
Paper BB-10-2013

Not All Equals are Created Equal:
Nonstandard Statement Structures in the DATA Step

Arthur L. Carpenter

California Occidental Consultants, Anchorage, AK

ABSTRACT
The expression is a standard building block of logical comparisons and assignment statements. Most of us use
them so commonly that we do not give them a second thought. But in fact they definitely do deserve that
second thought. A more complete understanding of their construction and execution can greatly expand our
ability to more fully take advantage of this fundamental component of the SAS® Language.

Once we understand the basic form of the expression and how it is used in various statements, we can use this
understanding to create statement forms that would otherwise appear to be illegal or just plain wrong. Further
and perhaps even more importantly this deeper understanding can help to prevent us from committing errors in
logic.

INTRODUCTION
Expressions are made up of any number of components. These include constants, function calls, variables, and
operators. These components can appear individually or in conjunction with other components.

Expressions produce a result and are said to resolve to a value. Since this value is either numeric or character, a
given expression is often referred to as either a numeric or character expression.

The simplest expressions will have a single component and the simplest form of
an expression is a constant. Here these expressions are used in assignment
statements, most likely in a DATA step.

Operators are used to create associations among two or more expressions. These operators include the
arithmetic operators as well as logical and Boolean operators. Operators are like verbs in the expression. They
tell SAS what to do with things like constants and variables.

Comparison operators join expressions to form a logical expression. Regardless of whether the comparison is
being made on character values or numeric values, these expressions
always result in a numeric value (0 or 1), False or True. Notice that these
are not full statements, but simply composite expressions joined by logical
operators. Both of these expressions will resolve to True or False (1 or 0).

In order to avoid confusion and ambiguity, operators are assigned a hierarchy or order in which they are applied.
The hierarchy is formed by seven groups of operators, and within a group, operators of equal rank are applied
from left to right (except Group 1 which is applied right to left).

At a simple level, we need to understand why the expression (5+6*2) is equal to 17 and not 22. But as we
encounter expressions in non-standard form, such as some of those discussed in this paper, we need to have a

n_var = 5;
c_var='fred';

name = 'Fred'
1 le month(dob) le 3

1

solid understanding of this hierarchy, if we are to understand why the expressions evaluate the way that they
do.

Group Operators
Parentheses Operations within parentheses are performed first
Group 1 (performed
right to left)

Exponentiation (**)
Prefix operators, such as, positive (+), negative (-), and negation

Group 2 Multiplication (*) and division (/)
Group3 Addition (+) and subtraction (-)
Group 4 Concatenation (||)
Group 5 Comparisons such as equal (=) and less than (<)
Group 6 AND - Boolean comparison (&)
Group 7 OR - Boolean comparison (|)

Since any of these operators can appear in any expression, whether in an assignment statement or an IF
statement, we need to expand our perception of what an expression should contain.

Logical Comparisons
Logical comparisons, which include the use of Boolean and comparison operators, resolve to either true or false
(1 or 0). Usually the evaluation of these comparisons is fairly straight forward, however there are some
interesting aspects that deserve further discussion.

When you construct the logic of the expressions, especially when Boolean operators are involved, you need to
be careful not to translate the idioms of speech into the syntax of code. In this expression we want to check for
Sally’s identification numbers, which are either 2 or 3. In English we might say “if the ID number is 2 or 3 then
the name is Sally”, and we might write the code shown to
the right. The problem is that this logical expression is
evaluated differently by SAS than we intended it to be. The
Boolean comparison operator OR compares the result of two distinct expressions, shown here through the use

of parentheses. Since the number 3 is always true,
the overall expression is also always true regardless
of the value of the variable ID. In the more precise

language of SAS expressions we should have specified
each of the two possible ID values separately.

As an aside, the programmer may be tempted to group the two possible values of ID by constructing the
expression with parentheses surrounding the (2 or 3).
Unlike the first statement this expression will NOT always
be true. The Boolean expression, inside the parentheses,
is evaluated first and is of course true. Then ID is then compared to the result, which necessarily must be 1. The
resulting expression, which completely misses the point of the
comparison, is shown to the right.

All of these comparisons are syntactically correct; none produce errors, but only one produces the desired
comparison. It matters how you construct logical comparisons.

if id=2 or 3 then name=’Sally’;

if id=2 or id=3 then name=’Sally’;

if (id=2) or (3) then name=’Sally’;

if id=(2 or 3) then name=’Sally’;

if id=1 then name=’Sally’;

2

Compound Comparisons
An expression which is made up of compound comparisons is evaluated as a series of expressions joined with an
AND operator. In this comparison we would like to detect ages between 25 and 45 inclusively. This is
equivalent to writing the compound expressions as two
independent expressions joined with an AND.

From a programming standpoint there is no
reason why we need to limit the composite

comparison to just two
comparisons. Indeed a series of

comparisons can be made, each being effectively joined with an
AND.

This interpretation of the composite comparison, as it is used in
such places as the DATA step, is not correct for the macro

language. Rewriting the first IF statement from above
using macro language elements, could be expressed as
shown to the right. This expression is evaluated from left
to right and does not contain an implied Boolean operator. The left most expression is evaluated first and the
result is then used with the next expression. In this
example, regardless of the value contained in &AGE
the overall expression will be true (both 0 and 1 are less
than 45). Assume that &AGE contains 55, first the 25 is
compared to 55 and a 1 is returned. The 1 is then compared
to 45, and since it is less than 45, the expression seems to indicate
that 55 is less than 45, but of course this is not true. We have in fact
misused the composite comparison in the macro language, which requires us to fully specify the comparison

explicitly using the Boolean operator as
shown to the left.

EQUAL and PLUS SIGNS: TWO IN ONE
The assignment statement is characterized by a variable followed by an equal sign, which in turn is followed by
an expression. The equal sign is not seen as an operator, but rather as a
parsing character. The expression can be any numeric or character
expression. This implies that the expression itself can contain operators,
including an equal sign. Consider the assignment statement that creates the
variable AGE14. This variable will be numeric and will take on the values of
either 0 or 1 (AGE=14 is a logical comparison) depending on whether or not the
variable AGE is 14. The parentheses are not needed and the expression could
be rewritten without them. Although the statement may look like it is in a
non-standard form, it is still actually in the form of the standard assignment statement,
varname=expression; . Using an IF-THEN/ELSE construction this
statement could be rewritten using logical comparisons, however the
assignment statement will tend to be more efficient.

var_name = expression;

age14 = (age = 14);

age14 = age = 14;

if age=14 then age14=1;
else age14=0;

if 25 le age le 45 then do;

if (25 le age) and (age le 45) then do;

if 25 le age le 45 le maxage le 55 then do;

if (25 le age)
 &(age le 45)
 &(45 le maxage)
 &(maxage le 55) then do;

%if 25 le &age le 45 %then %do;

%if (25 le &age) le 45 %then %do;

%if 25 le 55 le 45 %then %do;

%if 1 le 45 %then %do;

%if 25 le &age and &age le 45 %then %do;

3

It should then be clear that these two equal signs are not being used in the same way by SAS. SAS will not be
confused and neither will you, if you remember the form of the statement and keep track of the expression.

This is also true in the following seemingly more complex example. Here the programmer would like to take two
actions (an assignment to the variables B and C) based on a logical
comparison. The appropriate way to group these two actions is to

use the DO block. Rather than use a DO block the code
Assuming that the expression a=1 is true let’s look at the action, which in this case
is an assignment statement, which is specified as
variable=expression;
 b=2 and c=3;

From the compiler’s point of view this is the same as:
 b= (2 and c=3);
2 is always true, c=3 is either true or false. When C=3 is true:
 b=(1 and 1);
which evaluates to:
 b=(1);
which evaluates to:
 b=1;
When C = 3 is not true the variable B will be assigned the value of 0.

Actually this opens up other possibilities for us as well. The SUM
statement, like the assignment statement, utilizes a special character
following the variable name; in this case the plus sign. The plus sign
which immediately follows the variable name is what makes this the SUM statement. You could not specify the

SUM statement without it. If the number three is to be decremented from COUNT,
the SUM statement must include the plus sign as well as the
expression (the constant -3).

Since an expression, any numeric expression, can follow the plus sign, it stands to reason that the expression
itself can contain a plus sign. Again SAS will not be confused, and
now neither will you, since the statement has two different kinds of
plus signs.

LOGIC WITHOUT THE LOGIC
In the following IF-THEN/ELSE statements we use the month of the date of birth to assign the season of birth.

Examine these IF-THEN/ELSE
statements and notice the individual
expressions and how they are used
together to form other expressions.
The composite expression 1 le

month(dob) le 3, is made up of three individual numeric expressions which are connected using the
logical operator LE to form a single logical expression. The assignment statement season=2; has a constant
numeric expression on the right side of the equal sign. Including the possibility of a missing value for DOB, these
statements can yield a SEASON that varies from 1 to 4 and missing.

if 1 le month(dob) le 3 then season = 1;
else if 4 le month(dob) le 6 then season=2;
else if 7 le month(dob) le 9 then season=3;
else if 10 le month(dob) le 12 then season=4;

var_name + expression;

* this fails;
count – 3; count + –3;

totaladj + budget + 500;

if a=1 then do;
 b=2;
 c=3;
end;

if a=1 then b=2 and c=3;

4

Rather than employ a series of IF-THEN/ELSE statements you could use the assignment statement shown here to
create the variable SEASON. Not exactly equivalent to the statements above, this statement can result in the

assignment of numeric values from 0 thru 4
depending on the month of the date of birth. The
‘less-than-or-equal-to’ comparison operators
(Group 5) return a zero or one which is multiplied
against the constants. The comparison operators
are just another form of expression operators and

are perfectly suited to assignment statements as well as to logical expressions. This form of logical assignment
tends to be more efficient than the IF-THEN/ELSE statements.

In fact there is no reason why any of the logical and comparison operators cannot appear in an assignment

statement. The key to their use is to remember that logical expressions will
yield either TRUE or FALSE, which is represented by 1 or 0 respectively. For a
date of birth in May the previous equation is evaluated as is shown on the left.
The expression results in a value of 2 for SEASON. When you are generating a
numeric value based on a logical determination, such as this one, you should be
able to write the assignment statement in a form similar to the one above

rather than the less efficient series of IF-THEN/ELSE statements.

Although the previous example could have also been made using a user defined format and a PUT function, the
assignment of a value to GROUP using the series of IF-THEN/ELSE statements, such as the one shown here, does
not so easily lend itself to a solution involving a format. The value can, however, be determined with an

assignment statement
containing the same
logic as was used in
these IF-THEN/ELSE
statements.

Since assignment statements tend to be processed faster than IF-THEN/ELSE statements, it is likely that the use
of assignment statements can
decrease processing time. This
type of assignment statement
will also generally out perform a
look up using a PUT function.

season = 1*(1 le month(dob) le 3)
 + 2*(4 le month(dob) le 6)
 + 3*(7 le month(dob) le 9)
 + 4*(10 le month(dob) le 12);

season = 1*(0)
 + 2*(1)
 + 3*(0)
 + 4*(0);

if sex = 'M' and year(dob) > 1949 then group=1;
else if sex = 'M' and year(dob) le 1949 then group=2;
else if sex = 'F' and year(dob) > 1949 then group=3;
else if sex = 'F' and year(dob) le 1949 then group=4;

group = 1*(sex = 'M' and year(dob) > 1949)
 + 2*(sex = 'M' and year(dob) le 1949)
 + 3*(sex = 'F' and year(dob) > 1949)
 + 4*(sex = 'F' and year(dob) le 1949);

5

BUILDING BINARY AND OTHER FLAG VARIABLE COMBINATIONS
It is not uncommon to need to create binary (0,1) variables that are to be used in subsequent analyses. There
are a number of ways to create these variables, and depending on the result that is required, these variations
can include the way that missing and negative values are to be treated. In addition to 0/1 flags, it is common to
create flags that contain values such combinations as (./0/1) and (-1/0/1).

Logical Assignment
Since True/False determinations always result in either a 0 or a 1, logical expressions can be especially useful if
assigning a numeric 0,1 value to a variable. In the following DATA step we would like to create a flag that
indicates whether or not the date of birth is before 1950. Three equivalent variables (BOOMER, BOOMER2, and

BOOMER3) have been created to
demonstrate three different
methods.
 Very often IF-THEN/ELSE
statements are used. These
statements tend to process
slower than assignment
statements.
 The logical expression appears

on the right of the equal sign.  The IFN function can be used to assign the result. This function has added
value when a result other than just 0 or 1 is to be returned. For each of these determinations a missing DOB will
result in a flag of 0.

A similar flag assignment can be made through the macro language. Here we want to flag values of &AGE that
are greater than 25. The macro variable &AGEFLG will take on the value of 0 for values of age =< 25 (including a

null value) and 1 for values greater than 25. Notice the
use of the %EVAL function to force the comparison. As in

the above DATA step example, the IFN
function can also be used in this type of
situation. The %SYSEVALF function also
supports an optional second option. When this option takes on the value of BOOLEAN the function returns a

binary value. Here &VFLAG will be 1 for all values of
&VAL except 0 (the function fails if &VAL is null).

Using a Double Negation
The logical NOT operator can be used to build binary variables by using a double negation. Negation of any false
value will be true. Since 0 and missing are false negating either of these values will result in a 1. Conversely any
non-false value (any value that is not 0 or .) will be negated to a 0. The use of a double negation will therefore
result in a 0 or 1. Consider the value 5.6 (which is evaluated as true), negating it will result in 0 (false), negating
0 results in a 1 (true), therefore ^^5.6 maps to 1. This is demonstrated in the following example.

data flags;
 set advrpt.demog (keep=lname fname dob sex);
 if year(dob) > 1949 then boomer=1; 
 else boomer=0;
 boomer2 = year(dob) > 1949; 
 boomer3 = ifn(year(dob) > 1949, 1, 0); 
 run;

%let ageflg = %eval(&age > 25);

%let flg = %sysfunc(ifn(%eval(&age>25),1,0));

%let vflag=%sysevalf(&val,boolean);

6

In this example, which was suggested by Chang Chung and Mike Rhodes, we want to create a binary flag which
will indicate whether or not a specific number is stored in any of a number of variables in an array. Here we

need to determine if the number 3 is contained in one or
more of the variables X1 through X4.
 FLAG1 is created by using a logical expression (3 in
a),which checks to see if the value 3 is in the array A. If it
is, a 1 is returned, otherwise a 0.
 The WHICHN function returns an item number if the value
in the first argument is found in the succeeding argument(s)
(here a list of variables). If the value is not found a 0 is
returned. Since we are only interested in building a binary
flag, the returned value is converted to a 0 or a 1 by the use
of a double negation. For the first observation, the WHICHN

function returns a 2 (a 3 is found in the second variable – X2), this is negated to a 0 (^^2 becomes ^0), which is in
turn negated to a 1(^0 becomes 1).

As long as we do not think of a null value as equivalent to missing, a similar approach can be taken with the
macro language. The double negation of macro variables that contain integers will also produce 0, 1 results.

Here the double negation converts all non-zero values of
&AGE to 1. For non-integer values of &AGE the %SYSEVALF
function could be used instead of %EVAL. This gives us a

similar result to the %SYSEVALF example using the BOOLEAN option which was shown above.

Replace Missing with 0
For reporting purposes missing values can be replaced by a 0 using a simple assignment statement. The

COALESCE function returns the first non-missing value. In this example if
DOB is missing a 0 is returned. Prior to the inclusion of the COALESCE
function, this same operation was sometimes accomplished using the SUM

function. Be careful when working with dates as was done here. Remember that,
although both are false, a date of missing and a date of 0 have different meanings.

The previous two expressions do not result in a Boolean value. If you want to convert all missing values to 0 and

all other values to 1 (including 0) you can use the negation of the MISSING
function. In this expression MVAL will be 1 for all numbers except missing.

data _null_;
input x1-x4;
array a {*} x1-x4;
flag1 = (3 in a); 
flag2 = ^^whichn(3,of x:); 
put flag1= flag2=;
datalines;
1 3 5 7
5 6 7 8
run;

z = coalesce(dob,0);

y = sum(dob,0);

mval=^missing(val);

%let ageflg = %eval(^^&age);

7

Determine Positive or Negative Values
Numeric values fall into one of four groups; ., <0, 0, >0. Relative to ‘positive’ and ‘negative’ and with the

potential of missing values and the 0 value, we have
four distinct ways of grouping these values into
binary flags. A given value can be positive, not
positive, negative, and not negative. Because of the
presence of both the 0 and missing, the groups of
values that are positive and those that are non-
negative are not necessarily the same. Fortunately

we can build a Boolean flag for each of these four
possibilities, with the use of the SIGN function, which
returns -1 for values < 0, 0 for values=0, 1 for values > 0,
and missing for missing values.

The SIGN function can also be used in the macro language to achieve the same flags for macro variables. The

%EVAL function forces the numeric
comparison with the result of the SIGN
function. Notice the logic is slightly
different as we do not have to worry
about missing values.

DO LOOP SPECIFICATIONS
The iterative DO loop is usually defined using a single loop specification. The most common form of the
specification is taken directly from the documentation; however there are a number of variations that are less
commonly applied. Looping can be controlled using combinations of specifications that include constants and
compound specifications and these can be combined with DO WHILE and DO UNTIL specifications.

The index variable for the DO loop can be a declared to be
a series of either numeric or character constants that are
comma separated.

In addition to constants, for numeric index variables the compound loop definitions can contain a combination
of iterative and constant specifications. Here the variable COUNT will take on the values of: 1, 2, 3, 5,

10, 15, 20, 26, 33.

data posneg;
 do v=.,-2 to 2;
 *if positive;
 pos = sign(v)=1;
 * Not positive;
 notpos = (sign(v) in(-1,0));
 * Negative;
 neg = sign(v)=-1;
 * Not negative;
 notneg = sign(v) in (0,1);
 output posneg;
 end;
 run;

Boolean Conversions
Positive or Negative?
Obs v pos notpos neg notneg
 1 . 0 0 0 0
 2 -2 0 1 1 0
 3 -1 0 1 1 0
 4 0 0 1 0 1
 5 1 1 0 0 1
 6 2 1 0 0 1

%let pos = %eval(%sysfunc(sign(&v))=1);
%let notpos = %eval(%sysfunc(sign(&v))<1);
%let neg = %eval(%sysfunc(sign(&v))=-1);
%let notneg = %eval(%sysfunc(sign(&v))>-1);

do count=1, 26, 33;
do month = 'Jan', 'Feb', 'Mar';

do count=1 to 3, 5 to 20 by 5, 26, 33;

8

The iterative DO loop is evaluated at the bottom of the loop. This means that the index variable is incremented
and then evaluated. For the DO loop shown here, the variable COUNT exits the
loop with a value of COUNT=4. By adding an UNTIL specification we can prevent
the index variable from being incremented beyond the maximum value. When

this iterative DO loop terminates the variable COUNT exits
the loop with a value of COUNT=3.

The DO UNTIL and DO WHILE loop forms of the DO loop will be executed indefinitely until some exit criteria is
met. For these loops any index variable must be incremented manually by the programmer, often with a SUM

statement as is shown here. It is also possible to set up an infinite loop with
conditional exit and increment the index variable automatically. Notice that
this iterative DO loop does not have a TO specified, therefore it does not
automatically have an exit criteria

based on K. It does however automatically increment the value of K for
each iteration.

SUMMARY
Are the statement forms shown in this paper really that unusual or non-standard? If they are not commonly
used then it is most likely due to the fact that programmers lack an understanding of how expressions are used
and evaluated in statements such as SUM and assignment statements.

There is so much that can be easily done with these statement structures. Programming alternatives are often
convoluted and less efficiently executed. It is definitely worth the programmer’s effort to understand these
statement forms.

ABOUT THE AUTHOR
Art Carpenter’s publications list includes five books, and numerous papers and posters presented at SUGI, SAS
Global Forum, and other user group conferences. Art has been using SAS® since 1977 and has served in various
leadership positions in local, regional, national, and international user groups. He is a SAS Certified Advanced
Professional programmer, and through California Occidental Consultants he teaches SAS courses and provides
contract SAS programming support nationwide.

AUTHOR CONTACT
Arthur L. Carpenter
California Occidental Consultants
10606 Ketch Circle
Anchorage, AK 99515

(907) 865-9167
art@caloxy.com
www.caloxy.com

do count=1 to 3;

do count=1 to 3 until(count=3);

do k=1 by 1 until(x=5);

do until(x=5);
 k+1;

9

http://www.caloxy.com/

ACKNOWLEDGEMENTS
The instigation for this paper was in part suggested by Dr. Chris Ake of Kaiser Permanente.

REFERENCES
Many of the examples in this paper have been borrowed (with the author’s
permission) from the book Carpenter’s Guide to Innovative SAS® Techniques by
Art Carpenter (SAS Press, 2012).

Several of the code examples on Boolean transformations have been
suggested by Howard Schreier in the sasCommunity.org article
http://www.sascommunity.org/wiki/Numeric_transformations

The sasCommunity.org tip
http://www.sascommunity.org/wiki/Tips:Creating_a_flag_avoiding_the_If_..._Then_Structure discusses the use
of this type of expression in an assignment statement. The discussion tab includes alternative forms that can be
used in an SQL step.

The example of flags used to indicate presence of a value in a list was suggested by Chang Chung and Mike
Rhoads. Their examples can be found at:
http://www.sascommunity.org/wiki/Tips:Double_negatives_to_normalize_a_boolean_value and
http://www.listserv.uga.edu/cgi-bin/wa?A2=ind1101c&L=sas-l&D=1&O=D&P=9693, respectively.

There are a number of related topics that touch on our understanding of the various logical and comparison
operators. More information can be found at:
http://www.sascommunity.org/wiki/Tips:DATA_Step_Comparison_Operators_Are_Non-Associative

TRADEMARK INFORMATION
SAS, SAS Certified Professional, SAS Certified Advanced Programmer, and all other SAS Institute Inc. product or
service names are registered trademarks of SAS Institute, Inc. in the USA and other countries.
® indicates USA registration.

10

https://support.sas.com/pubscat/bookdetails.jsp?pc=62454
http://www.sascommunity.org/wiki/Numeric_transformations
http://www.sascommunity.org/wiki/Tips:Creating_a_flag_avoiding_the_If_..._Then_Structure
http://www.sascommunity.org/wiki/Tips:Double_negatives_to_normalize_a_boolean_value
http://www.listserv.uga.edu/cgi-bin/wa?A2=ind1101c&L=sas-l&D=1&O=D&P=9693
http://www.sascommunity.org/wiki/Tips:DATA_Step_Comparison_Operators_Are_Non-Associative

	ABSTRACT
	INTRODUCTION
	Logical Comparisons
	Compound Comparisons

	EQUAL and PLUS SIGNS: TWO IN ONE
	LOGIC WITHOUT THE LOGIC
	BUILDING BINARY AND OTHER FLAG VARIABLE COMBINATIONS
	Logical Assignment
	Using a Double Negation
	Replace Missing with 0
	Determine Positive or Negative Values

	DO LOOP SPECIFICATIONS
	SUMMARY
	ABOUT THE AUTHOR
	AUTHOR CONTACT
	ACKNOWLEDGEMENTS
	REFERENCES
	TRADEMARK INFORMATION

