
1

Paper BB-06-2013

The Joinless Join;

Expand the Power of SAS® Enterprise Guide® in a New Way

Kent Phelps, Illuminator Coaching, Inc., Des Moines, Iowa
Ronda Phelps, Illuminator Coaching, Inc., Des Moines, Iowa

Kirk Paul Lafler, Software Intelligence Corporation, Spring Valley, California

ABSTRACT

SAS Enterprise Guide can easily combine data from tables or data sets by using a Graphical User Interface
(GUI) PROC SQL Join to match on like columns or by using a Base SAS® Program Node DATA Step Merge to
match on the same variable name. However, what do you do when tables or data sets do not contain like
columns or the same variable name and a Join or Merge cannot be used?

Well, we have the answer for you! We invite you to attend our presentation on the Joinless Join where we
expand the power of SAS Enterprise Guide in a new way. You will learn how to design and utilize a Joinless
Join to perform Join and Merge processing using tables or data sets which do not contain like columns or the
same variable name. We will briefly review the various types of Joins and Merges and then quickly delve into
the detailed aspects of how the Joinless Join can advance and enhance your data manipulation and analysis.

We look forward to introducing you

to the surprising paradox of the
Joinless Join.

INTRODUCTION

The tagline for SAS is The Power To Know®, and your 'power to know' greatly expands with your ability to
access, combine, and analyze important data from tables or data sets (referred to as tables going forward).
The Power To Know sets off The Power To Create which leads to The Power To Automate – much like an
intricate and fluid domino design. However, this power will quickly become disjointed if you do not know how
to effectively Join or Merge tables of data which have direct and/or indirect relationships.

Here are 2 questions you need to ask yourself when analyzing 2 or more tables:

 Do the tables that I want to analyze contain like columns or the same variable name which can be utilized
in a Join or Merge?

 If the tables do not contain like columns or the same variable name and a Join or Merge cannot be used,
have I reached a cavernous and insurmountable ‘woe is me’ research impasse in utilizing the data?

2

 There is no need to fear, the Joinless Join is here! 

We are going to show you how to design and utilize a Joinless Join in SAS Enterprise Guide to:

 Access, combine, and analyze data from tables which only contain columns or variables that indirectly
relate to and/or depend upon each other.

 Perform table creations, calculations, validations, and filtrations based upon indirect relationships and
dependencies between the tables.

 Detect and resolve errors including hidden errors, produce a variety of reports, prevent validation process
failure (Yea!), and completely... yes, completely automate your projects.

Our Presentation Demonstrates:

The Power To Know when to design and how to utilize a Joinless Join

The Power To Create tables based upon indirect relationships and dependencies

The Power To Automate projects when tables cannot be directly joined or merged

We invite you to journey with us
as we help you to

E X P A N D
 the power of SAS Enterprise Guide in a new way.

Brief Overview of PROC SQL Joins and DATA Step Merges

The Process of Joining and Merging

A Join or Merge is the process of combining 2 or more tables side-by-side (horizontally). Its purpose is to gather
and manipulate data from across the tables for exciting insights into data relationships. The process consists of
matching rows between the tables and bringing together some or all of each table’s contents (see Figure 1).

 Table One Table Two Table Three . . .

Figure 1. The Process of Joining and Merging Tables

Joins or Merges are specified on a minimum of 2 tables where a column from each table is used for the purpose of
connecting the tables. Connecting columns should have like values and the same column attributes since the
success of the Join or Merge is dependent on these values. The ability to define relationships between multiple
tables and to retrieve information based on these relationships is a powerful feature of the relational model.

Just traveling along...
side by side.

Harry Macgregor Woods

3

Contrasting Joins and Merges

The differences between a Join and Merge are subtle, but differences do exist –

Join Features:

 The code conforming to ANSI guidelines is portable to other vendor databases.

 Data does not need to be sorted using BY-value.

 Does not require the same variable name.

 Duplicate matching column is not automatically overlaid.

 Results are automatically printed unless NOPRINT option is specified.

Merge Features:

 Relevant only to SAS Software and is not portable to other vendor databases.

 Data must first be sorted using BY-value.

 Requires the same variable name.

 Duplicate matching column is automatically overlaid.

 Results are not automatically printed.

 More steps are often needed than with the SQL procedure.

Symmetrical and Asymmetrical Joining and Merging

There are Syntax and Operational differences between Inner (natural) and Outer Joins or Merges –

Inner Join Features:

 An Inner Join is a Symmetrical Join

 The maximum number of tables that can be specified in a Join construct is 256

 Uses the WHERE-clause

An Inner Join or Merge consists of a symmetrical process of relating rows in 2 or more tables and produces
only matched rows from the tables. The result is illustrated by the shaded area (AB) in Figure 2.

Figure 2. Venn Diagram – Inner Join or Merge

Outer Join and Merge Features

 An Outer Join or Merge is an Asymmetrical Join or Merge

 The maximum number of tables that can be specified in this construct is 2

 Uses syntax keywords such as LEFT JOIN, RIGHT JOIN, and FULL JOIN

 Uses the ON-clause

4

Similar to an Inner Join or Merge, an Outer Join or Merge can match related rows in both tables. But this is
where the similarities end. By using an Outer Join, the resulting set of data can also include rows with no
related data from one or both tables.

Essentially the resulting set of data from an Outer Join process contains rows that match the ON-clause plus
any unmatched rows from the left, right, or both tables. This approach is sometimes referred to as an
Asymmetrical Join because its primary purpose is row preservation. This type of processing is a significant
feature offered by the Outer Join construct.

 Figure 3. Venn Diagram – Left Outer Join or Merge

 Figure 4. Venn Diagram – Right Outer Join or Merge

This special handling of matched and unmatched rows of data is the main thing that differentiates a
Symmetric Inner Join from an Asymmetric Outer Join.

All of these Joins and Merges have one particular common denominator. Each of them requires a like column
or the same variable name to match on. Thus, we return to the core focus of this presentation:

What do you do when tables do not contain

like columns or the same variable name
and a Join or Merge cannot be used?

 Professor Domino will be our guide 

In the next section
we will

continue
to

follow

The Power To Know

dominoes
to

find
the

solution.

The result of a Left Outer Join or Merge produces
matched rows from both tables while preserving all
unmatched rows from the left table. The result is
illustrated by the shaded areas (A and AB) in Figure 3.

The result of a Right Outer Join or Merge produces
matched rows from both tables while preserving all
unmatched rows from the right table. The result is
illustrated by the shaded areas (B and AB) in Figure 4.

5

Illuminating the Paradox of the Joinless Join

The development of the Joinless Join came about during a recent project when the need arose to overcome the
limitations of a standard Join and to resolve unforeseen issues which occurred with a One-Way Frequency.

SAS Highlight

A One-Way Frequency contains a distribution list of values, counts, and percentages for a column.

Here is a picture of our example SAS Enterprise Guide project:

 Our project example demonstrates 5 ways to use a Joinless Join.

Sometimes success is seeing
what we already have

in a new light.

Dan Miller

6

The Program Node creates the following table:

We use a Program Node to create the source table for our 1st example:

 This is the code you will need to recreate this table as you follow along.

DATA SMILEY_COMPANY;

 LENGTH Special_Person $20 Special_Number 8 Special_Code $1 Load_Date 8;

 FORMAT Load_Date date9.;

 INFILE DATALINES DELIMITER=',';

 INPUT Special_Person $ Special_Number Special_Code $ Load_Date;

DATALINES;

Smiley,10127911, ,19362

Smiley's Son,10173341,K,19362

Smiley's Twin,10376606,B,19362

Smiley's Wife,10927911,A,19362

Smiley's Son,11471884,E,19362

Smiley's Twin,11573691,G,19362

Smiley's Daughter,11975386,C,19362

Smiley's Son,12071884,J,19362

Smiley's Son,12871884,D,19362

Smiley's Twin,13173691,A,19362

Smiley's Wife,13771202,D,19362

Smiley's Daughter,13775498,H,19362

Smiley's Son,14171884,I,19362

Smiley's Twin,15373691,F,19362

Smiley's Son,15471884,C,19362

Smiley's Son,16074330,H,19362

Smiley's Daughter,16175498,B,19362

Smiley's Wife,16176964,I,19358

Smiley,16279111,E,19362

Smiley's Twin,16573691,K,19362;

RUN;

 The SMILEY_COMPANY table is used
throughout this presentation.

 This table contains each Special

Person, Special Number, and Special
Code of the  Smiley Company 
employees.

 Load_Date is the date when each

row was created.

7

The output table contains 1 row:

 Notice how the Special_Code_Flag is set to 1 because the Special_Code is missing from this row.

The output is filtered to include only rows where a flag is set to 1:

This Query creates the SMILEY_CONTROL_VALUE table:

A Control Value table is created in which
Computed Columns are set to 1 if any data
is missing in the SMILEY_COMPANY table:

Special_Person_Flag:
CASE

 WHEN t1.Special_Code = '' THEN 1

 ELSE 0

END

Special_Number_Flag:
CASE

 WHEN t1.Special_Number = 0 THEN 1

 WHEN t1.Special_Number is missing

 THEN 1

 ELSE 0

END

Special_Code_Flag:
CASE

 WHEN t1.Special_Code = '' THEN 1

 ELSE 0

END

Load_Date_Flag:
CASE

 WHEN t1.Load_Date = . THEN 1

 ELSE 0

END

8

A One-Way Frequency is run using the 4 flags:

Here is how the One-Way Frequency output looks with the 4 flags:

 This One-Way Frequency is setup to automatically send an email when this project is run.

Then one day NOTHING was missing from the SMILEY_COMPANY table…

 To replicate this scenario you will need to perform the following:

 Replace the Smiley,10127911, ,19362 DATALINE with Smiley,10127911,A,19362 in the
SMILEY_COMPANY Program Node on Page 6 and rerun to have no missing data in the table.

 Rerun the Query for SMILEY_CONTROL_VALUE and the Control Value Report One-Way
Frequency.

9

Here is the empty SMILEY_CONTROL_VALUE table:

 Since nothing is missing from the SMILEY_COMPANY table, all of the flags are set to 0 which
filters out all of the rows causing the SMILEY_CONTROL_VALUE table to be created empty.

 Do you know what happens when the SMILEY_CONTROL_VALUE table is created empty?

Note the Red X in the upper left corner
of the One-Way Frequency output:

 At first glance, it appears the report ran just fine – but remember, the input to the Control
Value Report was created empty.

 If the input is empty, then what are we seeing? Notice the Warning Message which appeared:

 This warning message unfortunately means that we are looking at the previous successful run
of this One-Way Frequency instead of the current results which we are seeking.

10

It was ironic that the first time the Smiley_Company table processed error free (no data was missing) that the
resulting empty Smiley_Control_Value table caused the One-Way Frequency to not run! Consequently, the
previous results were generated on the monthly report instead of the current results.

Here is a review of the One-Way Frequency issue before we explore the solution:

 When data is missing in the Smiley_Company table a row is created in the Smiley_Control_Value table with
the column flags set to 1.

 When the Smiley_Control_Value table is populated with at least 1 row the One-Way Frequency runs correctly
and generates current results.

 However, when data is not missing from the Smiley_Company table no rows are created in the
Smiley_Control_Value table.

 When the Smiley_Control_Value table is created empty the One-Way Frequency does not run correctly and
does not generate current results but instead displays the previous results.

 In summary, the One-Way Frequency runs correctly and generates current results only when the
Smiley_Control_Value table is populated with at least 1 row created by missing data detected in the
Smiley_Company table.

What to do, what to do…

As a result of this dilemma, SAS Intuition kicked in and a quest was undertaken to find a permanent
workaround solution that would enable the project to run successfully – even if all the tables were empty.

Here is the solution which arose during the quest to resolve this issue:

 Create a Smiley_Control_Value_Row_Count table with the row count of the Smiley_Control_Value table.

 Create a Smiley_Control_Value_Mock_Row table based upon an indirect relationship between the
Smiley_Control_Value_Row_Count table and the Smiley_Company table.

 When the Smiley_Control_Value table is populated with rows, the Smiley_Control_Value_Row_Count table will
contain a non-zero row count, and the Smiley_Control_Value_Mock_Row table will be created empty.

 When the Smiley_Control_Value table is empty, the Smiley_Control_Value_Row_Count table will contain a
zero row count, and the Smiley_Control_Value_Mock_Row table will be created with 1 mock row of column
flags set to 0.

 Append the Smiley_Control_Value table and the Smiley_Control_Value_Mock_Row table to ensure that the
appended output is always populated with either real data or mock data instead of being created empty.

 Use this appended output as the input to the One-Way Frequency to enable it to always run correctly and to
generate current results.

Necessity is the mother of all inventions.

Plato / Einstein

Always Remember, It’s Too Soon To Quit!

Bob Wieland (Mr. Inspiration)

11

This Query creates the SMILEY_CONTROL_VALUE_ROW_COUNT table
with the row count of the SMILEY_CONTROL_VALUE table:

 A Count of Special_Person is used to create the SMILEY_CONTROL_VALUE_ROW_COUNT.

 Automatically Select Groups is selected and no groups are selected to count the rows.

The output table contains 1 row with 1 column:

12

Create a Smiley_Control_Value_Mock_Row table based upon an indirect
relationship between the Smiley_Control_Value_Row_Count table

and the Smiley_Company table:

 As the mock row is created, all 4 flags are set to a 0 value meaning nothing is missing.

 Since only 1 mock row is needed, Query limits are set to create 1 output row via the Options.

 A filter is set to create a mock row only if the SMILEY_CONTROL_VALUE table is empty.

Notice there are no columns to Join between the two tables:

13

How the Joinless Join works:

 The SMILEY_CONTROL_VALUE_ROW_COUNT table indirectly relates to the SMILEY_COMPANY
table because it contains the row count of the error rows in the SMILEY_COMPANY table.

 We utilize a Joinless Join to create a Cartesian Product based upon this indirect relationship.

 The Cartesian Product attaches the 1 column in the SMILEY_CONTROL_VALUE_ROW_COUNT
table to the 20 rows of columns in the SMILEY_COMPANY table by placing it as a 5th column to
the right of the Load_Date column in the SMILEY_COMPANY table.



No Problem –

We can use a Joinless Join
based upon an indirect relationship

between the tables.

14

 This Warning Message always appears whenever 2 tables are joined with a Joinless Join
because SAS knows it will create a Cartesian Product which can take a lot of extra resources.

Here is the complete result of the Joinless Join:

 Notice how all 4 flags are set to 0 because no data is missing from the SMILEY_COMPANY table.

SAS Highlight

A Cartesian Product is defined as a result set of all the possible rows and columns contained in 2 or
more tables. The DATA Step does not easily lend itself to creating a Cartesian Product thus PROC
SQL is the desired approach. Its most noticeable coding characteristic is the absence of a WHERE-
clause. The resulting set of data from a Cartesian Product can be extremely large and unwieldy.
Although rarely produced, a Cartesian Product Join nicely illustrates a base (or internal
representation) for all Joins.

Caution:

When you design your Joinless Join
make sure that one of the tables

has only ONE row!

15

Append the Smiley_Control_Value table and the
Smiley_Control_Value_Mock_Row table to ensure that the appended

output is always populated with either real data or mock data
instead of being created empty:

 Notice the Append result matches the Smiley_Control_Value_Mock_Row table – Done & Done!

 We have achieved our desired results and we have a new input to the One-Way Frequency.

The One-Way Frequency is recreated using the appended table:

16

 Oh but wait... your new friend, the Joinless Join, is just getting started... 

Here is the output of the One-Way Frequency with the 4 flags:

 The One-Way Frequency correctly displays that all 4 flags are set to 0 and therefore no data is
missing – thanks to the Joinless Join .

Yea!!!

 Strike up the Band,
 Toss the Confetti,

 Release the Balloons!

Applause… Applause… Applause…

Bring out the Treats for Everyone!

17

Here are the 3 additional tables the Program Node creates:

Now we design another Program Node to create 3 additional tables:

 This is the code you will need to recreate these tables as you follow along.

DATA Special_Number_National_Average

 (KEEP=Special_Number_National_Average)

 Load_Date_Check (KEEP=Load_Date_Check)

 Special_Code_National_Focus

 (KEEP=Special_Code_National_Focus);

 LENGTH Load_Date_Check 8;

 FORMAT Load_Date_Check date9.;

 Special_Number_National_Average = 12000000;

 OUTPUT Special_Number_National_Average;

 Load_Date_Check = '01JAN2013'd;

 OUTPUT Load_Date_Check;

 Special_Code_National_Focus = 'K';

 OUTPUT Special_Code_National_Focus;

RUN;

 The Special_Number_National_Average table contains
the average special number taken from all of the Smiley
Companies nationwide. This will be used to calculate a
percentage of the Special_Number column in the
SMILEY_COMPANY table using a Joinless Join.

 The Load_Date_Check table contains a Load Date which
is used to validate that all of the rows in the
SMILEY_COMPANY table were created in 2013. This
validation will be done using a Joinless Join.

 The Special_Code_National_Focus table contains a

Special Code from the Smiley Company National
Headquarters which will be used to filter the output of
the SMILEY_COMPANY table using a Joinless Join.

18

This Query uses a Joinless Join to perform a Calculation:

 The Cartesian Product is created behind the scenes since no Join exists between the 2 tables.

 Special_Number_Percent is calculated using indirectly related columns from both tables.

 Here is the final result with the Special_Number_Percent column to the right of each row.

19

This Query uses a Joinless Join to perform a Validation:

 The Cartesian Product is created behind the scenes since no Join exists between the 2 tables.

 Date_Validation is computed using indirectly related columns from both tables.

 Here is the final result with the Date_Validation column to the right of each row.

20

This Query uses a Joinless Join to perform a Filtration:

 The Cartesian Product is created behind the scenes since no Join exists between the 2 tables.

 A filter is created based upon indirectly related columns from both tables.

 Here is the final result with the Smiley_Company table filtered indirectly based upon the
Special_Code_National_Focus table.

21

This Query uses 4 Joinless Joins to perform
a Mock Row Creation, a Calculation, a Validation, and a Filtration:

 The Cartesian Product is created behind the scenes since no Join exists between the 5 tables.

22

The Mock Row Creation, Calculation, Validation, and Filtration
are represented by Computed Columns:

 The Computed Columns are derived in the same way as shown in the previous examples along
with one new Special_Code_Match Computed Column representing Filtration.

 Here is the final result with the Flags to the left and the Calculation, Validation, and Filtration
Computed Columns to the right of each row.

 The One-Way Frequency correctly displays that all 4 flags are set to 0 and therefore no data is
missing – thanks to the Joinless Join .

23

CONCLUSION

Our presentation has shown you how a Joinless Join can bridge the research impasse you experience when
needing to combine data from SAS tables which do not contain like columns or the same variable name. You
have learned how to perform table creations, calculations, validations, and filtrations based upon indirect
relationships and dependencies. The Joinless Join empowers you to creatively overcome the limits of a
standard Join or Merge and enables you to expand the power of SAS Enterprise Guide in a new way.

The Power To Know when to design and how to utilize a Joinless Join sets off The Power To Create tables
based upon indirect relationships and dependencies which leads to The Power To Automate projects when
tables cannot be directly joined or merged. (Say that statement really fast for fun .) Begin thinking about
how you can use the powerful and paradoxical Joinless Join to advance and enhance your programming.

SAS Programming is like a series of intricate and fluid domino designs and you are the designer. Your desire
to design a quality program fuels your thoroughness and attention to detail. As a SAS Professional, your
inquisitive nature, research oriented mindset, and solution driven focus are among your greatest assets.

Always remember, It's not what the world holds for you, it's what YOU bring to it! (Anne of Green Gables); so keep
learning, growing, and sharing. Continue to develop and build on your many skills and talents. Keep looking
for different ways to express your God-given abilities and ideas. You will soon discover new and creative
ways to program in SAS. Plan on coming back next year to the MWSUG Conference to shed some light on the
exciting things you are learning. We look forward to your teaching sessions in the future.

As we conclude our presentation, we want to introduce you to our SAS Mascot, Smiley. Smiley represents
the SAS Joy which each of us experience when we find better ways to accomplish mighty and worthy deeds
using SAS. The four of us hope your time with us today has expanded and enriched your SAS knowledge.

Thank You For Honoring Us With Your Participation

 Happy SAS Trails To You… Until We Meet Again 

Your life is like a campfire at night -
You never know how many people will see it
and be comforted and guided by your light.

Claire Draper

Rule #6: Study hard and learn all you can.

 Roy Rogers Riders Club Rules 

How wonderful it is that we need not wait a single minute
before starting to improve ourselves and our world!

Anne Frank

24

MEET THE AUTHORS

Writing is a permanent legacy.

John C. Maxwell

Kent Phelps (Co-Founder/President, Illuminator Coaching, Inc.) is a Senior Data Governance Analyst and has
worked in IT and Data Governance since 1990. He has programmed in SAS since 2007, is a SAS Certified
Professional specializing in combining and automating the best of SAS Enterprise Guide with Base SAS, and
has Co-Created and Co-Led Intro To SAS EG classes. Kent has a B.S. in Electrical Engineering, has studied
Transformational Leadership, Dynamic Teamwork, and Personal Growth since 1994, and is a 48 Days To The
Work You Love Coach and a John Maxwell Team Coach. His hope is to encourage you to pursue your unique
destiny and to equip you to navigate your journey with purpose and passion.

Ronda Phelps (Co-Founder/President, Illuminator Coaching, Inc.) is a Writer, Communicator, Teacher, and
Coach. Formerly, she worked in the Banking and Insurance industries for 19 years. Current endeavors
include co-writing SAS White Papers, writing her first children’s book, and developing content for the ICI
website. Ronda has studied Transformational Leadership, Dynamic Teamwork, and Personal Growth since
1994 and is a 48 Days To The Work You Love Coach and a John Maxwell Team Coach. She believes YOU are a
gift that the world is waiting to receive. Her hope is to encourage you to reach your life, work, and leadership
potential and to equip you to build an enduring legacy of inspiration, excellence, and honor.

Kirk Paul Lafler (Founder/Senior Consultant, Software Intelligence Corporation) has programmed in SAS
since 1979. He is a SAS Certified Professional, provides IT Consulting Services, is a SAScommunity.org
Emeritus Advisory Board member, and trains/mentors SAS users worldwide. Kirk has authored 5 books
including PROC SQL: Beyond the Basics Using SAS (2nd Edition, SAS Institute 2013), has written over 500
papers, has been invited to speak/train at over 300 SAS international, regional, local, special-interest and in-
house user group conferences/meetings, and has received 22 BEST Contributed Paper, Hands-On Workshop
(HOW), and Poster Awards. His popular SAS Tips column Kirk’s Korner of Quick and Simple Tips and his fun
SASword Puzzles appear on various SAS websites and in several SAS User Group newsletters.

We invite you to share your valued comments with us:

Kent Phelps
Co-President, Senior Data Governance Analyst, Writer, Communicator, Teacher, and Coach

Illuminator Coaching, Inc.
E-mail: SASketeers@IlluminatorCoaching.com

Ronda Phelps

Co-President, Writer, Communicator, Teacher, and Coach
Illuminator Coaching, Inc.

E-mail: SASketeers@IlluminatorCoaching.com

Kirk Paul Lafler

Senior Consultant, Application Developer, Trainer, Mentor, and Author
Software Intelligence Corporation

E-mail: KirkLafler@cs.com
LinkedIn: http://www.linkedin.com/in/KirkPaulLafler

Twitter: @sasNerd

 We Look Forward To Connecting With You In The Future 

mailto:SASketeers@IlluminatorCoaching.com
mailto:SASketeers@IlluminatorCoaching.com
mailto:KirkLafler@cs.com
http://www.linkedin.com/in/KirkPaulLafler

25

ACKNOWLEDGMENTS

We want to thank Brian Varney and Swati Agarwal, MWSUG 2013 Beyond the Basics Section Chairs, for
graciously accepting our abstract and paper. We also want to express our gratitude to the MWSUG 2013
Conference Co-Chairs, George J. Hurley (Operations Chair) and Matthew Karafa (Academic Chair), the
MWSUG Executive Committee, SAS Institute, and Conference Leaders for their diligent efforts in organizing
and hosting this illuminating, empowering, and energizing conference. In addition, we offer our appreciation
to Denise Lyon, Director Data Governance, for her inspiring leadership and empowering support in SAS; and
to Mike McCullough, Senior Data Governance Analyst, for introducing Kent to SAS Enterprise Guide.

REFERENCES

Celko, Joe (2010), Joe Celko's SQL for Smarties, Fourth Edition: Advanced SQL Programming (The Morgan
Kaufmann Series in Data Management Systems); November 10, 2010; ISBN-10: 0123820227; ISBN-13: 978-
0123820228.

Foley, Malachy J. (2005), Merging vs. Joining: Comparing the DATA Step with SQL, Proceedings of the 30th
Annual SAS Users Group International (SUGI) 2005 Conference, University of North Carolina, Chapel Hill, NC,
USA. http://www.scsug.org/SCSUGProceedings/2005/Foley_Merging%20vs%20Joining%20-%20184.pdf

Kent, Paul, SQL Joins -- The Long and The Short of It; SAS Institute Inc., Cary, NC, USA.

Lafler, Kirk Paul (2013), PROC SQL: Beyond the Basics Using SAS, Second Edition; SAS Press.
http://support.sas.com/publishing/authors/lafler.html

Lafler, Kirk Paul and Mira Shapiro (2013), Point-and-Click Programming Using SAS® Enterprise Guide®,
NorthEast SAS Users Group (NESUG) 2013 Conference.

Lafler, Kirk Paul (2012), Exploring DATA Step Merges and PROC SQL Joins, Proceedings of the 6th Annual SAS
Global Forum (SGF) 2012 Conference, Software Intelligence Corporation, Spring Valley, CA, USA.
http://support.sas.com/resources/papers/proceedings12/251-2012.pdf

Lafler, Kirk Paul (2012), Exploring DATA Step Merges and PROC SQL Joins, Proceedings of the 14th Annual
Pharmaceutical SAS Users Group (PharmaSUG) 2012 Conference, Software Intelligence Corporation, Spring
Valley, CA, USA. http://pharmasug.org/proceedings/2012/TA/PharmaSUG-2012-TA02.pdf

Lafler, Kirk Paul (2012), You Could Be a SAS® Nerd If . . ., Proceedings of the 23rd Annual MidWest SAS Users
Group (MWSUG) 2012 Conference, Software Intelligence Corporation, Spring Valley, CA, USA.
http://www.mwsug.org/proceedings/2012/S1/MWSUG-2012-S103.pdf

Phelps, Kent  Ronda Team Phelps and Kirk Paul Lafler (2013), SAS® Commands PIPE and CALL
EXECUTE; Dynamically Advancing From Strangers to Best Friends, Proceedings of the 24th Annual MidWest SAS
Users Group (MWSUG) 2013 Conference, Illuminator Coaching, Inc., Des Moines, IA, USA, and Software
Intelligence Corporation, Spring Valley, CA, USA.

TRADEMARK CITATIONS

SAS and all other SAS Institute, Inc., product or service names are registered trademarks or trademarks of SAS
Institute, Inc., in the USA and other countries. The symbol, ®, indicates USA registration. Other brand and
product names are registered trademarks or trademarks of their respective companies.

http://www.scsug.org/SCSUGProceedings/2005/Foley_Merging%20vs%20Joining%20-%20184.pdf
http://support.sas.com/publishing/authors/lafler.html
http://support.sas.com/resources/papers/proceedings12/251-2012.pdf
http://pharmasug.org/proceedings/2012/TA/PharmaSUG-2012-TA02.pdf
http://www.mwsug.org/proceedings/2012/S1/MWSUG-2012-S103.pdf

