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Abstract 

For many practitioners, ordinary least square (OLS) regression with Gaussian distributional assumption might be the 

top choice to model proportional outcomes in many business problems. However, it is conceptually flawed to assume 

Gaussian distribution for a response variable in the [0, 1] range. In this paper, several modeling methodologies for 

proportional outcomes with their implementations in SAS should be discussed through a data analysis exercise in 

modeling financial leverage ratios of businesses. The purpose of this paper is to provide a relatively comprehensive 

survey of how to model proportional outcomes to the SAS user community and interested statistical practitioners in 

various industries.  
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Introduction 

In the financial service industry, we often observed business necessities to model proportional outcomes in the range 

of [0, 1]. For instance, in the context of credit risk, loss given default (LGD) measures the proportion of losses not 

recovered from a default borrower during the collection process, which is observed in the closed interval [0, 1]. 

Another example is the corporate financial leverage ratio represented by the long-term debt as a proportion of both 

the long-term debt and the equity.  

To the best of my knowledge, although research interests in statistical models for proportional outcomes have 

remained strong in the past years, there is still no unanimous consensus on either the distributional assumption or the 

modeling practice. An interesting but somewhat ironic observation is that the simple OLS regression with Gaussian 

assumption has been the prevailing method to model proportional outcomes by most practitioners due to the 

simplicity. However, this approach suffers from a couple of conceptual flaws. First and the most evidential of all, 

proportional outcomes in the interval [0, 1] are not defined on the real line and therefore shouldn’t be assumed 

normally distributed. Secondly, a profound statistical nature of proportion outcomes is that the variance is not 

independent of the mean. For instance, the variance shrinks when the mean approaches boundary points of [0, 1], 

which is a typical representation of the so-called Heteroscedasticity.  
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In addition to the aforementioned OLS regression approach, another class of OLS regression based upon the logistic 

normal assumption is also overwhelmingly popular among practitioners. In this approach, while boundary points at 0 

or 1 can be handled heuristically, any outcome value in the open interval (0, 1) would be transformed by a Logit 

function such that 

   (    ⁄ )          he e the e  o  te m          (     )  

After the Logit transformation, while Y is still strictly bounded by (0, 1), LOG (Y / (1 – Y)) is however well defined on 

the whole real line. More attractively, from a practical perspective, most model development techniques and statistical 

diagnostics can be ported directly from the simple OLS regression with no or little adjustment. 

Albeit simple, the OLS-based model with Logit transformation is not free of either conceptual or practical difficulties. A 

key concern is that, in order to ensure LOG (Y / (1 – Y)) ~ Normal (X`β, σ
2
) and therefore ε ~ Normal (0, σ

2
), the 

outcome variable Y should theoretically follow the additive logistic normal distribution, which might be questionable 

and is subject to statistical tests. For instance, it is important to check if the error term ε follows a standard normal 

distribution in the post-model diagnostics with Shapiro-Wilk or Jarque-Bera test. In addition, since the model 

response is LOG (Y / (1 – Y)) instead of Y, the interpretation on model results might not be straightforward. Extra 

efforts are necessary to recover marginal effects on E (Y | X) from E (LOG (Y / (1 – Y)) | X).  

Given all limitations of OLS regression discussed above, five alternative modeling approaches for proportional 

outcomes, which are loosely fallen into two broad categories, should be surveyed in the paper. The first category 

governs one-piece modeling approaches that are able to generically handle proportional outcomes in the close 

interval of [0, 1], including Tobit, NLS (nonlinear least squares), and Fractional Logit models. The second category 

covers two-part modeling approaches with one component, e.g. a Logit model, separating between boundary points 

and the open interval of (0, 1) and the other component governing all values in the (0, 1) interval by a Beta or Simplex 

model.  

Figure 1, Schematic Diagram of Statistical Models for Fractional Outcomes 

 

To better illustrate how to employ these five models in the practice, we would apply them to a use case of modeling 

the financial leverage ratio defined in the interval of [0, 1) with the point mass at 0 implying zero debt in the corporate 

capital structure. All information including both the response and predictors is given in the table below.  
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Table 1, Data Description 

 

 

Data Analysis 

The preliminary data analysis might be the simplest and somehow tedious work in the pre-modeling stage. However, 

it is by all means the most critical component and is able to provide a more granular view about the data. First of all, 

we might take a look at the summary statistics of all variables.  

Table 2, Summary Statistics for Full Sample 

 

Since the median of our response variable is equal to 0, it is evidential that the majority of outcome values are point 

mass at 0. Given this special statistical nature of the response variable, it might be helpful to take a second look at 

the data without boundary points at 0 in outcomes. After excluding cases with Y = 0, there are only 25% of the whole 

samples left, implying a potential necessity of two-part models.  

Table 3, Summary Statistics for Sample without Boundary Points 

Var iables Names Desc r iptions

Y Leverage ratio ratio between long-term debt and the summation of long-term debt and equity

X1 Non-debt tax shields ratio between depreciation and earnings before interest, taxes, and depreciation

X2 Collateral sum of tangible assets and inventories, divided by total assets

X3 Size natural logarithm of sales

X4 Profitability ratio between earnings before interest and taxes and total assets

X5 Expected growth percentage change in total assets

X6 Age years since foundation

X7 Liquidity sum of cash and marketable securities, divided by current assets

Var iables Min Median Max Average Var iance

Leverage ratio 0.0000 0.0000 0.9984 0.0908 0.0376

Non-debt tax shields 0.0000 0.5666 102.1495 0.8245 8.3182

Collateral 0.0000 0.2876 0.9953 0.3174 0.0516

Size 7.7381 13.5396 18.5866 13.5109 2.8646

Profitability 0.0000 0.1203 1.5902 0.1446 0.0123

Expected growth -81.2476 6.1643 681.3542 13.6196 1333.5500

Age 6.0000 17.0000 210.0000 20.3664 211.3824

Liquidity 0.0000 0.1085 1.0002 0.2028 0.0544

Full Sample = 4,421
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In order to have a true picture about the performance of five different models, we split the full sample of 4,421 cases 

into two pieces, ~60% for the model development and ~40% for the post-model performance testing.  

Table 4, Sample Separations 

 

Before proceeding with the model development, we might need to have an idea about the predictiveness and the 

strength of each model attribute by checking Information Value and K-S statistic, as shown below. Empirically, 

variables with IV < 0.03 are usually considered unpredictive.  

---------------------------------------------------------------------- 

| RANK   | VARIABLE RANKED BY IV            |  KS      | INFO. VALUE | 

---------------------------------------------------------------------- 

|  001   | X3                               | 29.6582  |  0.6490     | 

|  002   | X7                               | 18.0106  |  0.1995     | 

|  003   | X4                               | 13.9611  |  0.1314     | 

|  004   | X2                               | 10.7026  |  0.0470     | 

|  005   | X5                               | 4.2203   |  0.0099     | 

|  006   | X6                               | 4.0867   |  0.0083     | 

|  007   | X1                               | 3.4650   |  0.0048     | 

---------------------------------------------------------------------- 

 

From the above output, three variables, including X5 (expected growth), X6 (age), and X1 (non-debt tax shields), are 

deemed unpredictive.  

For the other four variables with IV ≥ 0.03, the bivariate analysis might help us gain a deeper understanding about 

their relationships with the outcome variable of interest. For instance, it is clearly shown in the output below that 

large-size (X3) businesses with higher collaterals (X2) might be more likely to raise debts. On the other hand, a 

business with higher liquidity (X7) and profitability (X4) might be less likely to borrow.  

 

Var iables Min Median Max Average Var iance

Leverage ratio 0.0001 0.3304 0.9984 0.3598 0.0521

Non-debt tax shields 0.0000 0.6179 22.6650 0.7792 1.2978

Collateral 0.0004 0.3724 0.9583 0.3794 0.0485

Size 11.0652 14.7983 18.5866 14.6759 1.8242

Profitability 0.0021 0.1071 0.5606 0.1218 0.0055

Expected growth -52.2755 6.9420 207.5058 12.6273 670.0033

Age 6.0000 19.0000 163.0000 23.2070 267.3015

Liquidity 0.0000 0.0578 0.9522 0.1188 0.0240

Sample without Boundary  Cases  = 1,116

# of Cases Full Sample Deve. Sample Tes t Sample

Y = 0 3,305 1,965 1,340

0 < Y < 1 1,116 676 440

Total 4,421 2,641 1,780



5 

 

X3 

  BIN#     LOWER LIMIT     UPPER LIMIT      #FREQ    DISTRIBUTION       AVERAGE Y   INFO. VALUE         KS 

 ----------------------------------------------------------------------------------------------------------- 

   001          7.7381         11.3302        293       11.0943%         0.6980%     0.30101685    11.2883 

   002         11.3313         12.1320        294       11.1321%         3.1150%     0.09286426    19.3900 

   003         12.1328         12.6855        293       11.0943%         5.2841%     0.03088467    24.5797 

   004         12.6924         13.2757        294       11.1321%         5.3806%     0.02925218    29.6582 

   005         13.2765         13.8196        293       11.0943%         9.6427%     0.00032449    29.0517 

   006         13.8201         14.3690        294       11.1321%        10.8879%     0.00428652    26.7815 

   007         14.3703         14.8901        293       11.0943%        11.7722%     0.00952048    23.3430 

   008         14.8925         15.6010        294       11.1321%        17.1834%     0.07665603    12.6723 

   009         15.6033         18.5045        293       11.0943%        18.7160%     0.10422852     0.0000 

------------------------------------------------------------------------------------------------------------ 

# TOTAL = 2641, AVERAGE Y = 0.091866, MAX. KS = 29.6582, INFO. VALUE = 0.6490. 

------------------------------------------------------------------------------------------------------------ 

 

X7 

  BIN#     LOWER LIMIT     UPPER LIMIT      #FREQ    DISTRIBUTION       AVERAGE Y   INFO. VALUE         KS 

 ----------------------------------------------------------------------------------------------------------- 

   001          0.0000          0.0161        377       14.2749%        13.7083%     0.03491945     7.7370 

   002          0.0161          0.0422        377       14.2749%        12.2633%     0.01702171    13.0015 

   003          0.0424          0.0798        378       14.3128%        12.1063%     0.01546113    18.0106 

   004          0.0802          0.1473        377       14.2749%         8.3757%     0.00140556    16.6230 

   005          0.1473          0.2610        378       14.3128%         7.6741%     0.00509632    14.0283 

   006          0.2613          0.4593        377       14.2749%         6.9672%     0.01141868    10.2307 

   007          0.4611          1.0002        377       14.2749%         3.2075%     0.11417533     0.0000 

------------------------------------------------------------------------------------------------------------ 

# TOTAL = 2641, AVERAGE Y = 0.091866, MAX. KS = 18.0106, INFO. VALUE = 0.1995. 

------------------------------------------------------------------------------------------------------------ 

 

X4 

  BIN#     LOWER LIMIT     UPPER LIMIT      #FREQ    DISTRIBUTION       AVERAGE Y   INFO. VALUE         KS 

 ----------------------------------------------------------------------------------------------------------- 

   001          0.0000          0.0628        528       19.9924%        11.6035%     0.01508943     5.7918 

   002          0.0628          0.1007        528       19.9924%        11.5788%     0.01479740    11.5245 

   003          0.1007          0.1423        529       20.0303%        10.2015%     0.00282718    13.9611 

   004          0.1425          0.2090        528       19.9924%         8.2715%     0.00252082    11.7682 

   005          0.2090          1.5902        528       19.9924%         4.2758%     0.09619720     0.0000 

------------------------------------------------------------------------------------------------------------ 

# TOTAL = 2641, AVERAGE Y = 0.091866, MAX. KS = 13.9611, INFO. VALUE = 0.1314. 

------------------------------------------------------------------------------------------------------------ 

 

X2 

  BIN#     LOWER LIMIT     UPPER LIMIT      #FREQ    DISTRIBUTION       AVERAGE Y   INFO. VALUE         KS 

 ----------------------------------------------------------------------------------------------------------- 

   001          0.0000          0.1249        660       24.9905%         7.3259%     0.01374506     5.5737 

   002          0.1251          0.2846        660       24.9905%         7.4744%     0.01153704    10.7026 

   003          0.2849          0.4670        661       25.0284%        10.6583%     0.00728202     6.2874 

   004          0.4671          0.9953        660       24.9905%        11.2856%     0.01440832     0.0000 

------------------------------------------------------------------------------------------------------------- 

# TOTAL = 2641, AVERAGE Y = 0.091866, MAX. KS = 10.7026, INFO. VALUE = 0.0470. 

------------------------------------------------------------------------------------------------------------- 

 

 

One-Piece Models 

In this section, three models, namely Tobit, NLS (nonlinear least squares), and Fractional Logit models, that can 

generically handle proportional outcomes with boundary points would be discussed. Although these three models are 

different significantly from each other from statistical aspects, they all share the assumption that both zero debt and 

positive debt decisions are determined by the same mechanism.  
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1. Tobit Model 

Based upon the censored normal distribution, Tobit model has been commonly used in modeling outcomes with 

boundaries and therefore is applicable to proportional outcomes in the [0, 1] interval or related variants. Specifically, 

Tobit model assumes that there is a latent variable Y* such that 

  {
             

                
              

   he e the e  o  te m          (     )  

Therefore, the response Y bounded by [0, 1] can be considered the observable part of a normally distributed variable 

Y* ~ Normal (X`β, σ
2
) on the whole real line. However, a fundamental argument against the censoring assumption is 

that the reason for unobservable values out of the interval [0, 1] is not a result of the censorship but due to the fact 

that any value out of [0, 1] is not defined. Hence, the censored normal distribution might not be the most appropriate 

assumption for proportional outcomes. Moreover, since Tobit model is still based on the normal distribution and the 

probability function of values in (0, 1) is identical to the one of OLS regression, it is also subject to assumptions 

applicable to OLS, e.g. homoscedasticity, which would often be violated in proportional outcomes.  

In SAS, the most convenient way to estimate Tobit model is by QLIM procedure in SAS / ETS module. However, in 

o de  to clea ly illust ate the log likelihood function of Tobit model,  e’d like to choose NLMIXED procedure. The 

maximum likelihood estimator for a Tobit model assumes that errors are normal and homoscedastic and would be 

otherwise inconsistent. As a result, the simultaneous estimation of a variance model is also necessary to account for 

the heteroscedasticity by  

 (  )     (     (   )) 

Thus, there are two components in the Tobit model specification, both a mean and a variance sub-models. Due to the 

computational complexity of two-component joint models with NLMIXED, it is always a good strategy to start with a 

simpler model estimating the conditional mean only and then extend to the variance component, as shown below. 

ods output parameterestimates = _parms; 

proc nlmixed data = data.deve tech = trureg; 

  parms b0 = 0  b1 = 0  b2 = 0  b3 = 0  b4 = 0  b5 = 0  b6 = 0  b7 = 0  _s = 1; 

  xb = b0 + b1 * x1 + b2 * x2 + b3 * x3 + b4 * x4 + 

       b5 * x5 + b6 * x6 + b7 * x7; 

  if y > 0 and y < 1 then lh = pdf('normal', y, xb, _s); 

  else if y <= 0 then lh = cdf('normal', 0, xb, _s); 

  else if y >= 1 then lh = 1 - cdf('normal', 1, xb, _s); 

  ll = log(lh); 

  model y ~ general(ll); 

run; 

 

proc sql noprint; 

  select parameter||" = "||compress(put(estimate, 18.4), ' ')  

  into :parms separated by ' ' from _parms; 

quit; 

 

proc nlmixed data = data.deve tech = trureg; 

  parms &parms  c1 = 0  c2 = 0  c3 = 0  c4 = 0  c5 = 0  c6 = 0  c7 = 0; 

  xb = b0 + b1 * x1 + b2 * x2 + b3 * x3 + b4 * x4 + b5 * x5 + b6 * x6 + b7 * x7; 

  xc = c1 * x1 + c2 * x2 + c3 * x3 + c4 * x4 + c5 * x5 + c6 * x6 + c7 * x7; 

  s = (_s ** 2 * (1 + exp(xc))) ** 0.5; 

  if y > 0 and y < 1 then lh = pdf('normal', y, xb, s); 
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  else if y <= 0 then lh = cdf('normal', 0, xb, s); 

  else if y >= 1 then lh = 1 - cdf('normal', 1, xb, s); 

  ll = log(lh); 

  model y ~ general(ll); 

run; 

/* 

             Fit Statistics 

-2 Log Likelihood                 2347.3 

AIC (smaller is better)           2379.3 

AICC (smaller is better)          2379.5 

BIC (smaller is better)           2473.4 

 

                        Parameter Estimates 

                       Standard 

Parameter   Estimate      Error     DF   t Value   Pr > |t|    Alpha 

b0           -2.2379     0.1548   2641    -14.46     <.0001     0.05   *** 

b1          -0.01309    0.01276   2641     -1.03     0.3049     0.05 

b2            0.4974    0.07353   2641      6.76     <.0001     0.05   *** 

b3            0.1415    0.01072   2641     13.20     <.0001     0.05   *** 

b4           -0.6824     0.2178   2641     -3.13     0.0017     0.05   *** 

b5          -0.00008   0.000528   2641     -0.16     0.8749     0.05 

b6          -0.00075   0.000918   2641     -0.82     0.4126     0.05 

b7           -0.6039     0.1231   2641     -4.90     <.0001     0.05   *** 

_s            0.3657    0.03066   2641     11.93     <.0001     0.05   *** 

c1           0.01383    0.06872   2641      0.20     0.8405     0.05 

c2           -2.3440     0.6881   2641     -3.41     0.0007     0.05   *** 

c3           0.04668    0.02469   2641      1.89     0.0588     0.05   * 

c4            0.1219     1.2489   2641      0.10     0.9223     0.05 

c5          0.001200   0.002845   2641      0.42     0.6732     0.05 

c6          -0.02245    0.01167   2641     -1.92     0.0546     0.05   * 

c7            1.5452     0.4678   2641      3.30     0.0010     0.05   *** 

*/ 

 

As shown in the output, X2 and X7 are statistically significant in both sub-models, implying the dependence between 

the conditional variance and the conditional mean. 

 

2. NLS Regression Model 

NLS regression is another alternative to model outcomes in the [0, 1] interval by assuming 

        (    )⁄      he e the e  o  te m          (     ) 

Therefore, the conditional mean of Y can be represented as 1 / [1 + EXP (-X`β)]. Similar to OLS or Tobit regression, 

NLS is also subject to the homoscedastic assumption. As a result, a sub-model is also needed to account for the 

heteroscedasticity in a similar way to what has been done in the previous section. 

 (  )     (     (   )) 

Again, for the computational reason, a simpler NLS regression assuming the constant variance would be estimated 

first in order to obtain a set of reasonable starting values for parameter estimates, as shown below. 

ods output parameterestimates = _parm1; 

proc nlmixed data = data.deve tech = trureg; 

  parms b0 = 0  b1 = 0  b2 = 0  b3 = 0  b4 = 0  b5 = 0  b6 = 0  b7 = 0 _s = 0.1; 
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  xb = b0 + b1 * x1 + b2 * x2 + b3 * x3 + b4 * x4 + b5 * x5 + b6 * x6 + b7 * x7; 

  mu = 1 / (1 + exp(-xb)); 

  lh = pdf('normal', y, mu, _s); 

  ll = log(lh); 

  model y ~ general(ll); 

run; 

 

proc sql noprint; 

  select parameter||" = "||compress(put(estimate, 18.4), ' ') 

  into :parms separated by ' ' from _parm1; 

quit; 

 

proc nlmixed data = data.deve tech = trureg; 

  parms &parms  c1 = 0  c2 = 0  c3 = 0  c4 = 0  c5 = 0  c6 = 0  c7 = 0; 

  xb = b0 + b1 * x1 + b2 * x2 + b3 * x3 + b4 * x4 + b5 * x5 + b6 * x6 + b7 * x7; 

  xc = c1 * x1 + c2 * x2 + c3 * x3 + c4 * x4 + c5 * x5 + c6 * x6 + c7 * x7; 

  mu = 1 / (1 + exp(-xb)); 

  s  = (_s ** 2 * (1 + exp(xc))) ** 0.5; 

  lh = pdf('normal', y, mu, s); 

  ll = log(lh); 

  model y ~ general(ll); 

run; 

/* 

             Fit Statistics 

-2 Log Likelihood                  -2167 

AIC (smaller is better)            -2135 

AICC (smaller is better)           -2135 

BIC (smaller is better)            -2041 

 

                        Parameter Estimates 

                       Standard 

Parameter   Estimate      Error     DF   t Value   Pr > |t|    Alpha 

b0           -7.4915     0.4692   2641    -15.97     <.0001     0.05   *** 

b1          -0.04652    0.03268   2641     -1.42     0.1547     0.05 

b2            0.8447     0.2125   2641      3.98     <.0001     0.05   *** 

b3            0.4098    0.03315   2641     12.36     <.0001     0.05   *** 

b4           -3.3437     0.6229   2641     -5.37     <.0001     0.05   *** 

b5          0.001015   0.001341   2641      0.76     0.4489     0.05 

b6          -0.00914   0.002853   2641     -3.20     0.0014     0.05   *** 

b7           -1.1170     0.2910   2641     -3.84     0.0001     0.05   *** 

_s          -0.01499   0.002022   2641     -7.41     <.0001     0.05   *** 

c1          -0.05461    0.01310   2641     -4.17     <.0001     0.05   *** 

c2            0.4066     0.1347   2641      3.02     0.0026     0.05   *** 

c3            0.4229    0.02035   2641     20.78     <.0001     0.05   *** 

c4           -3.6905     0.3187   2641    -11.58     <.0001     0.05   *** 

c5          0.001291   0.000842   2641      1.53     0.1255     0.05 

c6          -0.01644   0.002053   2641     -8.01     <.0001     0.05   *** 

c7           -1.0388     0.1332   2641     -7.80     <.0001     0.05   *** 

*/ 

 

In the above output, most predictors are statistically significant in both the mean and the variance sub-models, 

showing a strong evidence of heteroscedasticity.  

 

3. Fractional Logit Model 

Different from two models discussed above with specific distributional assumptions, Fractional Logit model (Papke 

and Wooldridge, 1996) is a quasi-likelihood method that does not assume any distribution but only requires the 

conditional mean to be correctly specified for consistent parameter estimates. Under the assumption E (Y|X) = G (X`β) 
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= 1 / [1 + EXP (-X`β)], Fractional Logit model has the identical likelihood function to the one for a Bernoulli distribution 

such that 

 ( )   (   )  (   (   ))
   

 fo        

Based upon the above formulation, parameters can be estimated in the same manner as in the binary logistic 

regression by maximizing the log likelihood function.  

In SAS, the most convenient way to implement Fractional Logit model is with GLIMMIX procedure. In addition, we 

can also use NLMIXED procedure by explicitly specifying the likelihood function as below. 

proc nlmixed data = data.deve tech = trureg; 

  parms b0 = 0  b1 = 0  b2 = 0  b3 = 0  b4 = 0  b5 = 0  b6 = 0  b7 = 0; 

  xb = b0 + b1 * x1 + b2 * x2 + b3 * x3 + b4 * x4 + b5 * x5 + b6 * x6 + b7 * x7; 

  mu = 1 / (1 + exp(-xb)); 

  lh = (mu ** y) * ((1 - mu) ** (1 - y)); 

  ll = log(lh); 

  model y ~ general(ll); 

run; 

/* 

             Fit Statistics 

-2 Log Likelihood                 1483.7 

AIC (smaller is better)           1499.7 

AICC (smaller is better)          1499.7 

BIC (smaller is better)           1546.7 

 

                        Parameter Estimates 

                       Standard 

Parameter   Estimate      Error     DF   t Value   Pr > |t|    Alpha 

b0           -7.3467     0.7437   2641     -9.88     <.0001     0.05   *** 

b1          -0.05820    0.06035   2641     -0.96     0.3349     0.05 

b2            0.8480     0.3276   2641      2.59     0.0097     0.05   *** 

b3            0.3996    0.05151   2641      7.76     <.0001     0.05   *** 

b4           -3.4801     1.0181   2641     -3.42     0.0006     0.05   *** 

b5          0.000910   0.002027   2641      0.45     0.6534     0.05 

b6          -0.00859   0.005018   2641     -1.71     0.0871     0.05   * 

b7           -1.0455     0.4403   2641     -2.37     0.0176     0.05   ** 

*/ 

  

It is worth mentioning that Fractional Logit model can be easily transformed to Weighted Logistic regression with 

binary outcomes (shown below), which would yield almost identical parameter estimates and statistical inferences. As 

a result, most model development techniques and statistical diagnostics used in Logistic regression can also be 

applicable to Fractional Logit model.  

data deve; 

  set data.deve (in = a) data.deve (in = b); 

  if a then do; 

    y2 = 1; 

    wt = y; 

  end; 

  if b then do; 

    y2 = 0; 

    wt = 1 - y; 

  end; 

run; 

 

proc logistic data = deve desc; 
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  model y2 = x1 - x7; 

  weight wt; 

run; 

/* 

                             Intercept 

              Intercept            and 

Criterion          Only     Covariates 

AIC            1622.697       1499.668 

SC             1628.804       1548.523 

-2 Log L       1620.697       1483.668 

 

             Analysis of Maximum Likelihood Estimates 

                               Standard          Wald 

Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 

Intercept     1     -7.3469      0.7437       97.6017        <.0001 

x1            1     -0.0581      0.0603        0.9276        0.3355 

x2            1      0.8478      0.3276        6.6991        0.0096 

x3            1      0.3996      0.0515       60.1804        <.0001 

x4            1     -3.4794      1.0180       11.6819        0.0006 

x5            1    0.000910     0.00203        0.2017        0.6533 

x6            1    -0.00859     0.00502        2.9288        0.0870 

x7            1     -1.0455      0.4403        5.6386        0.0176 

*/ 

  

 

Two-Part Composite Models 

In the p elimina y data analysis, it’s been shown that ~75% businesses in the study carried no debt at all. Therefore, 

it might be appealing to employ zero-inflated fractional models, a Logit model separating zero outcomes from positive 

proportional outcomes and then a subsequent sub-model governing all values in the interval (0, 1) conditional on 

nonzero outcomes. A general form of the conditional mean for zero-inflated fractional models can be represented by 

 ( | )   ( |     )    (   | )   ( |    (   ))    (  (   )| ) 

   ( | )   ( |    (   ))    (  (   )| ) 

In this paper, Beta and Simplex model would be used to analyze nonzero proportional outcomes. From the 

interpretation standpoint, two-part models could imply that the financial leverage of a business might be a two-stage 

decision process. First of all, the business should decide if it is going to take the debt or not. Given the condition that 

the business would take the debt, then it should further decide how much to borrow.  

 

1. Beta Model 

Beta regression is a flexible modeling technique based upon the two-parameter beta distribution and can be 

employed to model any dependent variable that is continuous and bounded by two known endpoints, e.g. 0 and 1 in 

our context. Assumed that Y follows a standard beta distribution defined in the interval (0, 1) with two shape 

parameters ω and τ, the density function can be specified as 
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 ( )       
(   )

(     ( )       ( ))
⁄       (   )    

In the above function, while ω is pulling the density toward 0, τ is pulling the density toward 1. Without the loss of 

generality, ω and τ can be re-parameterized and translated into two other parameters, namely location parameter µ 

and dispersion parameter φ such that ω = µ × φ and τ = φ × (1 – µ), where µ is the expected mean and φ governs 

the variance such that  

   
  (   )

(   )⁄  

Within the framework of GLM (generalized linear models), µ and φ can be modeled separately with a location sub-

model for µ and the other dispersion sub-model for φ using two different or identical sets of covariates X and Z. Since 

the expected mean µ is bounded by 0 and 1, a natural choice of the link function for location sub-model is Logit 

function such that LOG [µ / (1 – µ)] = X`β. With the strictly positive nature of φ, Log function seems appropriate to 

serve our purpose such that LOG (φ) = Z`γ. 

SAS does not provide an out-of-box procedure to estimate the two-parameter Beta model formulated as above. While 

GLIMMIX procedure is claimed to accommodate Beta modeling, it can only estimate a simple-form model without the 

dispersion sub-model. However, with the probability function of Beta distribution, it is straightforward to estimate the 

Beta model with NLMIXED procedure by explicitly specifying the log likelihood function as below. 

ods output parameterestimates = _parm1; 

proc nlmixed data = data.deve tech = trureg maxiter = 500; 

  parms a0 = 0  a1 = 0  a2 = 0  a3 = 0  a4 = 0  a5 = 0  a6 = 0  a7 = 0 

        b0 = 0  b1 = 0  b2 = 0  b3 = 0  b4 = 0  b5 = 0  b6 = 0  b7 = 0 

        c0 = 1; 

  xa = a0 + a1 * x1 + a2 * x2 + a3 * x3 + a4 * x4 + a5 * x5 + a6 * x6 + a7 * x7; 

  xb = b0 + b1 * x1 + b2 * x2 + b3 * x3 + b4 * x4 + b5 * x5 + b6 * x6 + b7 * x7; 

  mu_xa = 1 / (1 + exp(-xa)); 

  mu_xb = 1 / (1 + exp(-xb)); 

  phi = exp(c0); 

  w = mu_xb * phi; 

  t = (1 - mu_xb) * phi; 

  if y = 0 then lh = 1 - mu_xa; 

  else lh = mu_xa * (gamma(w + t) / (gamma(w) * gamma(t)) * (y ** (w - 1)) * ((1 - y) ** (t - 1))); 

  ll = log(lh); 

  model y ~ general(ll); 

run; 

 

proc sql noprint; 

  select parameter||" = "||compress(put(estimate, 18.4), ' ') 

  into :parm1 separated by ' ' from _parm1; 

quit; 

 

proc nlmixed data = data.deve tech = trureg; 

  parms &parm1  c1 = 0  c2 = 0  c3 = 0  c4 = 0  c5 = 0  c6 = 0  c7 = 0; 

  xa = a0 + a1 * x1 + a2 * x2 + a3 * x3 + a4 * x4 + a5 * x5 + a6 * x6 + a7 * x7; 

  xb = b0 + b1 * x1 + b2 * x2 + b3 * x3 + b4 * x4 + b5 * x5 + b6 * x6 + b7 * x7; 

  xc = c0 + c1 * x1 + c2 * x2 + c3 * x3 + c4 * x4 + c5 * x5 + c6 * x6 + c7 * x7; 

  mu_xa = 1 / (1 + exp(-xa)); 

  mu_xb = 1 / (1 + exp(-xb)); 

  phi = exp(xc); 

  w = mu_xb * phi; 
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  t = (1 - mu_xb) * phi; 

  if y = 0 then lh = 1 - mu_xa; 

  else lh = mu_xa * (gamma(w + t) / (gamma(w) * gamma(t)) * (y ** (w - 1)) * ((1 - y) ** (t - 1))); 

  ll = log(lh); 

  model y ~ general(ll); 

run; 

/* 

             Fit Statistics 

-2 Log Likelihood                 2131.2 

AIC (smaller is better)           2179.2 

AICC (smaller is better)          2179.7 

BIC (smaller is better)           2320.3 

 

                        Parameter Estimates 

                       Standard 

Parameter   Estimate      Error     DF   t Value   Pr > |t|    Alpha 

a0           -9.5003     0.5590   2641    -17.00     <.0001     0.05   *** 

a1          -0.03997    0.03456   2641     -1.16     0.2476     0.05 

a2            1.5725     0.2360   2641      6.66     <.0001     0.05   *** 

a3            0.6185    0.03921   2641     15.77     <.0001     0.05   *** 

a4           -2.2842     0.6445   2641     -3.54     0.0004     0.05   *** 

a5          -0.00087   0.001656   2641     -0.52     0.6010     0.05 

a6          -0.00530   0.003460   2641     -1.53     0.1256     0.05 

a7           -1.5349     0.3096   2641     -4.96     <.0001     0.05   *** 

b0            1.6136     0.4473   2641      3.61     0.0003     0.05   *** 

b1          -0.02592    0.03277   2641     -0.79     0.4290     0.05 

b2           -0.3756     0.1781   2641     -2.11     0.0351     0.05   ** 

b3           -0.1139    0.03017   2641     -3.77     0.0002     0.05   *** 

b4           -2.7927     0.5133   2641     -5.44     <.0001     0.05   *** 

b5          0.003064   0.001527   2641      2.01     0.0448     0.05   ** 

b6          -0.00439   0.002475   2641     -1.77     0.0764     0.05   * 

b7            0.2253     0.2434   2641      0.93     0.3548     0.05 

c0           -0.2832     0.5877   2641     -0.48     0.6300     0.05 

c1          -0.00171    0.04219   2641     -0.04     0.9678     0.05 

c2            0.6073     0.2311   2641      2.63     0.0086     0.05   *** 

c3           0.07857    0.03988   2641      1.97     0.0489     0.05   ** 

c4            2.2920     0.7207   2641      3.18     0.0015     0.05   *** 

c5          -0.00435   0.001643   2641     -2.65     0.0081     0.05   *** 

c6          0.001714   0.003388   2641      0.51     0.6130     0.05 

c7          -0.09279     0.3357   2641     -0.28     0.7823     0.05 

*/ 

 

As shown above, since there are three sets of parameters to be estimated in the zero-inflated Beta model, it is a good 

practice to start with a simpler form assuming that the dispersion parameter φ is a constant and estimating two sets 

of parameters for mean models first, which works very well empirically.  

 

2. Simplex Model 

The last one introduced, which is called Simplex model, might be a “ne  kid in town” for most of statisticians and can 

be considered a special case of dispersion models (Jorgensen, 1997). Within the framework of dispersion models, 

Song (Song, 2009) showed that the probability function of any dispersion model can represented by a general form  

 ( )  {        ( )}        {  
    ⁄   ( )} 
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The variance function V(Y) and the deviance function D(Y) varies by distributional assumptions. For the Simplex 

distribution,  

 ( )     (   )  

 ( )  
(   ) 

  (   )     (   ) 
⁄  

Similar to the Beta model, a simplex model also consists of two components, a sub-model estimating the expected 

mean µ and the other describing the pattern of a dispersion parameter σ. Since 0 < µ < 1, Logit link function can be 

used to specify the relationship between the expected mean µ and covariates X such that LOG [µ / (1 – µ)] = X`β. 

Also because of the strict positivity of σ
2
, the sub-model for dispersion parameter σ can be formulated as LOG (σ

2
) = 

Z`γ.  

Currently, there is no out-of-box procedure in SAS to estimate the Simplex model. The probability function needs to 

be specified explicitly with NLMIXED procedure in order to estimate a Simplex model as given below.  

ods output parameterestimates = _parm1; 

proc nlmixed data = data.deve tech = trureg; 

  parms a0 = 0  a1 = 0  a2 = 0  a3 = 0  a4 = 0  a5 = 0  a6 = 0  a7 = 0; 

  xa = a0 + a1 * x1 + a2 * x2 + a3 * x3 + a4 * x4 + a5 * x5 + a6 * x6 + a7 * x7; 

  mu_xa = 1 / (1 + exp(-xa)); 

  if y = 0 then y2 = 0; 

  else y2 = 1; 

  lh = (mu_xa ** y2) * ((1 - mu_xa) ** (1 - y2)); 

  ll = log(lh); 

  model y ~ general(ll); 

run; 

 

proc sql noprint; 

  select parameter||" = "||compress(put(estimate, 18.4), ' ') 

  into :parm1 separated by ' ' from _parm1; 

quit; 

 

ods output parameterestimates = _parm2; 

proc nlmixed data = data.deve tech = trureg; 

  parms &parm1  b0 = 0  b1 = 0  b2 = 0  b3 = 0  b4 = 0  b5 = 0  b6 = 0  b7 = 0  c0 = 4; 

  xa = a0 + a1 * x1 + a2 * x2 + a3 * x3 + a4 * x4 + a5 * x5 + a6 * x6 + a7 * x7; 

  xb = b0 + b1 * x1 + b2 * x2 + b3 * x3 + b4 * x4 + b5 * x5 + b6 * x6 + b7 * x7; 

  mu_xa = 1 / (1 + exp(-xa)); 

  mu_xb = 1 / (1 + exp(-xb)); 

  s2 = exp(c0); 

  if y = 0 then do; 

    lh = 1 - mu_xa; 

    ll = log(lh); 

  end; 

  else do; 

    d = ((y - mu_xb) ** 2) / (y * (1 - y) * mu_xb ** 2 * (1 - mu_xb) ** 2); 

    v = (y * (1 - y)) ** 3; 

    lh = mu_xa * (2 * constant('pi') * s2 * v) ** (-0.5) * exp(-(2 * s2) ** (-1) * d); 

    ll = log(lh); 

  end; 

  model y ~ general(ll); 

run; 

 

proc sql noprint; 

  select parameter||" = "||compress(put(estimate, 18.4), ' ') 

  into :parm2 separated by ' ' from _parm2; 
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quit; 

 

proc nlmixed data = data.deve tech = trureg; 

  parms &parm2  c1 = 0  c2 = 0  c3 = 0  c4 = 0  c5 = 0  c6 = 0  c7 = 0; 

  xa = a0 + a1 * x1 + a2 * x2 + a3 * x3 + a4 * x4 + a5 * x5 + a6 * x6 + a7 * x7; 

  xb = b0 + b1 * x1 + b2 * x2 + b3 * x3 + b4 * x4 + b5 * x5 + b6 * x6 + b7 * x7; 

  xc = c0 + c1 * x1 + c2 * x2 + c3 * x3 + c4 * x4 + c5 * x5 + c6 * x6 + c7 * x7; 

  mu_xa = 1 / (1 + exp(-xa)); 

  mu_xb = 1 / (1 + exp(-xb)); 

  s2 = exp(xc); 

  if y = 0 then do; 

    lh = 1 - mu_xa; 

    ll = log(lh); 

  end; 

  else do; 

    d = ((y - mu_xb) ** 2) / (y * (1 - y) * mu_xb ** 2 * (1 - mu_xb) ** 2); 

    v = (y * (1 - y)) ** 3; 

    lh = mu_xa * (2 * constant('pi') * s2 * v) ** (-0.5) * exp(-(2 * s2) ** (-1) * d); 

    ll = log(lh); 

  end; 

  model y ~ general(ll); 

run; 

/* 

             Fit Statistics 

-2 Log Likelihood                 2672.1 

AIC (smaller is better)           2720.1 

AICC (smaller is better)          2720.5 

BIC (smaller is better)           2861.1 

 

                        Parameter Estimates 

                       Standard 

Parameter   Estimate      Error     DF   t Value   Pr > |t|    Alpha 

a0           -9.5003     0.5590   2641    -17.00     <.0001     0.05   *** 

a1          -0.03997    0.03456   2641     -1.16     0.2476     0.05 

a2            1.5725     0.2360   2641      6.66     <.0001     0.05   *** 

a3            0.6185    0.03921   2641     15.77     <.0001     0.05   *** 

a4           -2.2842     0.6445   2641     -3.54     0.0004     0.05   *** 

a5          -0.00087   0.001656   2641     -0.52     0.6010     0.05 

a6          -0.00530   0.003460   2641     -1.53     0.1256     0.05 

a7           -1.5349     0.3096   2641     -4.96     <.0001     0.05   *** 

b0           -0.5412     0.4689   2641     -1.15     0.2485     0.05 

b1           0.03485    0.02576   2641      1.35     0.1763     0.05 

b2           -1.3480     0.2006   2641     -6.72     <.0001     0.05   *** 

b3           0.01708    0.03098   2641      0.55     0.5814     0.05 

b4           -2.0596     0.5731   2641     -3.59     0.0003     0.05   *** 

b5          0.004635   0.001683   2641      2.75     0.0059     0.05   *** 

b6          -0.00006   0.002652   2641     -0.02     0.9818     0.05 

b7            0.7973     0.2945   2641      2.71     0.0068     0.05   *** 

c0            9.9250     0.5582   2641     17.78     <.0001     0.05   *** 

c1           -0.1034    0.04846   2641     -2.13     0.0329     0.05   ** 

c2            1.6217     0.2960   2641      5.48     <.0001     0.05   *** 

c3           -0.4550    0.03652   2641    -12.46     <.0001     0.05   *** 

c4           -4.1401     0.8523   2641     -4.86     <.0001     0.05   *** 

c5          0.007653   0.002079   2641      3.68     0.0002     0.05   *** 

c6          -0.00742   0.003526   2641     -2.11     0.0354     0.05   ** 

c7           -0.6699     0.4484   2641     -1.49     0.1353     0.05 

*/ 
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Model Evaluations 

In previous sections, five models for proportional outcomes have been demonstrated with the financial leverage data. 

Upon the completion of model estimation, it is often of interests to check parameter estimates if they make both 

statistical and business senses. Since model effects of attributes and prediction accuracies are mainly determined by 

mean models, we would focus on parameter estimates of mean models only.  

Table 5, Parameter Estimates of Five Models (mean models only) 

 

In table 5, all estimates with p-values lower than 0.01 are highlighted. It is shown that the negative relationship 

between X4 (profitability) and the financial leverage is significant and consistent across all five models. It is interesting 

to notice that both X2 (collateral) and X3 (size) have consistent and significant positive impacts on the financial 

leverage in all 1-piece models. However, the story differs in 2-part models. For instance, in the ZI (zero-inflated) Beta 

model, while large-size firms might be more likely to borrow, there is however a negative relationship between the 

size of a business and the leverage ratio given a decision made to raise the debt. Similarly in the ZI Simplex model, 

although the business with a greater percent of collateral might be more likely to raise the debt, a significant negative 

relationship is observed between the collateral percent and the leverage ratio conditional on the decision of borrowing. 

These are all interesting observations worth further investigations.  

To compare multiple models with different distributional assumptions, academic statisticians might prefer to use 

likelihood-based approaches such as Vuong or nonparametric Clarke test (Clarke, 2007). However, from a practical 

perspective, it might be more intuitive to use the empirical measures such as Information Value or R
2
 calculated from 

the separate hold-out data sample, as shown below. 

Table 6, Model Performances 

 

Tobit NLS Fractional Logit Beta Simplex

β0 -2.2379 -7.4915 -7.3471 -9.5002 1.6136 -0.5412

β1 -0.0131 -0.0465 -0.0578 -0.0399 -0.0259 0.0349

β2 0.4974 0.8447 0.8475 1.5724 -0.3756 -1.3480

β3 0.1415 0.4098 0.3996 0.6184 -0.1139 0.0171

β4 -0.6824 -3.3437 -3.4783 -2.2838 -2.7927 -2.0596

β5 -0.0001 0.0010 0.0009 -0.0009 0.0031 0.0046

β6 -0.0008 -0.0091 -0.0086 -0.0053 -0.0044 -0.0001

β7 -0.6039 -1.1170 -1.0455 -1.5347 0.2253 0.7973

Prameter 

Estimates

1-Piece  Model 2-Part Models

Measures Tobit NLS Fractional ZI Beta ZI Simplex

R2 0.0896 0.0957 0.0965 0.1075 0.0868

Info. Value 0.7370 0.8241 0.8678 0.8551 0.7672

Model Performance on Hold-out Sample
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It is clear that ZI Beta yields the best performance in terms of R
2
, followed by Fractional Logit model. Moreover, the 2-

part nature of ZI Beta model might be able to provider more intriguing insights for further discussions. However, due 

to the difficult implementation, applying ZI Beta model to real-world problems might present more troubles than 

benefits for many practitioners. Therefore, Fractional Logit model might be often preferred in reality for the sake of 

simplicity.  

 

Conclusion 

In this paper, five different modeling strategies for proportional outcomes in the [0, 1] interval have been surveyed. An 

example in financial leverage has been used to illustrate implementations of various models in SAS. In real-world 

business problems, it is highly recommended that practitioners should start with Fractional Logit model due to simple 

implementations and liberal assumptions and then might look for further improvements from more complex models 

such as ZI Beta model.  
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