documentation says that when a
Where clause in a PROC or a
SQL join “pulls” lt 15% of the
LARGE file an index will be used.

There is a where clause optimizer
that is invoked with this code, but I
have not found documentation on
the rules it applies.

In this example the hard drive
does not read the big file from top
to bottom, but , using the index,
only reads the data pages that
contain the sought for subject_ids.
Please note the Blue comment in
the PPT graphic (“INFO index SID
selected for BY Clause
processing”).

This automatic use of an existing
index (by any where clause in
SQL, PROCs or a Data Step) is a
behind the scenes feature of SAS
that reduces programming effort
and clock time.

In this example, for each
observation, the data engine uses
the index to find the page on the
hard drive that contains the
desired observations and only
those pages are read.

OPTIONS NOCENTER msglevel=i;

proc sql noprint;

/*distinct de-dupes the where-duplicates not needed in the where*/

 select distinct(quote(SID)) into :WhereCL separated by ', '

 from SWantInfo

 ;

quit;

%put &WhereCl;

/**

Section:__ Example 2 Maven merge WITH index on big file

***/

Proc SQL;

/*Create an index to help the data engine where clause optimizer*/

Create index SID on BigLookIn(SID);

quit;

options msglevel=i;

data Example2;

/*Use where and index to only read, from large, the obs in small*/

 merge SWantInfo (in=s)

 BigLookIn (where=(SID in(&WhereCL)));

 by SID;

 if s;

run;

options nocenter;

Proc Print data=ExaMPLE2;

run;

EXAMPLE 3: Binary_SmallNotSortedLargeSortedNoDupes

This example
introduces: binary
searches, the concept
of a “search range” and
how a search range is
“managed” through
variables in the PDV.

The search range is the
part of the LARGE table
that remains to be
searched and is defined
by the observation/row
numbers being between
the variables L and H
on the PDV.

We use the Nobs=n
data set option to load
the number of obs in the
table into a variable n
(and then into H). As
we repeatedly execute
the loop, we change the
values of L and H to
narrow the search
range.

Please see the
conditions in the green
section block comment
to the right.

In this example, SMALL
is read from top to
bottom using the Data
step loop inherent in the
SAS set statement in a
Data step.

For each observation in
SMALL, a binary search
is done on the complete
large table.

For each new
observation from the
SMALL, the initial
search range for the
large table is re-set to
be from the first row to
the last row (see code
with yellow
background).

/**

Section:3 Example 3 Binary search of large file:

 Small file: Sorted or Not sorted and duplicates allowed

 large file: Sorted - not indexed - no duplicates

***/

*** Binary search ;

proc print data=wantinfo;

run;

data Example3 ;

 set WantInfo;

 l = 1; h = n;

 do until (l > h or matchF);

 pntr = floor((l + h) * .5);

 set SBigLookIn (rename=(SID=SIDBg)) nobs=n point=pntr;

 if SID < SIDBg then h = pntr - 1;

 else if SID > SIDBg then l = pntr + 1;

 else matchF = 1;

 end;

 if matchF;

run;

Proc Print data=example3;

Run;

Because, for each observation in SMALL, the search range in LARGE is re-set to be from first-row to last row there is

no need to sort SMALL and duplicates are allowed in SMALL. However, when one “match” is found the looping and

searching stops, so duplicates are not allowed in LARGE.

EXAMPLE 4: Binary_SmallSortedLargeSortedNoDupes

In this PPT slide, the search range
(rows between L&H) is shown as it
is being updated (as it is narrowed
in scope) on SBigLookin (A.K.A.
LARGE).

The complication in this example
is SMALL is sorted and can
contain duplicate values.
Duplicates are NOT allowed in
LARGE.

Once a match is found, the lower
limit of the search range is left in
its current location and, if the next
obs. in the small file is a duplicate
of the previous, the new obs. will
find its match at the lower end of
the search range.

Only the upper limit of the search
range is re-set for a new
observation from small (see code
with yellow background).

Please see the conditions in the
green section block comment to
the right.

In the graphic above, a section of
LARGE is masked.

Since SMALL is sorted and
previous “search loops” have not
found any matches in these rows,
no future search loops need check
this part of LARGE.

This is the reason why the code
retains L (low end of search
range) but resets H (high end of
search range) for every new
observation in SMALL. H is reset
to be n, the highest observation
number in LARGE

By not re-setting, for each obs. In
SMALL, search time can be
reduced.

/**

Section:4 Binary search of large file:

 Small file: Sorted - duplicates allowed

 large file: Sorted - not indexed - no duplicates

***/

Data example4 ;

 set SWantInfo;

 *Since small is sorted retain old Lower;

 retain L 1; * for each obs in small, reset upper to N;

 h = n;

 do until (L > H or matchF);

 pntr = floor((L + H) * .5);

 set SBigLookIn (rename=(SID=SIDBg)) nobs=n point=pntr;

 if SID < SIDBg then H =pntr - 1;

 else if SID > SIDBg then L =pntr + 1;

 else matchF = 1;

 end;

 if matchF;

run;

PROC PRINT DATA=EXAMPLE4;

RUN;

EXAMPLE 5: Binary_DoNot DeleteMismatches

In this example, imagine we
changed the code in response to a
client specification that all obs. in
SWantinfo were to be included in
the table returned by the
programmer. This common client
specification can be implemented
via a left join in SQL.

It is often the case that getting all
subject_ids back, with any
matching data from LARGE,
makes the client more comfortable
than just getting back a table of
matches.

We reset the search range to be
L(low end of range) =1 and H
(high end of range)=n for each obs
in SMALL and we do not perform
any by merging, so SMALL does
not need to be sorted.

Please see the conditions in the
green section block comment to
the right.

We keep all the observations from
SMALL by commenting out the
statement: if matchF;

The complication here is that there
is an automatic retaining of
observations read using a set
statement. If there is a “no-match”
the values read from (the last
successful reading of) LARGE
must be set to missing before an
observation can be outputted.

A simple way to do this is to create
two arrays, one character and one
numeric, where the arrays are
made up of the variables in
LARGE. Then use a loop to set
the variables to missing after a “no
match”. See code with yellow
background.

/**

Section:_5_ Example5 - Third Binary search

 Simple code so that you do not have to delete “Small”•

observations that do not match

***/

data Example5;

 set WantInfo;

 l=1; h = n;

/*If we reset L to 1 each time, we do not need to sort Small*/

/*if No-Match: we will loop through arrays/pdv- to make variables

missing */

 Array Big_C(*) $ arm; /*list of char vars in Large file*/

 /*array Big_N(*)*/ /*List_of_num_vars in Large file;*/

 do until (L > H or matchF);

 pntr = floor((L + H) * .5);

 /*Big must be sorted for binary search to work*/

 set SBigLookIn (rename=(SID=SIDBig)) nobs=n point=pntr;

 if SID < SIDBig then H = pntr - 1;

 else if SID > SIDBig then L = pntr + 1;

 else matchF = 1 ;

 end;

if matchF NE 1 then

 do;

 /*On Fail to match: Clean PDV-Null NLL vars. from BigFL*/

 do i= 1 to dim(Big_C); Big_C(i)=""; end;

 /*do i= 1 to dim(Big_N);*/ Big_N(i)=. ; end;

 /*uncomment arrays as needed*/

 end;

 *if matchF; /*Commented out to keep no_matches; run;*/

run;

Proc Print data=example5;

Run;

In the example, the variables were typed into the array statement but this could be done automatically via a PROC

contents and a short macro program to create lists of character and numeric variables in LARGE (excluding any By

variables) that must be set to missing.

If there are both numeric and character variables in LARGE that need resetting, two arrays are needed.

EXAMPLE 6: Binary_BigFileSortedWithDuplicates

This code allows duplicates in
LARGE.

The code with the yellow
background (below) loops through
a binary search until it finds a
“match”.

The “found match” may be the row
in LARGE with the lowest/ highest/
or some middle observation
number.

Since, for each obs. in SMALL, the
low and high are reset to be the
lowest and highest obs. number in
LARGE, the small table does not
need to be sorted.

If no match is found the
observation is deleted by the
statement : if matchF ;

Please see the conditions in the
section block comment to the
right.

If a match is found, the position of
the match is stored in FoundAt.
Please note that no output has
performed at the end of the yellow
section.

The gray section starts and re-
reads the “match” observation
found in the first loop. At this time,
the obs. is sent to the output file.
The gray loop moves the pointer
“upwards” in LARGE, until it finds
a new Subject_ID, and then exits.

Then control shifts to the blue-
backed loop, which starts at
FoundAT +1.

This code loops “down” towards
larger observation numbers until it
finds a different Subject_ID.

At this event, control escapes from
the loop to the run statement.

The logic for duplicates in LARGE,
is to dine a match and rem ember
that observation number. Then
loop upwards and downwards in
LARGE to find all other matches.

/**

Section:_6_ example 6

below is binary search of a sorted BIG FILE that has duplicates

 - for ID in samll file, can we find match in Large

Small fie not sorted and No Duplicates

 Large file is sorted and has duplicates

***/

data Example6 ;

 set SWantInfo ;

 L = 1 ; H = n ; /*low starts at first obs, high at last obs*/

 do until (L > H | MatchF) ;

 pntr = floor ((L + H) * .5) ;

 /*pointer for the Binary search */

 set SDupIn (rename=(SID = SIDBig)) point=pntr nobs=n ;

 if Sid < SIDBig then H = pntr - 1 ;

 else if Sid > SIDBig then L = pntr + 1 ;

 else MatchF = 1 ;

 end ;

 if matchF ; /*if match=0/missing -.delete*/

/*IF there are dupes in big- check UP/DOWN from 1st "match"*/

/*Since we will need to search up AND down from where we matched*/

/*Save the current pointer where we found a match in FoundAt*/

 FoundAT = Pntr ;

 do Pntr = (FoundAt - 0) by -1 while (pntr >= 1) ;

 /*Read DOWN big file*/

 set SDupIn (rename=(SID = SIDBig)) point=pntr ;

 /*read "prev"*/

 if SIDbig < SID then leave ;

 /*IDs <>, stop reading "downâ€•*/

 output ;

 end ;

 do Pntr = (FoundAT + 1) by +1 while (pntr <= n) ;

 /*read UP big file*/

 set SDupIn (rename=(SID = SIDBig)) point=pntr ;

 /*read "next"*/

 if SIDbig > SID then leave ;

 /*IDs <>, stop reading "upâ€•*/

 output /*output for "up"*/;

 end ;

 run ;

EXAMPLE 7A: Compressed_Index_Basic

This is the first view of a
compressed index.

A compressed index holds three
variables:
1) the key variable (here SID or
Subject_ID)

2) the row number of the first
observation in LARGE with that
subject_ID

3) the row number of the last
observation in LARGE with that
subject_ID

The italic section (see below)
builds the compressed index – a
list of subject_ids and the first and
last row in LARGE where that id
appears.

Please see the conditions in the
section block comment to the
right.

A data step implements the
compressed file algorithm. Note
we do not index the compressed
file.

Small is merged with the table
holding the compressed index so
that the algorithm has access to
the row numbers, in LARGE, of
the first and last rows for
subject_ids in SMALL..

The gray-backed statement stops
processing an obs. if there is no
match on subject_id.

The blue section loops through
LARGE and, used the point=
option to find the desired rows in
LARGE, and output observations.

/**

Section:_7A_ First use of compressed index Mark Keintz

Small and large must be sorted. We need to so a merge between

small and the compressed index

***/

Data CmprIndx; /*Create the comprtessed index on the large file*/

 RETAIN SID StartAt EndAt;

SET SDupIn;

by SID;

IF FIRST.sid=1 THEN StartAt=_N_;

if last.SID=1 then DO;

 EndAt=_N_; Output; END; run;

proc SQL;

drop index SID from CmprIndx;

run;

data Example7A;

Merge SWantInfo(in=SWant) CmprIndx(In=Cmp);

by SID;

if SWant * Cmp;

/*SET CmprsdIndx key=SID / unique; */

do Pointer=StartAt to EndAt;

 set SDupIn point=Pointer;

 output;

end;

run;

Proc Print data=Example7A;

RUN;

EXAMPLE 7B: CompressedIndex_Index

This example:
1) builds a compressed index
table and
2) builds an index on the
compressed index table.
3) loads the values from WantInfo
(SMALL) into a macro variable

After loading the subject_ids from
SMALL into a macro variable the
table SMALL is not used again.

The macro variable is used in a
where clause on the compressed
index (which, for this technique to
be useful, is assumed to be large
and to have been created by some
middle-of-the-night batch job.).

The where clause reduces the
number of rows read from the
(large) compressed index.

Please see the conditions in the
section block comment to the
right.

A merge of the table containing
the desired subject_Ids with the
compressed index can result in a
large table – if the compressed
index itself is large.

This technique uses a macro
driven where clause on the
compressed index file (which itself
has an index to speed up
processing) to eliminate the need
for a join with the large
compressed index, and hopefully
to reduce clock time on the data
step.

This code with the where in the set
statement will “call” the where
clause optimizer and let SAS
decide if using the index will likely
reduce clock time.

/**

Section:_7B_ Condensed index V1 - Mark Kentz - WORDS UPenn s

LARGE has an index and is sorted

***/

Options nocenter;

 /*DO NOT Build index on all of big file*/

Data CmprsdIndx(index=(SID));

 /*create an indexed "compressed index" file*/

RETAIN SID StartAt EndAt;

SET SDupIn;

by SID;

IF FIRST.sid=1 THEN StartAt=_N_;

if last.SID=1 then

 DO;

 EndAt=_N_;

 Output;

 END;

run;

/*We do not want to read ALL of the compressed index, only rows in

WantINfo*/

Proc SQL;

select quote(SID) into :WantThese separated by "," from WantInfo;

/*Options are good*/

quit;

%put _user_;

options mlogic mprint symbolgen fullstimer msglevel=i;

data Example7B /DEBUG;

SET CmprsdIndx(where=(SID in (&WantThese)));

/*let SAS decide if it should use the index*/

/*read the file that tells us what obs we want - likely to be

small*/

do Pointer=StartAt to EndAt;

 set SDupIn point=Pointer;

 output;

end;

run;

Proc Print data=Example7B;

run;

EXAMPLE 7C: Compressed_Index__IORC_into_The_Compressed_Index

This final example builds a
compressed index with a SAS
index on it.

It then uses an IORC lookup to get
the proper lowest row and highest
row from the compressed index -
which is assumed to be large in
order to have this technique have
a possible advantage over other
techniques.

Please see the conditions in the
section block comment to the
right.

This technique could be used
where the compressed index is
large. The technique builds an
compressed index (the section
with yellow background) and a
SAS index on the compressed
index (red italic letters in the
yellow section).

The gray section reads SMALL
and uses an IORC lookup to get
the starting and ending rows from
the compressed index.

This is invoking an IORC
merge and forces the use of
the index. For a paper
explaning an IORC merge
see references.

/***

Section __: 7C

Compressed index and IORC lookup into the compressed index

Dupes in LARGE file: LARGE file is sorted ** Index on Compressed

index file

**

/

Data CmprIndx(drop= test index=(SID));

 RETAIN SID StartAt EndAt;

SET SDupIn;

by SID;

IF FIRST.sid=1 THEN StartAt=_N_;

if last.SID=1 then DO;

 EndAt=_N_; Output;

 END;

run;

Data Example7C;

set WantInfo ;

SET CmprIndx key=SID / unique;

if _IORC_ NE 0 then

 do;

 error=0;

 delete;

 end;

do Pointer=StartAt to EndAt;

 set SDupIn point=Pointer;

 output;

end; run;

The do loop (yellow) uses the information from the starting and ending rows and the point=option to read individual

rows in the large file.

CONCLUSION

Thanks to Paul Dormfam and Mark Keintz for putting these tools in the public domain.

Binary searches are, in many situations, the fastest way to find a value in a sorted table and using a binary search

can provide a performance improvement. The compressed index has been found, in speed tests, to outperform a

SAS index. Your results will depend on the hardware at your site and file sizes.

There are some general principles, or patterns, we should look for as we study these programs.

1) If you reset L (Low end of range) and H (High end of range) to 1 and N for every observation in SMALL
a. For every obs. in SMALL, you will check ALL of LARGE.
b. You do not need to sort SMALL.
c. You can have duplicates in SMALL and get good results.

2) If the algorithm you pick has a “by merge” in it:
a. You must sort, or index, SMALL and LARGE.
b. You get a typical SAS merge. Remember that many to many merges are dangerous.

3) If you have duplicates in LARGE, you must add code to look “up” and “down” large, to check for duplicates,
after you find the first “Matching observation”

4) Many to many merges are a problem in SAS and if you have duplicates in both SMALL and LARGE, you
might have a problem in the program specifications that needs to be thought out.

5) Compressed indexes are cool and speedy and are designed to handle duplicates in LARGE.
6) You can combine these techniques to make things really hard on the next programmer to follow (e.g. putting

an index on the compressed index and using a where clause is, I think, a bit tricky).
7) If small is sorted you can use that fact, and some coding so that you do not have to search ALL of large for

every observation in SMALL and save time.

The Abbrev file containing the examples can be downloaded from russ-lavery.com. The web site has instructions on

how to install it.

For those interested in learning “big file techniques, the abbrev file also has seven other examples of big file

techniques which can be studied. The abbrevs have data and code, so these examples will run.

HashLookup Hash_3Way_merge Hashing_LeftJoinLookup HashingInnerJoinLookup

IORC_Lookup CharFormatLookup NumFormatLookup

REFERENCES

Dorfman, Paul, collected SAS-L comments

Keintz, Mark, “A Faster Index for Sorted SAS® Datasets” proceedings of SAS Global Forum 2009
http://support.sas.com/resources/papers/proceedings09/024-2009.pdf

Lavery, Russell. “An Animated Guide: Speed Merges with Key Merging and the _IORC_ Variable”

proceedings of WUSS 2003 conference

http://www.lexjansen.com/wuss/2003/SASSolutions/c-an_animated_guide_speed_merges__iorc_.pdf

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Russ Lavery Contractor Analyst/Programmer
Bryn Mawr, PA 19010:
E-mail: Russ.lavery@verizon.net
Web: Russ-lavery.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

