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ABSTRACT 

The main purpose of this study is to provide guidelines on how to consider mixture distributions for operational risk 

severity distribution modeling, with an emphasis on truncated loss data. Mixture model probability distribution function 

for truncated operational loss data is introduced and we presented our findings for empirical tests to estimate 

distribution parameters. However, this study does not intend to advocate or to propose adopting mixture forms 

without exploring other alternatives, but rather highlights the flexibility of the mixture models and present examples 

where it can serve better for some specific cases.  
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INTRODUCTION 

Mixture distributions can be used to model processes with samples as identified or suspected to contain a number of 

sub-populations. Application of finite mixture densities is most convincing for circumstances where the existence of 

subpopulations is strongly implied by the nature of the process. 

In financial risk modeling, this can be observed due to either heterogeneous or non-stationary processes. In 

operational risk management, this can arise due to different factors, such as cross-sectional variation in financial 

institutions‟ risk profiles within external data (industry / consortium data) or time-variant risk factors affecting 

institution‟s own risk profile within internal loss data. In this study we discuss mixture distributions in general and 

possible applications in operational risk modeling as an alternative flexible distributional form to capture non-unimodal 

circumstances.  

The main purpose of this study is to provide guidelines on how to consider mixture distributions for operational risk 

modeling, with an emphasis on truncated loss data. However, this study does not intend to advocate or to propose 

adopting mixture forms without exploring other alternatives, but rather highlights the flexibility of the mixture models 

and present examples where it can serve better for some specific cases. 

FINITE MIXTURE DISTRIBUTIONS IN GENERAL 

DEFINITION 

As a simple definition, a mixture distribution is a combination of multiple distributions in a single functional form. In 

other words, a mixture distribution is a weighted combination of other known distributional forms. This allows for a 

great flexibility in statistical modeling to accommodate different multimodal shapes and allows finite mixtures applied 

to very different frameworks.  

These building blocks are usually called as „component distribution‟ of the mixture model.  The number of 

components in a mixture form needs to be estimated or specified, and we have little theoretical guidance on this. As 

an example, the density function for mixture model with only two components is defined as: 
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   ( )            ( )     ( )  (   )   ( ) 

where  ( )      ( ) are the density functions for each component distribution. The probability weights are simply 

uniform functions and equal to w and (1-w) respectively. These probabilities are simply called as 'mixture proportion' 

or 'mixture weight'. 

These component distributions can be from the same or different distributional families. If the component distributions 

are from the same family, the mixture is called homogeneous. In most applications, the components are assumed to 

take same form and homogeneous mixtures are more commonly used (Everitt (1996)). 

FLEXIBILITY OF MIXTURE DISTRIBUTIONS 

Very often, the rationale of adopting a mixture model is the presence of possible sub-populations. Finite mixture 

distributions have many applications where the purpose is identifying and eliciting the characteristics of the 

heterogeneous subgroups. (Gardiner et al, (2012)) 

Finite mixture model provides a natural representation of heterogeneity in a finite number processes. Therefore, finite 

mixture models appeared to be useful where categorization is not feasible due to heterogeneity in the population. 

Such distributions provide an extremely flexible method of modeling unknown and multimodal distributional shapes 

which apparently cannot be accommodated by a single distribution.  

Component distributions represent local area of support of the true distribution which may reflect the behavior of 

underlying process, belonging to a different state such as different regime or risk management profile. Therefore, the 

application of finite mixture models is most convincing in situations where the existence of separate groups of 

observations with differing distributions is strongly implied by the nature of the application. 

MIXTURE DISTRIBUTIONS IN RISK MODELING 

If the process is homogeneous and stationary (time invariant parameters and distributions) throughout the estimation 

period, i.e. underlying process does not change when shifted in time or space; then the historical data will exhibit 

desired statistical features for financial modeling. Otherwise various statistical issues will arise such as non-

stationary, heterogeneity which should be accommodated properly for a robust model.  

Obviously, mixture models are adopted by financial risk discipline within different modeling frameworks to 

accommodate these. As an example, the underlying process is usually a function of various risk factors such as 

macroeconomic environment, market conditions, current business profile, risk controls in place etc. Therefore the 

underlying process can exhibit an inherited time variant characteristics such as regime shift behavior due to factors 

such macroeconomic environment, risk profile and controls etc. Similarly, the data can exhibit cross-sectional 

heterogeneity. In financial risk this can arise due to heterogeneity across firm specific factors. D  

For the cases discussed above, a mixture model can accommodate the historically observed data in that sense and 

offers a flexible solution for different distributional forms. Therefore it has been adopted in practice and provides an 

intuitive interpretation  

APPLICATIONS OF MIXTURE DISTRIBUTIONS 

Due to their flexibility, mixture models have been increasingly exploited as a convenient, semi-parametric way in 

which to model different distributional forms (McLachlan and Peel (2000)).  

For example, Baixauli and Alvarez (2010) consider mixture models in credit risk context, specifically to model the 

market implied recovery rates for credit VaR, due to market implied recovery rates exhibiting local modes. 

As Alexander (2008) explained, mixture distributions also have an intuitive interpretation in market risk context when 

financial markets display regime-specific behavior.  

Similarly, Giacomini, Gottschling, Haefkec and White (2007) adopted mixture distributions models to forecast U.S. 

inflation heavier tails. Using mixture of t-distributions forecasts were more accurate, out-of-sample, than forecasts 

obtained using normal or standard t-distributions. 
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OPERATIONAL RISK MODELING AND MIXTURE MODEL 

LOSS DISTRIBUTION APPROACH (LDA) IN OPERATIONAL RISK MODELING 

Distributional assumptions underpin the most, if not all, operational risk modeling approaches in general. A typical 

LDA based approach was described by Frachot et al (2001), Aue and M. Kalkbrener (2006) and Uner (2008). In LDA, 

operational loss data is classified into segments with common operational risk causes, called unit of measure's 

(UoMs). For each unit of measure, an annual loss distribution is modeled first. For that purpose, the frequency and 

severity distributions are estimated separately and simply aggregated via a convolution process. Assuming that 

homogeneous unit of measures are specified so that losses are driven by common operational loss processes, 

historical data is used to calibrate the parameters for the frequency and severity distributions. These parameters 

together with specified distributions represent future potential losses. This way an institution can generate an annual 

loss distribution to estimate capital charge.  

NON-STATIONARY AND HETEROGENEITY 

A critical assumption here is that the underlying process is stationary and homogeneous.  

Fitting a single distribution form also assumes the underlying loss process is stationary and homogeneous. However 

there can be deviations from these assumptions and the data can exhibit multimodality, due to non-stationary process 

and/or heterogeneous processes. 

The presence of multimodality for internal or external loss data can be suggestive of more than one underlying loss 

generating process, either due to different regimes and/or different sub-group of banks. Mixture models' tractability for 

modeling subpopulations and flexibility enough to describe unknown and multimodal distributional shapes, which 

apparently cannot be modeled by single distribution, suggest them to be popular solution for this. 

As Everitt (1996) suggested, mixture models are most often used in one or other of the following contexts 

 Distribution to be modeled is known or consists of well-defined subpopulations but the individual class 

memberships are unobservable. 

 Or populations are suspected to have subpopulations and mixture models are used to explore this.  

There can be various reasons which will reveal non-stationary historical loss experience especially for internal data. 

For the underlying latent process, ie loss generating process, many different factors play role both for frequency and 

severity distributions, some of them being time variant in nature.  

Nonetheless to say, the underlying factors change over the years. For example, the risk systems and controls in 

place are much more effective compared to earlier periods when operational risk management was a new practice for 

banks. So, the assumption of time invariant underlying process and risk factors may need to be relaxed because the 

underlying process can exhibit an inherited time variant characteristics. 

As explained before, this regime shift behavior can be due to change in risk management practices, risk 

characteristics and/or macroeconomic environment. So, time variant risk factors may be a reason to suspect 

subpopulations with different parameters as different regimes, due to change in macroeconomic environment, risk 

controls or other unobservable factors.  

In operational risk, subpopulations can also arise due to heterogeneity, especially for industry data. As suggested by 

Figini (2007), external data can exhibit a possible heterogeneity. 

Two examples of increasing weights are provided in the charts below for demonstration. This way by weights 

adjusting to change, mixture models can also help to attain stability in parameter estimates and distributional forms, 

which is a challenge with single distributions. 
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Figure 1: Examples of increasing component weight. 

  

MIXTURE MODEL PROBABILITY DENSITY FUNCTION FOR TRUNCATED DATA 

In this section, we intend to provide guideline for mixture distributions in operational risk practice, with a focus on 

truncated loss data. For this purpose, we present unconditional density function for mixture distribution and derive the 

conditional density function to estimate true parameters for the mixture distribution from a truncated data.  

We consider hypothetical data to conduct empirical tests. For this, we perform empirical tests, present results for 

mixture model form recovering true parameters from a truncated sample or samples. For simplification, we 

demonstrate the two distributions example here. 

Assume    ( )        ( ) are the density functions for each component with corresponding parameters. Also 

assume that the probability of being generated from one component versus the other one, i.e. weight, is defined 

uniformly so that an observed sample will have the weights w and 1-w for the two components. 

So the mixture distribution    (  ) has a probability density function (pdf) defined as; 

   (  )           ( )   (    )   ( )   (    )   ( ) 

The mixture weights are referred as prior probability weights, i.e. unconditional weights. 

In operational risk management, the observed historical loss data is usually truncated. The truncation will actually 

make the components to be truncated and the weights for the sample to be conditional weights.  

The conditional pdf for the mixture model is provided below (we will refer this as Mixture Form).  

Mixture Form 

 ( )

   (         )
 

 (    )   ( )   (    )   ( )

  [ (    )   (         )   (    )   (         )]
    

 

This conditional pdf will recover the unconditional (true) parameters for the mixture model using a truncated sample. 

By fitting this above to a truncated (conditional) loss data, we simply recover the parameters for the unconditional 

distribution. 



5 

 

Here, we show Log-Normal Mixture distribution Maximum Likelihood Estimation (MLE) fitting routine using 

SAS/PROC NLMIXED. Other component distributions can be easily defined for pdf and CDF functions. 

 

* Distribution Fitting; 

proc NLMIXED data=Input_Data  maxit = 1000 maxfu = 10000 tech = tr; 

      

parms  

param_1=&Param_1_init,  param_2=&Param_2_init, 

param_3=&Param_3_init,   

param_4=&Param_4_init, param_5=&Param_5_init;     

 

bounds  

param_1 >= &Epsilon , param_2 >= &Epsilon,  

Param_3 >= &Epsilon, Param_3 <= 1,   

Param_4 >= &Epsilon,  Param_5 >= &Epsilon; 

 

 /*pdf for LogNormal Mixture Dist */ 

 pdf_LNMix =  (1-Param_3) *pdf("LOGNORMAL", &AMOUNT, Param_1, Param_2)   

  + Param_3  *pdf("LOGNORMAL", &AMOUNT, Param_4, Param_5); 

  

/*CDF for LogNormal Mixture Dist */ 

 CDF_LNMix = (1-Param_3)*cdf("LOGNORMAL",THRESHOLD, Param_1, Param_2)   

  + Param_3 *cdf("LOGNORMAL",THRESHOLD, Param_4,Param_5); 

 

 logf = log(pdf_LNMix) - log(1-CDF_LNMix) ; 

  

model &AMOUNT ~ General (logf); 

 ods output ParameterEstimates = Distribution_Fitting; 

run; 

Now we can derive this conditional density function for the mixture distribution. 

For a truncated (i.e. conditional) sample with given threshold for the component distributions are represented as; 

 ( )

   (         )
 

And  

 ( )

   (         )
 

Also for the truncated sample, the weights for components are actually conditional weights.  

Conditional weights are represented as 

     (        )  and   (        ) 

These are posterior probability weights, ie conditional weights. 

So the conditional density function for mixture distribution can be represented as; 

 ( )

   (         )
  (        )  

 ( )

   (         )
  (        )  

 ( )

   (         )
 

The conditional weights  (        ) can be represented in terms of unconditional weight   (    ) as below. 
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and  

  (                )  
 (                   )

  (           )
 
 (   )     (           )

  (           )

 
 (    )[   (         )]

  [ (    )   (          )   (    )   (         )]
 

  

By substituting these weights, we derive Mixture form 

 ( )

   (         )
 

 (    )   ( )   (    )   ( )

  [ (    )   (         )   (    )   (         )]
    

Or with conditional weights, we have the equation below to estimate unconditional (true) parameters and weights for 

the mixture model using truncated sample; 

 ( )

   (         )
  (        )  

 ( )

   (         )
  (        )  

 ( )

   (         )
 

 

EMPIRICAL TESTS TO ESTIMATE PARAMETERS 

EMPIRICAL TEST SET-UP 

In this section, we conduct a few empirical tests to demonstrate how to specify the density function to estimate 

unconditional true parameters using Mixture Form 1.  

We first generate samples with size of N=10,000 from few examples of mixture distribution with given component 

weights and parameters. We then truncate the samples at different thresholds to test truncated data that represents a 

more realistic operational loss case. We then test to recover true parameters by fitting Mixture Form 1 and Mixture 

Form 2. 

We describe our test set-up before we move on to discuss the results. 

Distribution Types:  

For testing purpose we consider different mixture models consisting of, both from the same and different distribution 

families. We generally consider distributions which are commonly used in operational risk context to represent more 

realistic examples of loss severity distributions. 

As an example we use  

1. Exponential & Log-Normal mixture 

2. Log-Normal & Log-Normal mixture 

3. Weibull & Weibull mixture distributions.  

The test can easily be extended to other mixture distributions. 
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Parameters: 

For the mixture distributions above, we define their corresponding mixture weights and component parameters i.e. 

shape and scale parameters. We specified these values to have more realistic examples of mixture forms. We 

achieve this first by representing a severity loss range which resembles an actual loss amount, i.e. high skewness 

and heavy tailedness and secondly by having bimodal forms that exhibits more than one loss generating processes 

which demand a mixture model treatment.  

Threshold:  

Operational loss data is usually a truncated sample. In addition to no threshold case (ie 0), we also tested different 

thresholds. 

Estimation method:  

For simplicity, we use Maximum Likelihood Method
1
 (MLE) to estimate parameters. Due to its simplicity and easy 

implementation, MLE serve well for our purpose to compare different functional forms. Even though our goal is not to 

compare performance of different methods, we also consider alternatives such as cross entropy (CE).   

EMPIRICAL TEST RESULTS 

CASE 1: EXPONENTIAL & LOG-NORMAL MIXTURE DISTRIBUTION 

We generated a sample from Exponential & Log-Normal mixture distribution with 60% and 40% weights respectively 

and specified the parameters below. We defined weight and the parameters so that the sample represents bimodal 

form as shown in the histogram below for the sample. 

 

Figure 2: Exponential Log-Normal Mixture distribution probability density 

Based on the parameters, Exponential and Log-Normal distributions contribute to different regions of the loss 

distribution domain. Exponential distribution mainly represents less severe loss amounts and Log-Normal distribution 

concentrates losses around $150K and contributes more at higher quantiles compared to Exponential. 

                                                           
1
 Shortcoming in Maximum Likelihood estimation is not the scope of this paper. 
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Table 1: Exponential and Log-Normal Components 

Since operational loss data is generally truncated, we considered different truncated samples. As shown below, since 

Log-Normal mainly contributes to more severe losses, increasing thresholds results in higher representation of Log-

Normal (2nd component) in the truncated sample.  

 

Table 2: Exponential Log-Normal Mixture Truncated Samples 

We tested to recover true parameters by fitting Mixture Form. Mixture Form should recover the true parameters 

including unconditional weight. As expected, Mixture Form recovers the true parameters.  

 

Table 3: Exponential Log-Normal Mixture Parameter Estimation 

Table 4 compares the recovered parameters to original values and provides absolute percentage errors. Mixture 

Form performs pretty well with percentage absolute errors in the range of 0%-1%.  

Min Qu.10% Qu.20% Qu.50% Mean Qu.75% Qu.80% Qu.90% Max

Mixture 9             3,571     8,078     35,606   77,476   157,569  162,503  174,833  238,239  

Exponential 9              1,955      4,378      13,935    20,030    27,348     32,185     46,275     183,689   

LogNormal 114,238 142,691 149,242 162,477 163,646 174,813  178,002  186,082  238,239   

Threshold N1 N2 1-w2 (cond) w2 (cond)

0 6000 4000 60% 40%

1000 5693 4000 59% 41%

2000 5390 4000 57% 43%

3000 5158 4000 56% 44%

5000 4662 4000 54% 46%

10000 3659 4000 48% 52%

Param 1 w2 Scale 2 Shape 2

0.000050 40.0% 12.00 0.10

Param 1 w2 Scale 2 Shape 2

0 0.000050 40.1% 12.00 0.10

1000 0.000050 40.1% 12.00 0.10

2000 0.000050 40.3% 12.00 0.10

3000 0.000050 40.1% 12.00 0.10

5000 0.000050 40.1% 12.00 0.10

10000 0.000051 39.8% 12.00 0.10

True Parameters

Parameter Estimation
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Table 4: Exponential Log-Normal Mixture Parameter Estimation % Difference 

CASE 2: LOG-NORMAL & LOG-NORMAL MIXTURE DISTRIBUTION 

As second example, we used a mixture model with component distributions from the same family with different 

parameters. We generated a sample from a Log-Normal & Log-Normal mixture distribution with 75% and 25% 

weights respectively. We defined the parameters so that the sample represents bimodal form as shown in the 

histogram for the sample below. 

 

Figure 3: Log-Normal & Log-Normal Mixtures Distribution Probability Density 

Based on the parameters, second Log-Normal distribution contributes with much more severe loss amounts and 

concentrates losses around $500K. 

Quantiles for the components and the mixture distribution is provided below. Log-Normal distribution contributes to 

higher quantiles compared to Exponential. This imposed mixture form is also evident in the histogram. 

 

 

Param 1 w2 Scale 2 Shape 2

0 1% 0% 0% 1%

1000 0% 0% 0% 1%

2000 0% 1% 0% 1%

3000 1% 0% 0% 1%

5000 0% 0% 0% 1%

10000 1% 0% 0% 1%

Parameter Estimation abs% Difference from True Values

min Qu.10% Qu.20% Qu.50% mean Qu.75% Qu.80% Qu.90% max

Mixture 206          2,600     4,317     12,512    122,851  239,457  370,916  462,997  947,948  

LogNormal 206           2,173     3,453     7,962       13,410     16,094     19,369     30,171     365,959   

LogNormal 217,963   338,735 370,766 439,225   451,174   510,365   528,297   576,567   947,948   



10 

 

Table 5: Two Log-normal components 

For the truncated samples below, increasing thresholds affects the observed (cond) weights significantly. Higher 

weight results in higher representation of second Log-Normal. For example the true weight for second Log-Normal 

was 25%, but at threshold of 10,000 the conditional weight is 45%. For this threshold of 10,000 the representation of 

components are 55% and 45% respectively compared to 75% and 25% for the original sample. 

 

Table 6: Log-Normal & Log-Normal Mixture Truncated Samples 

The results to recover parameters are provided below. As expected, Mixture Form recovers the true parameters.  

 

Table 7: Log-Normal & Log-Normal Mixture Parameter Estimation 

Table 8, compares the recovered parameters to true values and provides absolute percentage errors. Mixture form 

performs pretty well with percentage absolute errors in the range of 0%-6%. For truncated sample with higher 

thresholds, as a result of having less representation for first Log-Normal distribution due to truncation, there seems to 

be a slight increase in absolute percentage error for first Log-Normal parameters and weights especially at 10,000 

threshold.  

Threshold N1 N2 1-w2 (cond) w2 (cond)

0 7500 2500 75% 25%

1000 7333 2500 75% 25%

2000 6844 2500 73% 27%

3000 6270 2500 71% 29%

5000 5127 2500 67% 33%

10000 3091 2500 55% 45%

Scale 1 Shape 1 w2 Scale 2 Shape 2

9.00          1.00        25% 13.00      0.20          

Scale 1 Shape 1 w2 Scale 2 Shape 2

0 8.99          1.02        25% 13.00      0.20          

1000 9.00          1.01        25% 13.00      0.20          

2000 9.01          1.01        25% 13.00      0.20          

3000 8.99          1.02        25% 13.00      0.20          

5000 8.97          1.03        25% 13.00      0.20          

10000 9.21          0.94        29% 13.00      0.20          

True Parameters

Parameter Estimation
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Table 8: Log-Normal & Log-Normal Mixture Parameter Estimation % Difference 

CASE 3: WEIBULL & WEIBULL MIXTURE DISTRIBUTION 

As final example, we used a mixture model again with component distributions from the same model. This time we 

tried a Weibull & Weibull mixture distribution with equal weights of 50% but with different parameters. As before, we 

defined the parameters so that the sample represents bimodal form as much as we can. 

 

Figure 4: Weibull & Weibull Mixture Distribution Probability Density 

Based on the parameters, second Weibull skewed and exhibits a much heavier tail compared to the first one. 

Quantiles for the components and the mixture distribution is provided below. 

Scale 1 Shape 1 w2 Scale 2 Shape 2

0 0% 2% 0% 0% 1%

1000 0% 1% 0% 0% 1%

2000 0% 1% 0% 0% 1%

3000 0% 2% 0% 0% 1%

5000 0% 3% 2% 0% 1%

10000 2% 6% 15% 0% 1%

Parameter Estimation abs% Difference from True Values
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Table 9: Two Weibull Components 

For the truncated samples below, increasing thresholds eliminates observation from both components and the 

truncated samples contain the second Log-Normal more. At threshold of 10,000 the representation for first and 

second Weibull components are 28% and 72% respectively. Much less representation of first Weibull distribution at 

higher thresholds could be a challenge for fitting process to recover the parameters. 

 

Table 10: Weibull & Weibull Mixture Truncated Samples 

The results to recover parameters are provided below.  

 

Table 11: Weibull & Weibull Mixture Parameter Estimation 

Mixture Form recovers the true parameters. The challenge due to limited representation of the observations from first 

component distribution in the truncated sample does not seem to be issue. 

min Qu.10% Qu.20% Qu.50% mean Qu.75% Qu.80% Qu.90% max

Mixture 0            1,517    4,226         24,734   108,303  142,798  188,875  333,188  1,740,305  

Weibull 0             657        1,597          6,752      11,184     15,048     18,120     27,503     124,266      

Weibull 13          19,317  41,399        142,748  205,421  284,065  333,180  476,729  1,740,305   

Threshold N1 N2 1-w2 (cond) w2 (cond)

0 5000 5000 50% 50%

1000 4300 4975 46% 54%

2000 3817 4948 44% 56%

3000 3466 4917 41% 59%

5000 2924 4858 38% 62%

10000 1878 4727 28% 72%

Scale 1 Shape 1 w2 Scale 2 Shape 2

10,000  0.850     50% 200,000  0.990       

Scale 1 Shape 1 w2 Scale 2 Shape 2

0 10,223  0.832     49.8% 200,000  0.989       

1000 10,529  0.844     49.9% 199,999  0.991       

2000 10,783  0.885     51.1% 200,000  0.990       

3000 10,709  0.883     51.1% 200,000  0.990       

5000 10,265  0.847     49.5% 199,999  0.990       

10000 10,436  0.846     50.0% 199,999  0.991       

Parameter Estimation

True Parameters
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Table 12: Weibull & Weibull Mixture Parameter Estimation % Difference 

Table 12, compares the recovered parameters to true values and provides absolute percentage errors. Mixture Form 

performs pretty well with percentage absolute errors in the range of 0%-8%. For truncated samples with higher 

thresholds, as a result of having less representation for first Weibull distribution due to truncation, there seems to be a 

slight increase in absolute percentage error.  

TESTING EXTENSIONS 

In this section we consider different extensions for mixture model distribution fitting. For these extensions we used the 

Log-Normal & Log-Normal mixture model as an example, since it is a more common Mixture Form in operational risk. 

The analysis can easily be extended for other mixture distribution examples. 

As a first extension, we consider two samples of the mixture model with different thresholds, ie pooling two samples 

of a mixture distribution. This represents a mixture model assumption when both industry and bank operational data 

with different thresholds are used.  

The second example considers a false assumption, ie mixture model form is imposed for a sample which is 

generated from a single distribution. 

As a third extension, we demonstrate a Monte Carlo simulation using SAS/PROC IML. 

EXTENSION 1: TWO TRUNCATED MIXTURE SAMPLES WITH DIFFERENT THRESHOLDS. 

We consider two truncated samples of the mixture models with different thresholds. This can represent a case which 

two different collection thresholds are applied for two samples. It can be due to pooled industry and bank loss data 

with different thresholds, or due to revised collection threshold overtime for the bank's own operational loss data. 

For this example we first generated two samples, ie sample A and B, from Log-Normal & Log-Normal mixture 

distribution used in previous section with same weight ie weight for second component being 25%. We then truncated 

these two samples at different thresholds. 

Thresholds applied and the resulting weights in sample A, sample B and A+B combined are provided below. The 

conditional weights range from 30% to 40% for the A+B combined sample. 

 

Table 13: Log-Normal & Log-Normal Mixutre Conditional Weight with Two Truncations 

Mixture Form performs well to recover true parameters for component distributions. So pooling of truncated samples 

with different thresholds does not seem to impose any challenge to recover the parameters. 

Scale 1 Shape 1 w2 Scale 2 Shape 2

0 2% 2% 0% 0% 0%

1000 5% 1% 0% 0% 0%

2000 8% 4% 2% 0% 0%

3000 7% 4% 2% 0% 0%

5000 3% 0% 1% 0% 0%

10000 4% 1% 0% 0% 0%

Parameter Estimation abs% Difference from True Values

Threshold A Threshold B w2(cond) in A w2(cond) in B w2 in A+B

1000 5000 25% 32% 30%

3000 8000 29% 39% 35%

5000 10000 33% 43% 40%
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Table 14: Log-Normal & Log-Normal Mixture Parameter Estimation and % Difference with Two Truncations 

 

EXTENSION 2: FALSE MIXTURE DISTRIBUTION ASSUMPTION 

Even when there is no reason to believe that the underlying data is multimodal, a mixture model can be considered 

with the aim of testing existence of subpopulations. 

In this example, we test distribution fitting with a potential false mixture model assumption. For this purpose we 

consider a case which a mixture model form is imposed on a sample generated from a single distribution. Again we 

consider sample from the original Log-Normal & Log-Normal setting before, but the sample being generated from the 

first component only. 

Even if we had a false assumption and impose a mixture form on a sample from a single distribution, the fitting 

parameters will assign the weight to a single distribution and correct the assumption. For the recovered parameters, 

fitting performs well to recover true parameters for the distribution and assign the weight to one component only.  

Scale 1 Shape 1 w2 Scale 2 Shape 2

9.0            1.0            25% 13.0          0.20          

Scale 1 Shape 1 w2 Scale 2 Shape 2

9.00          1.02          24.7% 12.99       0.20          

8.97          1.03          24.2% 12.99       0.20          

8.90          1.06          23.0% 12.99       0.20          

Scale 1 Shape 1 w2 Scale 2 Shape 2

0% 2% 1% 0% 2%

0% 3% 3% 0% 2%

1% 6% 8% 0% 2%

Target Function1

Target Function1

True Parameters

Parameters Estimation

Parameters Estimation % Difference from True Values



15 

 

 

Table 15: Log-Normal & Log-Normal Mixture Parameter Estimation and % Difference with Two Truncations 

EXTENSION 3: MONTE CARLO CAPITAL ESTIMATION 

In this third extension, we estimate a capital estimate using Mixture Form as the true unconditional parameters. Again 

we consider fitted parameters from the Log-Normal & Log-Normal mixture model. For frequency, we consider the 

Poisson distribution as an example. 

 

Table 16: Capital Impact from the Different Log-Normal & Log-Normal Mixture Parameter Estimation 

We used SAS/IML Software for the following Monte Carlo simulation routine. 

 

* LN Mixture ; 

**************************************************************; 

START fLNMix (lambda,param); 

 

ALD=J(&N,2,0); 

call randseed(0); 

lambda1 = lambda*(1-param[,3]); 

lambda2 = lambda*(param[,3]); 

 

do i = 1 to &N; 

 call randgen(Freq_ann1,"POISSON",lambda1); 

Scale 1 Shape 1 w2 Scale 2 Shape 2

9.00          1.00          0% - -

Scale 1 Shape 1 w2 Scale 2 Shape 2

0 8.99          1.01          0.0% - -

1000 9.00          1.01          0.0% - -

2000 9.01          1.00          0.0% - -

3000 8.99          1.01          0.0% - -

5000 8.96          1.02          0.0% - -

10000 9.12          0.97          0.0% - -

Scale 1 Shape 1 w2 Scale 2 Shape 2

0 0% 1% 0% - -

1000 0% 1% 0% - -

2000 0% 0% 0% - -

3000 0% 1% 0% - -

5000 0% 2% 0% - -

10000 1% 3% 0% - -

Parameters Estimation

True Parameter

Parameters Estimation Error

Threshold Percentile 99.9%

0 64,056,938$       

1000 64,191,066$       

2000 64,245,130$       

3000 63,930,745$       

5000 62,984,025$       

10000 72,141,016$       
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  if Freq_ann1 = 0 then sev = 0; 

 else do;      

  norm=J(Freq_ann,1); 

call randgen(norm,"NORMAL",param[,1],param[,2]); 

  end; 

 sev = exp(norm)/1e6; 

 sev1=sev[+,1]; 

 

 call randgen(Freq_ann2,"POISSON",lambda2); 

  if Freq_ann2 = 0 then sev = 0; 

 else do; 

  ALD[i,1] = Freq_ann1 + Freq_ann2; 

  norm=J(Freq_ann2,1); 

 call randgen(norm,"NORMAL",param[,4],param[,5]); 

 end; 

  sev = exp(norm)/1e6; 

      ALD[i,2]=sev1+sev[+,1];     

end; 

 

Return (ALD); 

FINISH fLNMix; 

**************************************************************; 

CONCLUSION 

Application of finite mixture densities is most convincing for circumstances where the existence of subpopulations is 

strongly implied by the nature of the application. Mixture models are valuable flexible tools to accommodate these 

non-unimodal processes.  

In this study we provided guidelines on how to consider mixture distributions for operational risk modeling, with an 

emphasis on truncated loss data. We demonstrated how mixture distributions can be considered as an alternative 

flexible distributional form to capture non-uni-modal circumstances. For this purpose, we derived conditional 

probability density function; we presented results to recover true parameters from truncated data. We also considered 

three extension tests to demonstrate examples for two truncation levels, false mixture distribution assumption and 

capital simulation. 

Overall, we conclude that mixture models are useful and flexible for use in operational risk modeling. The use of 

mixture models allows flexibility for situations where the process to be modeled is known or suspected to have 

subpopulations, ie non-unimodel in nature. In operational risk, this can be observed in loss data both for internal and 

external due to possible non-stationary and heterogeneity. In these cases, a mixture model will represent the 

multimodality in operational loss data statistically better than a single distribution form can.  

However, we also suggest that mixture models should be taken with a grain of salt. The justification for adopting 

mixture distributions is critical and should be considered as a last resort due to possible over-fitting. Before 

considering a mixture form, there should be strong reason to believe in non-stationary and/or heterogeneity as 

business justification or empirical evidence showing multimodal form. Or mixture distributions should be adopted as a 

last resort after considering single distribution forms.  
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