
1

Paper BI04-2013

SAS Stored Processes on the Web - Building Blocks

Mark Roberts, Pinnacle Solutions, Indianapolis, IN

ABSTRACT
This paper explains, in a step-by-step format, the concepts, issues, techniques, and
code needed to develop a web-based application from stored processes. Running an
application on the web allows users to execute powerful SAS procedures without
knowing SAS, without having SAS on their desktop, and without a SAS license. It also
allows companies to distribute the application to many locations. If the application needs
a change, it is fixed in one place, loaded to the SAS portal, and all locations see the
corrected code at the same time. A SAS developer needs only an understanding of
stored processes, prompts, macros, a little HTML, and a little knowledge of Proc
Reports to achieve this.

The paper explains the concepts and techniques clearly via an example that runs
consistently throughout. The code used for each concept is also included. The author
put everything he learned developing his own application together in one place,
something he couldn’t find when he first started. One of his objectives for this paper is
for the audience to be able to apply the code and successfully develop their own web-
based applications with a minimum of difficulty and without spending hours searching
the web and SAS documentation.

Introduction
A BI application, running on a web server, allows scientists and laboratory personal to
run statistical analyses on data from laboratory test stands. The data is organized by lot.
The results are put into a report in the form of tables (PROC TABULATE) and graphs
(PROC GPLOT). Information about each report is put into a SQL Server ® table. A
second BI app reads this table and allows the scientists and laboratory personal to see
the results of the analyses, to add comments to the reports, and to change the status of
a report. Internal policy requires that each report be reviewed and released or rejected.
This second application, called View/Manage Reports, is the subject of this paper.

SAS program modules were developed in SAS Enterprise Guide®, converted to stored
processes, and executed in a SAS Portal. Users must enter a lot number in order to see
reports associated with that lot. A user may, depending on the authorization level, add a
comment to the report, view a report, or change the status of a report to ‘Released’ or
‘Rejected’. The data is displayed to the user, almost exclusively, using PROC REPORT.

It is assumed that readers of this paper have used SAS Enterprise Guide® to create
Stored Processes, including familiarity with prompts, that they have written macros and
used macro variables, that they have some understanding of HTML, SAS ODS, and
PROC REPORT. Tagsets are mentioned in this paper but the reader does not need to
have any understanding of them.

2

Section 1 – Overview of Application from User’s Point of View

After a statistical analysis is run and a report is produced the user wants to see the
reports and interact with them by:

 Viewing the contents of a report

 Adding a comment to a report

 Changing the status of a report from Pending to Released

 Changing the status of a report from Pending to Rejected

Figure 1. Example of Displayed List of Reports – View/Manage Main Menu

If the user selects Add Comments, they will see:

Figure 2. Add Comments Screen

The user can type in a comment and select ‘Run’. The comments are saved and the
user returns to the View/Manage Reports main menu.

3

If the user selects View Report they will see something like:

Figure 3. Example of Report

If the user decides to Release a report they would see:

Figure 4. Confirm Release Screen

If the user selects Release, the report will be set as Released, which will be reflected in
the View/Manage Reports main menu to which they will return.

If the user selects Cancel, the app will return to the View/Manage Reports main menu
and the report will not be set to Released.

This is a very simple representation of the application. It is much more complicated but
this will be sufficient to illustrate the building blocks of ‘SAS Stored Processes on the
Web’

4

Section 2 - Building Blocks

1. Redirection via Direct HTML

The Challenge-

As a web application, allow a stored process (webpage) to redirect to another stored
process (webpage).

One Solution-

The initial module that is run when a user executes the app has a prompt that
requires the user to enter one or more lot numbers. The data (list of reports) is filtered
by lot number(s). This ‘controller’ module does a number of other things, some of
which will be discussed later. Control is then passed to the main menu. The following
code, which is at the end of the ‘controller’ module, makes use of the special device
‘_webout’ which is a SAS reserved filename reference used to output directly to the
current HTML document. CARDS4 (or DATALINE4) is used because the HTML code
contains semicolons.

DATA _null_;

 format infile $char256.;

 input; infile = resolve(_infile_); file _webout;

 put infile;

 cards4;

<html>

<head>

<title>This is a webpage title</title>

<meta http-equiv="refresh" content="4;

URL=http://robvm822.us.RobLabs.com:8080/SASStoredProcess/do?_program=/Applica

tions/Stored Processes/main_menu">

<meta name="keywords" content="automatic redirection">

</head>

<body>

This message will display for, in this case, 4 seconds then the app redirects

to main_menu

</body>

</html>

;;;;

run;

Figure 5. Redirection With Hardcoding

5

The Challenge-

To gain flexibility by not hardcoding the server address and the folder path in the
HTML.

One Solution-

All configurable parameters are defined in a file, which will be addressed later. For
‘Figure 6. Redirection Without Hardcoding’, the parameters are defined in %let
statements so you can better observe the process.

%global url_string server_string server_type sp_folder_path prog_link;

%let server_string=http://robvm822.us.RobLabs.com;

%let server_type=8080/SASStoredProcess/do?_program=;

%let sp_folder_path=/Applications/Stored Processes/;

%let prog_link=main_menu;

data _null_;

 length url_string $400;

 url_string=cats("&server_string", ’&server_type’, “&sp_folder_path", "&

prog_link ");

 call symput('url_string', strip(url_string));

run;

data _null_;

 format infile $char256.;

 input;

 infile = resolve(_infile_); file _webout; put infile;

 cards4;

<html>

<head>

<title>This is a webpage title</title>

<meta http-equiv="refresh" content="2; URL=&url_string">

<meta name="keywords" content="automatic redirection">

</head>

<body>

This message will be display for, in the case, 2 seconds then the app

redirects to main_menu

</body>

</html>

;;;; run;

Figure 6. Redirection Without Hardcoding

6

The Challenge-

When the stored process for ‘Figure 6. Redirection Without Hardcoding’ is run on a
SASStoredProcess server, this error appears:

41 +

42 +* Redirect back to the main menu *;

43 +data _null_;

44 + format infile $char256.;

45 + input;

46 + infile = resolve(_infile_);

47 + file _webout;

48 + put infile;

49 + cards4;

ERROR: File is in use, _WEBOUT .

NOTE: The SAS System stopped processing this step because of errors.

--

Figure 7. Error – _WEBOUT In Use

One Solution-

One of the options when creating the stored process is ‘Include code for’. You must
deselect ‘Stored process macros’ as in the example below. If you allow the stored
process to be built with stored process macros, SAS puts code before and after your
code. This SAS-added code uses ‘_webout’ so you can’t use this device. When you
deselect ‘Stored process macros’ SAS does not put this code around your code and
you are free to use ‘_webout’.

Figure 8. Eliminate Automatic Stored Process Macros

Note: Running this Stored Process in SAS Enterprise Guide® will result in an error,
but the same Stored Process will work on the Portal. This is because SAS Enterprise
Guide® does not understand _webout. This means, of course, that you must test
your code on the SASStoredProcess server and/or the SAS Web Portal.

7

2. Redirection via User Selection

The Challenge-

Allow a user to select among several options which website to redirect to.

One Solution-

This is a completely different approach then redirection via direct HTML. You can put
links on the screen that the user selects to drive the direction of the web app. For
example, let’s present the user with this screen:

 Figure 9. Example of Displayed List of Reports

The user can select View Report to see a RTF version of the report. The user can
select Add Comment to, well, add a comment that will get appended to the report
when it is viewed.

This is accomplished with code that uses a tagset file, overwrites some ODS options,
and then manually inserts the %stpbegin and %stpend macros. You must disable
‘including the stored process macros’ when registering this code as a stored process,
as demonstrated in the previous example. If you do not disable this option, EG will
automatically insert the macros which will cause duplicates and the stored process
will fail.

The code used to display the View/Manage Reports screen is shown on the next
page. Although I would normally structure the code better, I organized it so it would fit
on one page. When the user selects Add Comment, for example, the app executes
the stored process ‘add_comments’ located at &sp_folder_path.

8

ODS PATH work.templat(update) sasuser.templat(read) sashelp.tmplmst(read);

%include 'C:\SASRoot\applications\utility\tableeditor.tpl';

ods escapechar="^";

%let _ODSDEST = tagsets.tableeditor;

%let _ODSOPTIONS= options (sort="yes" background_color="white"

 frozen_headers="yes"

 frozen_rowheaders="yes" load_msg="yes"

 load_img="c:\share\tableeditor\images\ajax-loader.gif"

 window_status='Reports' pagebreak="no" pagebreak_toggle="no");

%let _ODSSTYLE=seaside;

%stpbegin;

* Define the libname to the SQL Server Database *;

LIBNAME demo OLEDB ... ;

* Build the links *;

data work.reports_to_display;

 length View_Report $ 1000 Add_Comments $ 1000;

 set demo.reports;

 Add_Comments='^S={url="&_url?_program=&sp_folder_path.add_comments'

 || '&Report=' || strip(report_name) || ' "}Add Comment';

 View_Report='^S={url="&_url?_program=&sp_folder_path.view_report'

 || '&Report=' || strip(report_name) || ' "}View Report';

run;

* Write the data to the screen so the user can select*;

Title 'View/Manage Reports';

proc report data=work.reports_to_display split='*';

 col report_name add_comments view_report;

 define report_name / display "Report Name";

 define Add_Comments / display "Add*Comment";

 define view_report / display "View*Report";

run;

* Clear the library reference *;

libname demo clear;

%stpend;

Figure 10. Redirection via User Selection

9

3. Passing Values

The Challenge-

Since there is no ‘global’ concept in this type of app (this is, from stored process to
stored process) values need to be passed from one stored process to another stored
process. For example, in ‘Figure 10. Redirection via User Selection’, the
‘add_comments’ stored process needs to know which report to add comments to.

One Solution-

The HTML functionality of passing a parameter in a URL string is used to pass the
value when the stored process is called. In this code snippet from ‘Figure 10.
Redirection via User Selection’, you can see that the report name, contained in the
reports table as SAS variable ‘report_name’, is passed to the add_comments stored
process via “'&Report=' || strip(report_name)”:

data work.reports_to_display;

 length View_Report $ 1000 Add_Comments $ 1000;

 set demo.reports;

 Add_Comments=

 '^S={url="&_url?_program=&sp_folder_path.add_comments'

 || '&Report=' || strip(report_name) || ' "}Add Comment';

Figure 11. Passing One Parameter

In the ‘add_comments’ stored process ‘report’ can be used as if it were a macro
variable by referring to it as “&report”. It is global to the ‘add_comments’ stored
process but is not known outside ‘add_comments’ unless it is passed in the same
manner.

You can pass more than one variable at a time with this technique:

Add_Comments =

 '^S={url="&_url?_program=&sp_folder_path.add_comments'

 || '&Report=' || strip(report_name)

 || '&Lot=' || strip(lot)

 || '&Current_Status= || strip(current_status || ' "}Add Comment'

;
Figure 12. Passing More Than One Parameter

Using this code, ‘report’, ‘lot’, and ‘current_status’ in the ‘add_comments’ stored
process can be used as if they were macro variables (&report, &log, and
¤t_status).

10

4. Creating an Application Configuration File

The Challenge-

To make this app portable, values that might change should not be hardcoded. The
server name, for example, will change from development to test to production
environments.

One Solution-

Create a configuration file for this app. A SQL Server ® database table, to which all
the stored processes in the app have access, is used. Note: It would be better to read
these values from a text file instead of ‘%let’ statements as in this example:

%global server_string report_path sp_folder_path;

%let server_string=http://robvm822.us.RobLabs.com;

%let report_path=\\dom.roblab.com\Projects\Development\Reports\;

%let sp_folder_path=/Applications/Stored Processes/;

libname demo oledb ...;

* Delete demo.config_table if it exists *; ...;

data work.prepare_data;

 length

 col_num $ 1 server_string $ 29

 report_path $ 220 sp_folder_path $ 220

 ;

 col_num = "1";

 server_string = strip("&server_string");

 report_path = strip("&report_path");

 sp_folder_path = strip("&sp_folder_path");

run;

proc sql noprint;

 create table demo.config_table

 (col_num char (1) ,server_string char(29)

 ,report_path char(220) ,sp_folder_path char(220)

)

 ;

 insert into u.config_table

 select col_num ,server_string ,report_path ,sp_folder_path

 from work.prepare_data

; quit;

libname demo clear;

Figure 13. Create Application Configuration File

11

5. Using Files to Pass Values

The Challenge-

Sometimes there are just too many variables to pass them in the manner described
in ‘3. Passing Values’.

One Solution-

Create a file which is used to pass variables from stored process to stored process.
Be aware, however, that there are times when you must pass the variable(s) in the
manner described in ‘3. Passing Values’. For example, the report name in ‘Figure 10.
Redirection via User Selection’ is not known until the user selects the corresponding
Add_Comment link. When variables are known ahead of time, however, I prefer to
pass them via a file. I think that it is easier to read and write from a file than to pass a
large number of variables in the manner shown in ‘3. Passing Values’. I also feel that
it is cleaner code and, thus, is easier to maintain and modify. It is easier to see, at a
glance, which variables are being used in the called stored process.

A SQL Server ® database table is used in this app. A table, called persist (as in
‘persistent data’) is created for each user and is used to pass as many variables as
possible from stored process to stored process.

The name of this persist file starts with the user ID, obtained via “&sysuserid”. This is
done so that two users, both running the app at the same time, will not ‘collide’.

The persist file is read by each module to obtain the data needed for that module to
run successfully. Some modules, in turn, update the persist file.

12

6. Forcing a Stored Process to Reveal Its Prompt

The Challenge-

When ‘Stored Process A’ calls ‘Stored Process B’ and ‘Stored Process B’ has a
prompt, ‘Stored Process B’ will not show it’s prompt if called in the manner so far
demonstrated. Any reference to the prompt inside ‘Stored Process B’ will result in an
error of an unresolved macro variable. If you have used prompts you realize that this
is not true when you manually call the stored process from SAS Enterprise Guide® or
on a server. This is only needed when a stored process is calling the stored process
that has a prompt.

One Solution-

The Stored Process reserved macro variable ‘_action’ is used to force ‘Stored
Process B’ to show it’s prompt. The code added in ‘Stored Process A’ is
‘&_action=form,properties,execute,nobanner’. In this example, ‘add_comments’ has a
prompt defined so it must be forced to show that prompt. When the user selects Add

Comments this code is executed:

Add_Comments =

'^S={url="&_url?_program=&sp_folder_path.add_comments&_action=form,pro

perties,execute,nobanner'

 || '&Report=' || strip(report_name)

 || '&Lot= '|| strip(lot)

 || '&Current_Status='|| strip(current_status || ' "}Add Comment'

;

Figure 14. Forcing a Stored Process to Reveal Its Prompt

13

7. Putting More Than One Link in a Cell

The Challenge-

Each report has a default status of ‘Pending’ when it is first created. The user wants
to be able to change this status to Released or Rejected. The screen should look like
this:

Figure 15. Example of Displayed List of Reports

In the ‘Next Status’ column there are two links, one if the user wants to reject the
report and one if the user wants to release the report. Note that if the Current Status
is ‘Released’ or ‘Rejected’ the user has no Next Status showing. That is the expected
behavior. We will later see why.

One Solution-

The code to create this screen is shown on the next page. Remember to include the
code that reads the tagset along with %stpbegin and %stpend as discussed in
‘Redirection via User Selection’. Also, the libname statements are not shown.

14

data work.reports_to_display;

 length View_Report $ 1000 Add_Comments $ 1000 Next_Status $

1000 Current_Status $ 16;

 set demo.reports;

Add_Comments=

 '^S={url="&_url?_program=&sp_folder_path.add_comments'

 || '&Report=' || strip(report_name) || ' "}Add Comment';

 View_Report='^S={url="&_url?_program=&sp_folder_path.view_re

port'

 || '&Report=' || strip(report_name) || ' "}View Report';

 Next_Status='';

 if upcase(status)='PENDING' then

 Next_Status=

 '^S={url="&_url?_program=&sp_folder_path.released_confirm'

 || '&Report=' || strip(report_name)

 || '¤t_status=' || 'PENDING'

 || '&desired_status=' || 'RELEASED' || ' "}Released'

 || "^S={} / " ||

 '^S={url="&_url?_program=&sp_folder_path.rejected_confirm'

 || '&Report=' || strip(report_name)

 || '¤t_status=' || 'PENDING'

 || '&desired_status=' || 'REJECTED' || ' "}Rejected'

 ;

 Current_Status = strip(status);

run;

Title 'View/Manage Reports';

proc report data=work.reports_to_display split='*';

 col report_name add_comments view_report next_status

current_status;

 define report_name / display "Report Name";

 define Add_Comments / display "Add*Comment";

 define view_report / display "View*Report";

 define next_status / display "Next*Status";

 define current_status / display "Current*Status";

run;

Figure 16. Putting More Than One Link in a Cell

15

8. A Newline in a Cell with More Than 1 Link

The Challenge-

To save horizontal real estate the user wants each ‘Next Status’ to be on a separate
line like this:

 Figure 17. Display List of Reports With a Newline in Cells

One Solution-

The code that links the two status values is "^{newline}", as shown in Figure 21.

data work.reports_to_display;

 length View_Report $ 1000 Add_Comments $ 1000 Next_Status $ 1000

Current_Status $ 16;

 set demo.reports;

 Add_Comments='^S={url="&_url?_program=&sp_folder_path.add_comments'

 || '&Report=' || strip(report_name) || ' "}Add Comment';

 View_Report='^S={url="&_url?_program=&sp_folder_path.view_report'

 || '&Report=' || strip(report_name) || ' "}View Report';

 Next_Status='';

 if upcase(status)='PENDING' then

 Next_Status=

 '^S={url="&_url?_program=&sp_folder_path.released_confirm'

 || '&Report=' || strip(report_name)

 || '¤t_status=' || 'PENDING'

 || '&desired_status=' || 'RELEASED' || ' "}Released'

 || "^{newline}" ||

 '^S={url="&_url?_program=&sp_folder_path.rejected_confirm'

 || '&Report=' || strip(report_name)

 || '¤t_status=' || 'PENDING'

 || '&desired_status=' || 'REJECTED' || ' "}Rejected'

 ;

 Current_Status = strip(status);

run;

Figure 18. Code to Put a Newline in a Cell with More Than 1 Link

16

9. Roles, Permissions, and Authentication

The Challenge-

There can be several classes of users for an app, each having different privileges.
For example, in this app there is a role called ‘USER’ and another role called ‘SUPER
USER’. ‘USER” can change a report status from ‘Pending’ to ‘Released’ or ‘Rejected’
but, as you have seen, they cannot change any other status. The ‘SUPER USER’ will
be able to change any status to any other status.

The roles are created and controlled by a BI Administrator. Individual users are
usually put into groups. Executing an app can be restricted by groups. However, that
is beyond the scope of this paper. The focus here will be on how permissions are
used within an app. Note: _METAPERSON will only exist on Stored Process and
Portal servers.

One Solution-

The role of the current user can be ascertained by using the following code:

data _null_;

length GroupUri $256 type $60 id $17 GroupName $60 GroupList

$5000;

call missing(GroupUri, type, id, GroupName);

if symexist("_metaperson") then

clientname=trim(symget('_metaperson'));

else clientname=trim(symget('sysuserid'));

group_obj=cat("omsobj:IdentityGroup?IdentityGroup[MemberIdentities

/Person[@Name='",trim(clientname),"']]");

groups=metadata_resolve(group_obj,type,id);

GroupList='';

if (groups >0) then do n=1 to groups;

 nobj=metadata_getnobj(group_obj,n,GroupUri);

 rc=metadata_getattr(GroupUri,"Name",GroupName);

 if substr(groupname,1,16)=labapp' then

GroupList=trim(left(GroupList)) || ' "' || trim(left(groupname)) ||

'"';

end;

call symput('GroupList',trim(left(grouplist)));

call symput('UserIDVal',trim(left(clientname)));

run;

Figure 19. Get the Role(s) for the Current User

17

The Challenge-

Once the user’s role is known, permissions need to set within the code.

One Solution-

App-specific group names are written to the application configuration file. This, of
course, is done once, when the app config file is created, well before the app is
executed. ‘lab_user’ and ‘lab_super’ are the group names the BI Administrator
created and populated with individual user log on IDs.

%let auth_group_user=lab_user;

%let auth_group_super=lab_super;

Figure 20. Assign BI Group Name to Program Macro Variables

When the app runs and the role of the user is ascertained (previous page), a
variable, created and named by programmer and called, in this case, ‘user_auth’, is
set to an internal code for processing, like this:

%global user_auth;

data _null_;

 if "&auth_group_super" in (&GroupList) then

 user_auth = 'SUPE';

 else if "&auth_group_user" in (&GroupList) then

 user_auth = 'USER’;

 else

 user_auth = 'NONE';

 call symput('user_auth', user_auth);

run;

Figure 21. Create Internal Permissions

The value of ‘user_auth’ is added to the persist file so all stored process modules
have access to it. ‘user_auth’ can now be used to control who can see what on the
screen. The code to accomplish this is on the next page. Only pertinent code is
shown.

18

%if &user_auth=SUPE %then %do;

 if upcase(status)='PENDING' then

 Next_Status=

 '^S={url="&_url?_program=&sp_folder_path.released_confirm'

 || '&Report=' || strip(report_name)

 || '¤t_status=' || 'PENDING'

 || '&desired_status=' || 'RELEASED' || ' "}Released'

 || "^S={} / " ||

 '^S={url="&_url?_program=&sp_folder_path.rejected_confirm'

 || '&Report=' || strip(report_name)

 || '¤t_status=' || 'PENDING'

 || '&desired_status=' || 'REJECTED' || ' "}Rejected'

 ;

 else if upcase(status)='RELEASED' then

 Next_Status=

 '^S={url="&_url?_program=&sp_folder_path.pending_confirm'

 || '&Report=' || strip(report_name)

 || '¤t_status=' || 'RELEASED'

 || '&desired_status=' || 'PENDING' || ' "}Pending'

 || "^S={} / " ||

 '^S={url="&_url?_program=&sp_folder_path.rejected_confirm'

 || '&Report=' || strip(report_name)

 || '¤t_status=' || 'RELEASED'

 || '&desired_status=' || 'REJECTED' || ' "}Rejected'

 ;

 else if upcase(status)='REJECTED' then

 Next_Status=

 (code left out for space reasons)

 ;

%end;

%else %if &user_auth=USER %then %do;

 if upcase(status)='PENDING' then

 Next_Status=

 (see Code Example 16 for this code)

%end;
Figure 22. Create the Functionality of the Webpage Based on User Role

Portions of the two screens (USER and SUPE) are shown on the next page.

19

USER Screen –

Figure 23. Webpage for a User Role

SUPER USER Screen -

Figure 24. Webpage for a Super User Role

20

10. Debugging

The Challenge-

Since running on a Stored Process or Web Portal server is another step removed
from the programmer, a method is needed to debug the code if something goes
wrong, ‘and something always goes wrong’.

One Solution-

There are two techniques and two tools for debugging stored process code.

The first technique is to add debugging code directly to your code. This is
accomplished with two tools. You are already familiar with the first tool:

options symbolgen mprint mlogic;

Figure 25. SAS Debug Options

To force the debugged output to show on the Stored Process server, the second tool,
some HTML code (“&_debug=131”.), is added to the call.

For ‘Redirection via Direct HTML’:

<meta http-equiv="refresh" content="4; URL=&url_string&_debug=131">

Figure 26. Adding ‘&_debug’ to Direct HTML URL

For ‘Redirection via User Selection’:

Add_Comments='^S={url="&_url?_program=&sp_folder_path.add_comments&_

debug=131'

|| '&Report=' || strip(report_name) || ' "}Add Comment';

Figure 27. Adding ‘&_debug’ to User Selection URL

Portions of the output are shown on the next page

21

Figure 28. Example of Debugging a Webpage via ‘&_debug=’ Argument

22

The second technique is to run the stored process directly from the address bar of
the browser. The fully-qualified path and stored process name are typed into the
address bar and “&_debug=131” is added. This screen print illustrates the results of
running the stored process, in “debug mode”, directly from the address bar. When
you run a stored process on a Stored Process server you see the name in the
address bar:

You simply add “&_debug=131” to the end of the address:

Figure 29. Example of Debugging via ‘&_debug=’ in the Address Bar

Select ‘Enter’ and you see:

23

Figure 30. Output from Adding ‘&_debug=’ to the Address Bar

Select ‘Run’ and you see your regular output plus the SAS log.

24

11. Links in Titles

The Challenge-

The users requested filter and sort functionality. They want to filter the list in case too
many reports are displayed for the Lot numbers they initially entered. They want to
sort by several variables, one of which is Current Status. The Reset Filter
functionality returns to the original list of reports.

One Solution-

The user will select one of the links in Title2 to execute this functionality:

Figure 31. Adding Links to Titles

The functionality was added in TITLE2 as follows:

title2

 '^S={url="&_url?_program=&sp_folder_path.Filter&_action=form,prope

rties,execute,nobanner"}Filter Reports'

 "^S={} / "

 '^S={url="&_url?_program=&sp_folder_path.Reset&_action=form,proper

ties,execute,nobanner"}Reset Filter'

 "^S={} / "

 '^S={url="&_url?_program=&sp_folder_path.Sort&_action=form,propert

ies,execute,nobanner"}Sort Reports'

;

 Figure 32. Code for Links in Titles

25

12. Requiring the User to Log Back In

The Challenge-

One of the objectives of this project is to replace all the paper copies of the reports
with electronic copies. Signatures are required on the paper reports and the users
want to continue this by using electronic signatures. To do this, it is required that
before a user can Release a report they must log back in. If they successfully log
back in and the user ID matches the ID of the person who originally logged in then
the report can be released. Also, their electronic signature, via their user ID, can be
added to the signature page of the report.

One Solution-

One of the services is SASLogin which is utilized for this requirement. Please note
that the SAS code cannot obtain the password. This is as it should be. To do
otherwise would create a security nightmare. However, if the user successfully logins
in and their user ID matches the ID of the person who originally logged in then it is
felt that this is sufficient authorization.

If the user cannot log back in then the system allows them to continue to try until the
number of attempts established by the IT department is reached. At that point their ID
is locked. If a person logs in but the user ID does not match the original ID then the
person is not allowed to continue in the app.

For example, if the user selects Release Report we want to present these two
screens:

 Figure 33. Example of Screen to Require User to Log In

The code to accomplish this is on the next page.

26

data work.confirm_release;

 length Confirm $ 250 User_Message $ 200 Cancel $ 250;

 Confirm=

'^S={url="http://robvm822.us.RobLabs.com:8080/SASLogon/index.jsp?_program=/Ap

plications/Stored Processes/

Enter_password&_sasapp=Stored+Process+Web+App+9.3"}Confirm Release';

 User_Message = "Confirm Release of Report";

 Cancel =

'^S={url="&_url?_program=&sp_folder_path.run_password_test"}Cancel';

run;

Title 'Confirm Release';

proc report;

 col confirm user_message cancel;

 define confirm / display;

 define user_message / display;

 define cancel / display;

run;

Figure 34. Confirm Release and Require Password

27

Section 3 – Nice to Know

1. Issue: HTML in a Macro
You can’t put a Cards/Dataline statement a macro.

The following code:

%macro html_in_macro;

 data _null_; format infile $char256.; input; infile = resolve(_infile_);

 file _webout; put infile; cards4;

 <html><head><title>This is a webpage title</title>

 <meta http-equiv="refresh" content="4; URL=&url_string">

 <meta name="keywords" content="automatic redirection">

 </head><body>

 Message

 </body></html>

 ;;;; run;

%mend; %html_in_macro

Figure 35. Error – HTML in a Macro

results in this error message:

ERROR: The macro HTML_IN_MACRO generated CARDS (data lines) for the DATA

step, which could cause incorrect results. The DATA step and the macro will

stop executing.

Work Around-

Build the url_string with the desired next action in a macro then execute the ‘data
null’ code outside the macro.

%macro work_around; %global url_string;

 data _null_;

 length url_string $400;

 url_string=cats("&server_string", "&server_type",

"&sp_folder_path", "&prog_link");

 call symput('url_string', strip(url_string));

 run;

%mend;

%work_around;

data _null_; format infile $char256.; input;

 infile = resolve(_infile_); file _webout; put infile;

 cards4;

<html><head><title>This is a webpage title</title>

<meta http-equiv="refresh" content="2; URL=&url_string">

<meta name="keywords" content="automatic redirection">

</head>><body> Message </body>

</html>

;;;; run;

Figure 36. Error – HTML in a Macro

28

2. Issue: SAS Warnings

SAS generates a warning message for &_action because SAS thinks it is a SAS
macro variable when, in fact, it is meant to part of the HTML code.

WARNING: Apparent symbolic reference _ACTION not resolved.

It is just an annoyance and does not cause the program to fail.

Work Around-

The following will eliminate the warning:

%let _action=%nrstr(&_action);

This works for any HTML value and also for SAS values passed to another stored
process.

29

3. Issue: Allow the User to Confirm an Action

The user would like to see the following if, for example, they select Release:

Figure 37. Confirm Release Screen

The following code will allow a user to either confirm that they want to release the
report or to cancel and return to the main menu:

data work.confirm_release;

 length Confirm $ 250 User_Message $ 200 Cancel $ 250

Report_Name $ 50;

 report_name = "&report_name";

 Confirm=

 '^S={url="&_url?_program=&sp_folder_path.Release' ||

 '&report_id=' || strip(report_name) || ' "}Release'

 ;

 User_Message = "Confirm Release of &report_name";

 Cancel =

'^S={url="&_url?_program=&sp_folder_path.main_menu"}Cancel';

run;

Title 'Confirm Release';

proc report data=work.confirm_release;

 col confirm user_message cancel;

 define confirm / display;

 define user_message / display;

 define cancel / display;

run;

Figure 38. Code to Build and Display Confirm Release Screen

30

CONCLUSION
Putting the power of SAS on the Web takes some planning but these building blocks
are easy for an experienced SAS programmer to grasp. This helps to make the first
steps into this area less intimidating. Using these building blocks will allow you to
more quickly and accurately create excellent web apps. Of course, as you work with
these tools you will find other, and better, ways to apply them as well as new tools.
Please share what you find.

REFERENCES

STORED PROCESSES

 The 50 Keys to Learning SAS Stored Processes

Tricia Aanderud and Angela Hall

First Edition, 2012, Siamese Publishing

 A SAS® Programmer's Guide to Stored Processes

Joe Flynn

http://support.sas.com/resources/papers/proceedings11/050-2011.pdf

 Unleashing the power behind Stored Processes

Ian Amaranayake

http://www.amadeus.co.uk/_assets/files/unleashing-the-power-behind-stored-

processes.pdf

 ODS Options and SAS® Stored Processes

Cynthia L. Zender

http://www2.sas.com/proceedings/forum2007/021-2007.pdf

 SAS Stored Processes Reserved Macro Variables

http://support.sas.com/rnd/itech/doc9/dev_guide/stprocess/reserved.html

 Macro Variables That Are Generated from Prompts

http://support.sas.com/documentation/cdl/en/stpug/62758/HTML/default/viewer.htm#

n1x5bwm15z6zcmn1jjzrschl4z90.htm

 SAS® 9.3 Stored Processes Developer's Guide

http://support.sas.com/documentation/cdl/en/stpug/62758/PDF/default/stpug.pdf

31

ODS

 Using ODS Options with SAS Stored Processes

Cynthia L. Zender

http://dc-

sug.org/zqj_ODS_Presentations_DCSUG/dcsug_ods_options_stored_processes.pdf

 SAS ODS Style Examples

http://stat.lsu.edu/SAS_ODS_styles/SAS_ODS_styles.htm

 ODS PDF “Tips and Tricks

Barry Hong

http://www.sas.com/offices/NA/canada/downloads/presentations/ghsug_Spring2007/

ODS_PDF_Barry.pdf

 PDF Can be Pretty Darn Fancy (ODS and PDF)

Pete Lund

http://www2.sas.com/proceedings/forum2008/033-2008.pdf

 ODS and RTF

http://support.sas.com/rnd/base/ods/templateFAQ/Template_rtf.html

 SAS9 ODS Tip Sheet

http://support.sas.com/rnd/base/ods/scratch/ods-tips.pdf

 Using RTF codes in ODS RTF outputs

Rachabattula, Sriharsha

http://www.nesug.org/Proceedings/nesug10/po/po40.pdf

ODS ESCAPECHAR

 The Great Escape(char) Redux

Louise S. Hadden

http://www.nesug.org/proceedings/nesug08/np/np10.pdf

 Enhancing RTF Output with RTF Control Words and In-Line Formatting

Lori S. Parsons

http://www2.sas.com/proceedings/forum2007/151-2007.pdf

 ODS ESCAPECHAR Statement

http://support.sas.com/documentation/cdl/en/odsug/61723/HTML/default/viewer.htm

#a002233270.htm

http://dc-sug.org/zqj_ODS_Presentations_DCSUG/dcsug_ods_options_stored_processes.pdf
http://dc-sug.org/zqj_ODS_Presentations_DCSUG/dcsug_ods_options_stored_processes.pdf

32

ACKNOWLEDGMENTS

My grateful thanks to the following for their valuable help with this paper.

DJ Penix

Dave Foster

Philip Fowler

Nader Afshar

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Mark Roberts:
Pinnacle Solutions
426 E New York St
Indianapolis, IN 46202
317-440-6534
mark.roberts@psiconsultants.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

