Paper HW-02-2013

Fast Access Tricks for Large Sorted SAS Files

By Russ Lavery

ABSTRACT:

There are techniques for file access, *of sorted files*, that are described in the IT or Comp Science literature that most SAS programmers do not study or consider for their use. This is, in general, a time efficient decision on the part of the SAS programmer because we can trust SAS Institute to bring in useful techniques (e.g. indexing and hashing) and to make them convenient for us to use. However, there are situations where coding your own access method can be faster than a vanilla SAS access method. In addition, studying these techniques can be a reward in itself – sometimes giving a programmer a new view of how SAS works. This paper will show nine techniques that can be used on sorted files. Your performance will vary with the details of your SAS installation.

Code illustrating these techniques will be provided in a SAS abbrev file that can be installed by anyone (admin rights not required) on their PC. This means a reader can easily access, and play with, these techniques at their leisure.

INTRODUCTION:

Thanks to Paul Dorfman and Mark Keintz for sharing these techniques and putting them in the public domain.

SAS, while a well-designed fourth generation language, and complete in itself, does not exist independently of other programming languages/techniques. While the author is grateful that he has never had to program low-level tasks (e.g. programming his own sort routine), it is, occasionally, useful to read and study some lower-level techniques that exist in the main stream of what might be thought of as IT -- and to bring the techniques to SAS.

Many of the techniques in this paper involve programming a binary search in a SAS data step. In a binary search on a sorted table (sorted by some "key variable like subject_id) the algorithm picks the observation in the middle of the data set and checks to see if the subject_id found is the desired subject_id. If it is, the algorithm stops. If not, since the table is sorted, the algorithm can determine if the desired observation is "above" or "below" the one found and redefines the search range to be half of the original file. The algorithm picks the observation in the middle of the new search range and the process repeats. If the desired subject_id is not in the file, the process will repeat until there is "no more file left to divide" and will stop.

Most of these techniques can only be applied to data sets with certain characteristics and will produce errors or erroneous results if applied to data sets without those characteristics. The important characteristics to consider are: 1) is SMALL and/or LARGE sorted and 2) do SMALL and/or LARGE contain observations with duplicate values of the key variables (can more than one row have the same value of the merge or key variable).

A binary search for a subject_id, that is not in the table, will take floor($log_2(N)+1$) searches. $log_2(N)-1$ is the expected number of searches if the subject_ID is the table and the maximum number of iterations in a successful search is just one more, or $log_2(N)$, Searching a table with a million rows will never take more than twenty iterations and so searching is relatively insensitive to N.

Since binary searches are fast, and insensitive to both the file size and gaps in the distribution of subject_ids in the table, one might ask "why does SAS not provide this feature?". The answer is that SAS *does* provide this feature in ways that are hidden. SAS uses binary searches inside PROC Format and inside a SAS index. With the fact that SAS uses binary searches internally, as a recommendation for the usefulness of the technique, this paper will show how to apply this technique through data step coding.

This paper will show nine different techniques and the code can be found	K	eyboard Macros			×
in the abbrev file provided.		Name Kevs			Run
To access the sample code in the abbrev file you must install the abbrev file (see my web site russ-layery com).		mad(MavenMergeWIndex			Close
After installing, select: tools \rightarrow Keyboard_Macros \rightarrow Macros and you will see the box to the right.		MavenMergeWOIndex max(mdy(Assign keys
Scroll up and down until you find the example code you wish to explore,		mean(median(min(<u>C</u> reate Edit
blue) and click run.		minute(missing(Ŧ	Rename
The sample code will be pasted into your editor.		Import	•		Delete

While one, static picture is not a good replacement for the dozens of animated PPT slides in the lecture, pictures of individual slides are provided in the paper because: 1) they show both data files (LARGE and SMALL) 2) they often show the PDV 3) they often have little circles overlaid on the pictures of LARGE that show the limits of the searchable rows 4) they often have annotations, pointing to specific lines of code. It is hoped that these single PPT slides will be useful to the reader.

Techniques for which code is provided are:

Example 1: MavenMergeWOIndex

Example 2: MavenMergeWIndex

Example 3: Binary_SmallNotSortedLargeSortedNoDupes

Example 4: Binary_SmallSortedLargeSortedNoDupes

Example 5: Binary_DoNot DeleteMismatches

Example 6: Binary_DoNot DeleteMismatches

Example 7A: Compressed Index Basic

Example 7B: CompressedIndex Index

Example 7C: Compressed_Index__IORC_into_The_Compressed_Index

There are some general principles, or patterns, we should look for as we study these programs.

- 1) If you reset L (Low end of range) and H (High end of range) to 1 and N for every observation in SMALL
 - a. For every obs. in SMALL, you will check ALL of LARGE.

 - b. You do not need to sort SMALL.c. You can have duplicates in SMALL and get good results.
- 2) If the algorithm you pick has a "by merge" in it:
 - a. You must sort, or index, SMALL and LARGE.
 - b. You get a typical SAS merge. Remember that many to many merges are dangerous.
- 3) If you have duplicates in LARGE, you must add code to look "up" and "down" large, to check for duplicates, after you find the first "Matching observation"
- 4) Many to many merges are a problem in SAS and if you have duplicates in both SMALL and LARGE, you might have a problem in the program specifications that needs to be thought out.
- Compressed indexes are cool and speedy and are designed to handle duplicates in LARGE.
- 6) You can combine these techniques to make things really hard on the next programmer to follow (e.g. putting an index on the compressed index and using a where clause is. I think, a bit tricky).
- 7) If small is sorted you can use that fact, and some coding so that you do not have to search ALL of large for every observation in SMALL and save time.

EXAMPLE 1: MavenMergeWOIndex

The image of the PPT slide, that is	 Maven 	Merae	W/o ind	ex		4	
to the right, is typical of the images	SWantinfa Proc sel nonrint						
of slides to follow.	SID Sex	Sex /*distinct de-dupes - not required for where*/ SID ARM			SID ARM		
	0001 F	select	distinct(Quote(SID)) into :Wh	ereCL	0001 🕈 A	
It shows both of the files being	3453 F	separ	ated by '	' from SWantinfo		1005 B	
"merged", the code, the output	3988 F ;quit: 1087 B						
(white box in lower right hand	7777 🛉 M	%put &V	WhereCl;	"0001", "2222", "345	3".	2111 V A	
side) and the value stored in the	Merge			"3988", "7777" Sto	ored in an	3453 🛨 A	
macro variable WhereCl	By SID			array in V8 and V9.1	-in hash	3999 B	
	So BOTH			table in V9.2		4444 A 4766 A	
Hopefully these pictures will make	Files options msglevel=i; 5020 B						
the code easier to interpret	must be data Example1; 5111 A						
the code easier to interpret.	indexed.	merge	Swantinit	n(whore=(SID in(&W	(horoCl))).	6888 B	
SMALL (here called SM/entipfe)	Dupes	by SID:	Without Who	re the note says;		7666 A	
SWALL (Here called Swahlind)	allowed in	if s:	NOTE: There	were 5 observations read fro	om the data	8188 A	
Will be the table on the feit and	LARGE.	run;	NOTE: There	were 20 observations read fr	rom the data	8811 A	
LARGE (nere called SbigLookin)			set WORK.S	BIGLOOKIN.		9033 B 9099 A	
will be the table on the right.	NOTE: The	ere were 5 m the data	observatio	NS read	SID Sex	C ARM	
This example takes adventage of	NOTE: The	ere were 3	observatio	ns read	0001 F	A	
This example takes advantage of	fro	m the data	set WORK	SBIGLOOKIN.	2222 M	•	
the data engine (a subroutine that	WHERE SI	D in ('0001'	', '2222', '3 [.]	134', '3999', '7777');	3988 F	-	
"sits" close to the hard drive) to	observations	s and 3 varia	ables.	OP2BOILOW has 5	7777 M	В	
remove observations that do not							
pass the where filter.	/++++++++	+++++++++	+++++++++	· · · · · · · · · · · · · · · · · · ·	*******	*****	+++
We use SQL (yellow) to create a	Section	Evample	о 1 Матлог	merge w/o index		• • • • • • • • • • • • • • •	^ ^ ^
macro variable of all the values of	We are me	_ Exampto	subject	id so both files	must he	sorted	
the "By Variable" in SMALL and	*****	*****	*******	****	****	* * * * * * * * * * * * *	***/
then apply that list in a where	OPTIONS NO	OCENTER 1	msglevel=	=i;			
clause when LARGE is read.	proc sql 1	<pre>noprint;</pre>					
	<mark>/*the dis</mark>	tinct de	-dupes th	ne where clause-			
The data engine can do simple		dupli	cates not	required for the	e where*/		
filtering as well as the managing of	select	distinct	t (quote (S	SID)) into :Where(CL separat	ted by ', '	
an index.	irom SWantInfo						
-	quit;						
The observations that do not meet	<pre>%put &WhereCl</pre>						
the where condition are filtered out							
early in the process of reading the	Proc SQL;	/*Be sure	e that th	ere is no index o	on LARGE*,	/	
data – the observations are filtered	Drop ind	dex SID (on BigLoc	okIn;			
out, by the data engine, before the	quit;						
observations reach the PDV.	options m	salevel-	i moriot	symbolgen mlogic			
	data Exam	ole1;		Symborgen mrogic;	,		
With the where clause filter in use	/*no inde	x created	d on lard	re vet, so top to	bottom pi	rocessing of	£
(see code with green background)	large, wit	th where	filterin	ng in data engine'	*/	-	
we see the top \note in the log	/*Use when	re to on	ly read,	from LARGE, the c	obs in SMA	ALL*/	
saying three observations are read	merge	SWantIn	fo (<mark>in</mark> =s)				
from LARGE	/*	SBigLool	kin (whei n • */	ce=(SID in(&Where(JI)));		
	by STD	• •	II ; ~/				
If we commented out the green	if s;	, run;					
line and uncommented the gray	NOTE: There were 5 observations read						
line we would see the second note	from the data set WORK SWANTINFO.						
in the log: It says that twenty	NOTE: The	ere were	e 3 obse	ervations read f	from the	data set	
observations were read from the	WORK.SBI	GLOOKIN					
hard drive.	WHERE SI	D in ('(0001',	2222', '3134',	'3999',	'7777');	
	NOTE: The	e data s	, set WORF	.MATCH2 TOP2BOT	TOM has	5	
However, when the log says three	observat	ions and	d 3 vari	ables.	-		
observation were read it means	NOTE: The	ere were	e 5 obse	rvations read f	rom the	data set	
that three observations were read	WORK.SWANTINFO.						
by the data engine, and then	NOTE: There were 20 observations read from the data set						
tlowed up through the layers of	WORK.SBIGLOOKIN						
SAS and tinally reached the PDV.						-	

With the where clause filter in the code. the hard drive *did* read SBIGLOOKIN, from top to bottom and saw every subject_id, so that the data engine could see the values of subject_ID and do filtering. The hard drive processed all the "hard drive pages" for 20 observations. It only passed three observations onto SAS and the PDV.

EXAMPLE 2: MavenMergeWIndex

In this example we add code to	•Maven Merge WITH index	6		
create a SAS index on LARGE	SWantinfe proc sql; "0001", "2222", "3453", "3988", "7777" BigLd	ookin		
It must be sorted because of the	SID Sex 0001 ↓ F select distinct(Quote(SID)) into :WhereCL SID \$\$10	ARM		
merge by subject ID (SID).	2222 M separated by ', ' from Wantinfo 9033	B		
	3453 F Groc SOL // Create an index to bein the data	B		
The code, to right, is the same as	7777 M engine where clause optimizer*/ Index File	A		
the code in the previous example,	Merge Create index SID on BigLookIn(SID); for 4444	A		
but, since an index exists, the data	By SID quit; 4766	4		
engine will, if it determines that it	So BOTH 0001	A		
makes sense to do so, make use	Files options msglevel=1; must be data Example?!/*Use where and index to only 1009	B		
of the existing index.	sorted or read, from large, the obs in small*/	B		
Documentation says that when a	indexed. merge SWantInfo (in=s) 2111	A		
Where clause in a PROC or a	Dupes BigLookIn (where=(SID in(&WhereCL))); 6090	Â		
SQL ioin "pulls" It 15% of the	SMALL & by SID; 6888	B		
LARGE file an index will be used.	LARGE. It S; 7000	8		
	INFO: Index SID selected for BY clause processing	A		
There is a where clause optimizer	NOTE: There were 5 observations read	M		
that is invoked with this code, but I	from the data set WORK.SWANTINFO.	~		
have not found documentation on	from the data set WORK.BIGLOOKIN. 3453 F	A		
the rules it applies.	WHERE SID in ('0001', '2222', '3134', '3999', '7777'); 3566 F NOTE: The data set WORK MATCH2 W INDEXD has 5 7777 M	в		
In this even would be bound drive	observations and 3 variables.			
In this example the hard drive	proc sal noprint;			
to bottom but using the index	/*distinct de-dupes the where-duplicates not needed in the wh	ere*/		
only reads the data pages that	<pre>select distinct(quote(SID)) into :WhereCL separated by ',</pre>	1		
contain the sought for subject ids.	from SWantInfo			
Please note the Blue comment in	guit;			
the PPT graphic ("INFO index SID	<pre>%put &WhereCl</pre>			
selected for BY Clause				
processing").	/*************************************	* * * *		
	**************************************	****/		
This automatic use of an existing	Proc SQL;	,		
Index (by any where clause in	/*Create an index to help the data engine where clause optimi	zer*/		
SQL, PROCS of a Data Step) is a behind the scenes feature of SAS	Create index SID on BigLookIn(SID);			
that reduces programming effort	quic,			
and clock time.	options msglevel=i;			
	<pre>data Example2;</pre>			
In this example, for each	/*Use where and index to only read, from large, the obs in sm	.all*/		
observation, the data engine uses	BigLookIn (where=(SID in(&WhereCL)));			
the index to find the page on the	by SID;			
hard drive that contains the	if s;			
desired observations and only	run;			
those pages are read.	options nocenter:			
	Proc Print data=ExaMPLE2;			
	run;			

EXAMPLE 3: Binary_SmallNotSortedLargeSortedNoDupes

Because, for each observation in SMALL, the search range in LARGE is re-set to be from first-row to last row there is no need to sort SMALL and duplicates are allowed in SMALL. However, when one "match" is found the looping and searching stops, so duplicates are not allowed in LARGE.

EXAMPLE 4: Binary_SmallSortedLargeSortedNoDupes

EXAMPLE 5: Binary_DoNot DeleteMismatches

In the example, the variables were typed into the array statement but this could be done automatically via a PROC contents and a short macro program to create lists of character and numeric variables in LARGE (excluding any By variables) that must be set to missing.

If there are both numeric and character variables in LARGE that need resetting, two arrays are needed.

EXAMPLE 6: Binary_BigFileSortedWithDuplicates

EXAMPLE 7A: Compressed_Index_Basic

This is the first view of a	•Example 7AFirst obs in Sorted small57				
compressed index.	SWantinfo Data Cmprindx(drop=test); SDupin				
A compressed index holds three	SID Sex RETAIN SID StartAt EndAt; SID Test 0001 F SET SDupin; 0001 N				
variables:	2222 M to by SID; 3134 F IF FIRST.sid=1 THEN StartAt= N : 2222 N				
1) the key variable (here SID or Subject ID)	3999 F if last.SID=1 then DO; 2222 A 2999 N				
	EndAt=_N_; 3453 A Output; 3453 N				
2) the row number of the first	END; run; 3999 A				
observation in LARGE with that	data Example7; 1: Start data step Cmprindx				
	by SID;				
3) the row number of the last	if SWant * Cmp; 3: Filter 2222 2 4				
observation in LARGE with that	do Pointer=StartAt to EndAt; 4: Load pointer Variable 3453 6 7				
	output; 6: Output 3: Read 3999 8 8				
The italic section (see below)	Lend; run;				
builds the compressed index – a	SID Say StartAt EndAt N				
last row in LARGE where that id	2222 M 2 4 2				
appears.	Pointer Test SWant Cmp				
	2 A 1 1				
Please see the conditions in the	/**************************************				
section block comment to the	Section:_7A_ First use of compressed index Mark Keintz				
right.	Small and large must be sorted. We need to so a merge between small and the compressed index				
A data step implements the	***************************************				
compressed file algorithm. Note	Data CmprIndx; /*Create the comprtessed index on the large file*/ RETAIN SID StartAt EndAt;				
we do not index the compressed	SET SDupIn;				
file.	by SID; IF FIRST.sid=1 THEN StartAt= N ;				
Small is merged with the table	if last.SID=1 then DO;				
holding the compressed index so	EndAt=_N_; Output; END; run;				
that the algorithm has access to	proc SQL;				
the first and last rows for	<pre>drop index SID from CmprIndx; run;</pre>				
subject_ids in SMALL					
The gray backed statement stars	<pre>data Example/A; Merge SWantInfo(in=SWant) CmprIndx(In=Cmp);</pre>				
processing an obs. if there is no	by SID;				
match on subject_id.	1f SWant * Cmp; /*SET CmprsdIndx key=SID / unique; */				
The blue postion lacre through	do Pointer=StartAt to EndAt;				
LARGE and, used the point=	<pre>set SDupIn point=Pointer; output;</pre>				
option to find the desired rows in	end;				
LARGE, and output observations.	run;				
	<pre>Proc Print data=Example7A;</pre>				
	RUN;				

EXAMPLE 7B: CompressedIndex_Index

This example:	_				
Inis example:	•Examp	e 78First obs in Sorted small	72		
1) builds a compressed index	Wantinfo	Data CmprIndx(drop=test_index=(SID));	SDupin		
table and	SID Sex	RETAIN SID StartAt EndAt;	SID Test		
builds an index on the	0001 F	SET SDupin;	0001 N		
compressed index table.	3999 F	by SID;	2222 A		
3) loads the values from WantInfo	3134 F	if last SID=1 then _DO:	2222 A		
(SMALL) into a macro variable	7777 M	EndAt= N ;	2999 N		
		Output;	3453 A 3453 N		
After loading the subject ids from		END; run;	3999 A		
SMALL into a macro variable the		Proc SQL;			
table SMALL is not used again		from Wantinfo: guit: %put_user :	Cmprindx		
		"0001" "2222" "3999" "3134" "7777"	0001 1 1		
The macro variable is used in a			2222 2 4		
where clause on the compressed		Data Example7B; 1: Start data step	2999 5 5		
index (which for this technique to		do Pointer=StartAt to EndAt: < 3: Load pointer Variable	4453 6 7		
he useful is assumed to be large	ſ	set SDupIn point=Pointer; 4: Read	3999 8 8		
and to have been created by some		output; 5: Output			
and to have been created by some	4	end; run; 🔪			
midule-or-the-hight batch job.).	SID	v StavtAt EudAt N			
The sub-second states in the	310 Se				
The where clause reduces the					
number of rows read from the	Poi	nter Test			
(large) compressed index.		2 A .			
Please see the conditions in the	/********	***************************************	* * * * * * * * * *		
section block comment to the	Section:_7E	B_ Condensed index V1 - Mark Kentz - WORDS UP	enn s		
right.	LARGE has a	an index and is sorted			
-	Options nos	optor.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ /		
A merge of the table containing	0pt10HS HOC /*D0 NOT	Build index on all of big file*/			
the desired subject_lds with the	Data Cmprso	lIndx(index=(SID));			
compressed index can result in a	/*create	e an indexed "compressed index" file*/			
large table – if the compressed	RETAIN SID	StartAt EndAt;			
index itself is large.	SET SDupIn;				
C C	by SID;				
This technique uses a macro	IF FIRST.si	d=1 THEN StartAt=_N_;			
driven where clause on the	if last.SID=1 then				
compressed index file (which itself	DU; Exdat= N				
has an index to speed up					
processing) to eliminate the need	END;				
for a join with the large	run;				
compressed index and honefully					
to reduce clock time on the data	/*We do not	want to read ALL of the compressed index, or	nly rows in		
sten	WantINfo*/				
	Proc SQL;		March Tr. C.		
	/*Options	re good*/	wantinio;		
This code with the where in the set	mit:	ate good"/			
statement will "call" the whore	%put user	;			
alayse entimizer and let CAS		-'			
dooido if uping the index will likely	options mlo	ogic mprint symbolgen fullstimer msglevel=i;			
aecide ir using the index will likely	data Exampl	e7B /DEBUG;			
reduce clock time.	<mark>SET Cmprsd</mark> I	Indx(where=(SID in (&WantThese)));			
	/*let SAS c	lecide if it should use the index*/			
	/*read the	file that tells us what obs we want - likely	to be		
	small*/	-Startat to Endat.			
	au rointer=	-StartAt to EMUAL; NTn noint=Pointer:			
	set Suppin point=Pointer;				
	end;				
	run;				
	Proc Print	<pre>data=Example7B;</pre>			
	run;				

EXAMPLE 7C: Compressed_Index_IORC_into_The_Compressed_Index

This final example builds a	•Example 7	CFirst	obs in Sorte	ed small83
compressed index with a SAS index on it. It then uses an IORC lookup to get the proper lowest row and highest row from the compressed index - which is assumed to be large in order to have this technique have a possible advantage over other techniques.	Wantinfe SID Sex 0001 F 3999 F 2222 M 3134 F 7777 M data set V SET (if las Enc ent do Pe set out end;	Cmprindx(drop= to SDupin; D; RST.sid=1 THEN St: t.SID=1 then DO; IAt=_N_; Output; D; run; Example7C; Vantinfo; 22:T Cmprindx key=SID Omprindx key=SID office: pror_=0; delete; end; ointer=StartAt to E SDupin point=Poin put; 6; Output	est index=(SID)); dAt; artAt=_N_; 1: Start data st ead / unique; 3: rea ndAt; 4: Load po ter; 5: Read	CmprIndx SDupIn 0001 1 1 SiD Test 2222 2 4 2222 A 2999 5 5 3453 6 7 3453 6 7 2999 N 3453 A 3453 A 3999 8 8 3453 A ayaya A 3999 A bell using IORC Sinter Variable
	SID Sex	StartAt EndAt	N	
	3999 F	8 8	2	
	Pointer	Test _error_	_IORC_	
	8	A 0	0	
Please see the conditions in the section block comment to the right. This technique could be used where the compressed index is large. The technique builds an compressed index (the section with yellow background) and a SAS index on the compressed index (red italic letters in the yellow section). The gray section reads SMALL and uses an IORC lookup to get	<pre>/************************************</pre>	ex and IORC loo file: LARGE f: drop= test in artAt EndAt; THEN StartAt= then DO; Output;	<pre>by into the cd ile is sorted *: ***********************************</pre>	ompressed index * Index on Compressed *****
the starting and ending rows from the compressed index.	Data Example7C; set WantInfo ; SET CmprIndx ke if _IORC_ NE 0	ey=SID / unique then	e;	
This is invoking an IORC merge and forces the use of the index. For a paper explaning an IORC merge see references.	do; _error_=0 delete; end; do Pointer=Star set SDupIn p output; end; run ;); rtAt to EndAt; point=Pointer;		

The do loop (yellow) uses the information from the starting and ending rows and the point=option to read individual rows in the large file.

CONCLUSION

Thanks to Paul Dormfam and Mark Keintz for putting these tools in the public domain.

Binary searches are, in many situations, the fastest way to find a value in a sorted table and using a binary search can provide a performance improvement. The compressed index has been found, in speed tests, to outperform a SAS index. Your results will depend on the hardware at your site and file sizes.

There are some general principles, or patterns, we should look for as we study these programs.

- 1) If you reset L (Low end of range) and H (High end of range) to 1 and N for every observation in SMALL
 - a. For every obs. in SMALL, you will check ALL of LARGE.
 - b. You do not need to sort SMALL.
 - c. You can have duplicates in SMALL and get good results.
- 2) If the algorithm you pick has a "by merge" in it:
 - a. You must sort, or index, SMALL and LARGE.
 - b. You get a typical SAS merge. Remember that many to many merges are dangerous.
- 3) If you have duplicates in LARGE, you must add code to look "up" and "down" large, to check for duplicates, after you find the first "Matching observation"
- 4) Many to many merges are a problem in SAS and if you have duplicates in both SMALL and LARGE, you might have a problem in the program specifications that needs to be thought out.
- 5) Compressed indexes are cool and speedy and are designed to handle duplicates in LARGE.
- 6) You can combine these techniques to make things really hard on the next programmer to follow (e.g. putting an index on the compressed index and using a where clause is, I think, a bit tricky).
- 7) If small is sorted you can use that fact, and some coding so that you do not have to search ALL of large for every observation in SMALL and save time.

The Abbrev file containing the examples can be downloaded from russ-lavery.com. The web site has instructions on how to install it.

For those interested in learning "big file techniques, the abbrev file also has seven other examples of big file techniques which can be studied. The abbrevs have data and code, so these examples will run.

HashLookup H	ash_3Way_merge	Hashing_LeftJoinLookup	HashingInnerJoinLookup
IORC_Lookup	CharFormatLooku	p NumFormatLookup	

REFERENCES

Dorfman, Paul, collected SAS-L comments

Keintz, Mark, "A Faster Index for Sorted SAS® Datasets" proceedings of SAS Global Forum 2009 http://support.sas.com/resources/papers/proceedings09/024-2009.pdf

Lavery, Russell. "An Animated Guide: Speed Merges with Key Merging and the _IORC_ Variable" proceedings of WUSS 2003 conference

http://www.lexjansen.com/wuss/2003/SASSolutions/c-an_animated_guide_speed_merges__iorc_.pdf

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Russ Lavery Contractor Analyst/Programmer Bryn Mawr, PA 19010: E-mail: Russ.lavery@verizon.net Web: Russ-lavery.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.