
Paper BB-04-2013

“How Do I . . .?”
There is more than one way to solve that problem;

Why continuing to learn is so important

Arthur L. Carpenter
CA Occidental Consultants

ABSTRACT
In the SAS® forums questions are often posted that start with “How do I . . . ?”. Generally there are multiple
solutions to the posted problem, and often these solutions vary from simple to complex. In many of the
responses the simple solution is often inefficient and also reflects a somewhat naïve understanding of the SAS
language. This would not be so very bad except sometimes the responder thinks that their response is the best
solution, or perhaps worse, the only solution. Worse yet, when there is a range of solutions, the ‘right answer’
that the original poster selects often reflects the simplest solution that the original poster understands. In both
cases these folks have stopped learning and have stopped expanding their understanding of the language.

The examples in this presentation will illustrate the progression of solutions from the simple (simplistic) to the
sophisticated for a number of ‘How do I . . . ?’ questions, and through the discussion of the individual
techniques, we will learn how and why it is so very important to continue to learn.

INTRODUCTION
Within the SAS community it is often stated that for SAS there is almost always more than one solution to even
the most difficult programming problem. Although SAS is a complex programming language, there are many
simple solutions – often to even difficult problems. Sometimes these simple solutions are ‘just right’, but
sometimes they are too simplistic and tend to be inefficient. Fortunately there are often several techniques that
can be applied in any given situation, and it is not unusual that the range of solutions varies from simple to
complex.

When programmers speak of efficiency they often refer to the speed of processing. The efficiency of the
computer, however, should not be the only consideration. The programmer who will be maintaining the code
must also be taken into consideration. A complex coding solution that takes hours to develop and maintain, but
saves a few computational seconds may be less efficient than a simpler solution that is quick to develop and
maintain. As the programmer gains technical prowess, the more complex solutions become quicker to program
and simpler to maintain. The beginning programmer will only be able to develop and maintain the simple
solutions, however, the advanced programmer has the ability to choose among solutions that the beginning
programmer cannot even envision.

This is why we must force ourselves to continue to learn new and more complex elements of the language. As
we grow in sophistication so too can our programs. As you look through the solutions to the problems
presented in this paper, ask yourself how you would code the solution. It is likely that your solution will be
different than any presented in this paper. One of the wonderful aspects of SAS is its flexibility to allow multiple
solutions to virtually every problem.

1

https://communities.sas.com/

THE CLASSIC TABLE LOOKUP

How do I assign a value to a variable based on a code in another variable?
The process of determining and assigning values to a variable based on the value in another variable is known as
a lookup. There are many more techniques and types of lookups than the three primary ones shown here,
however these approaches should illustrate the differences in the techniques and why it is so very important to
understand them.

In the examples shown here we have gone to a farm and counted various kinds of animals. The number of
animals observed and the animal’s code have been recorded in the data set COUNTS. Based on the animal’s
code, we need to add the name of the animal to the data set.

IF-THEN/ELSE
The simplest form of table lookup uses IF-THEN processing. A series of IF statements without any corresponding

ELSE statements is the slowest form of
lookup. Simply adding an ELSE to all but the
first IF statement, can make a big difference.

 Notice the ELSE for each of the IF
statements (except for the first one). A
slight performance enhancement can be
realized if the most commonly occurring
codes are arranged higher in the list.

When there are only a very few items to
‘look up’, as in this example, this form of
lookup may be sufficient. However as the
number of items increases, the coding itself
can be burdensome. Three or four items is
about my limit for a series of IF-THEN/ELSE
statements.

Performance wise this form of lookup is
roughly equivalent to a SELECT statement
with a series of WHEN statements in the

DATA step, and the CASE statement in a SQL step.

Merges and Joins
Another very common form of lookup is seen when the item to be ‘looked up’ is already in a data table. Here

the data set CODES contains the association between code and animal.

There are multiple ways to add the variable ANIMAL from CODES onto
the data set COUNTS. The JOIN in SQL and the MERGE in the DATA step
can produce very similar results, often with radically different
efficiencies. In both cases there are multiple ways to structure the
coding of the steps.

The SQL language reads the incoming data into memory and then

performs operations such as joins. The DATA step on the other hand processes at the observation level. When
the incoming table fits in memory, the join will usually be faster. This is especially true when you consider that

data counts;
input code count;
datalines;
1 23
4 15
2 3
5 27
3 5
run;

* Assign animal names with
* IF-THEN/ELSE processing;
data ifthen;
 set counts;
 if code=1 then animal='Chicken';
 else if code=2 then animal='Horse'; 
 else if code=3 then animal='Pig';
 else if code=4 then animal='Sheep';
 else animal='Unknown';
 run;

data codes;
input code animal $;
datalines;
4 Sheep
1 chicken
3 Pig
2 Horse
run;

2

the DATA step MERGE requires sorted data sets, and when the time to sort the data is included in the overall
total compared to the SQL join.

The DATA step MERGE statement lists the data sets that are to be joined. Since the BY statement is required to
perform a match merge, the two incoming data sets must first be sorted.

 Only observations that appear in
the COUNTS data set are to be
included in the new data set
(WORK.MERGED).

 When codes appear
in the COUNTS data
set, but not in the data
set of codes, the value
of ANIMAL is set to
‘Unknown’.

In a SQL step, the LEFT JOIN most closely mimics the DATA step’s MERGE.
 Similar to the WHERE, the
ON phrase is used to select
those rows which have the
same value of CODE from
each of the two data sets.
 The two data sets COUNTS
and CODES are joined using a
LEFT JOIN. Notice that the
table COUNTS is listed first –

as it is in the MERGE statement above.
 Missing values of ANIMAL are replaced with ‘Unknown’ through the use of the COALESCE function.
The variables to be included in the new data set (WORK.JOINED) are listed.

User Defined Formats
Lookups executed through the implementation of user defined formats will be faster than the IF-THEN/ELSE,
MERGE, and JOIN techniques shown above. For a number of reasons this technique should probably be the
user’s first choice whenever there are more than just a few items to lookup.

Since formats can be permanently stored in libraries, a change in the format can be used to change assignments
in numerous programs while making a change in only one place. The user defined format should be sufficiently
fast for most users as long as the number of items in the format does not exceed 20 to 40 thousand.

proc sql noprint;
 create table joined as
 select c.code, c.count, 
 coalesce(a.animal,'Unknown') as animal 
 from counts as c left join codes as a 
 on c.code=a.code; 
 quit;

* Assign animal names using a merge;
proc sort data=counts;
 by code;
 run;
proc sort data=codes;
 by code;
 run;
data merged;
 merge counts(in=incounts)
 codes(in=incodes);
 by code;
 if incounts; 
 if not incodes then
 animal='Unknown'; 
 run;

3

The key to this technique is to create a user defined format. For this simple example, where we have only a few
items to lookup, we could explicitly write the PROC FORMAT step.
However as the number of items increases, writing the VALUE
statement (or INVALUE statement for INFORMATS), becomes
impractical.

Fortunately it is very often the case that the format can be based on
an existing data set which already contains the pairings. For the
barnyard animal example the pairs are found in the WORK.CODES data
set. When this data set exists, it can be converted into a data set that

PROC FORMAT can use to generate the format. PROC FORMAT uses the CNTLIN= option to identify this ‘control’
data set.

A control data set is built with specific variables. This data set is then passed to PROC FORMAT where the

format is created based on the
instructions contained in the data
sets observations. As a minimum
the control data set must, at the
very least, have the variables
FMTNAME, START, and LABEL. Over
20 additional variables are available,
and these are used to implement
the many options available to PROC
FORMAT.

 The variables needed in this control data set appear on the KEEP= data set option.
• FMTNAME is used to name the format.
• START contains the value to be mapped (the code).
• LABEL is the value being mapped to, in this case, the animal name.
• HLO allows for additional options, such as; HIGH, LOW, and OTHER

 The name of the format which is to be created is stored in FMTNAME.
 The HLO variable allows us to assign ‘Unknown’ to any code that is not otherwise assigned to an animal.

Once the control data set has been created, it is passed to PROC FORMAT using the CNTLIN= option.

 The control data set is converted into a format
through the use of PROC FORMAT’s CNTLIN=
option.
 The PUT function (or the INPUT function in the
case of INFORMATS) is used to perform the actual
lookup.

Advanced LOOKUP Techniques
There are numerous other lookup techniques that have increasing complexity, and for large data sets,
potentially huge performance gains. For most users in most situations these other techniques add program
complexity without a corresponding performance gain. However when the number of items to lookup exceeds
the efficient capacity of the FORMAT, they are available.

proc format cntlin=control; 
 run;
data fromfmt;
 set counts;
 animal = put(code,animals.); 
 run;

proc format;
 value animals
 1 ='chicken'
 2 ='Horse'
 3 ='Pig'
 4 ='Sheep'
 other='Unknown';
 run;

data control(keep=fmtname start label hlo); 
 set codes(rename=(code=start animal=label))
 end=eof;
 retain fmtname 'animals'; 
 output control;
 if eof then do;
 hlo='o'; 
 label='Unknown';
 output control;
 end;
 run;

4

Some of the more advanced lookup techniques include:
• Double SET statement merges
• The use of data set indexes
• Key indexing
• The use of DATA step hash objects

These techniques are outside the scope of this paper, but have been discussed extensively including the 2001
paper “Table Lookups: From IF-THEN to Key-Indexing”, http://www2.sas.com/proceedings/sugi26/p158-26.pdf.

CHANGING THE ORDER OF DISPLAYED VALUES

\How do I change the order of displayed values?
The $2 variable REGION takes on the values of ‘1’, ‘2’, . . . ,’10’. When the values of this
variable are displayed, the order of the values are ‘1’, ‘10’, ‘2’, . . ., ‘9’. How can I get
them to be displayed in the ‘correct’ order?

First of course is that they are in the correct order, as a character variable ‘10’ sorts
before ‘2’ alphabetically. Consequently using PROC SORT is not going to be a helpful
solution. The sort order is also known as the internal order.

We see this ordering in the PROC PRINT of the sorted data set on the right as well as
when the data is used in other procedures such as PROC FREQ, which is used in the
examples that follow.

Convert to Numeric
The problem would go away if REGION was a numeric variable. The conversion of
character to numeric values is best handled through the INPUT function in a DATA step.

 The INPUT function converts the character
value in CREG to numeric. The result is stored in
the numeric variable REGION, which can be used
in PROC FREQ.

Changing the Stored Value
Rather than create a new variable we might consider
modifying the existing variable. Placing a blank in front
of the values (other than ‘10’) would cause them to
sort differently.

data Nregion(keep=region count);
 set regions(rename=(region=creg));
 region=input(creg,2.); 
 run;
title1 'Convert to Numeric';
proc Freq data=nregion;
 table region;
 run;

5

http://www2.sas.com/proceedings/sugi26/p158-26.pdf

 The RIGHT function effectively inserts a blank by
right justifying the value in the available two spaces.

Using a User Defined Format
Each of the previous two techniques require an extra pass of the data. This is not a problem when the data sets
are small, however if they are large, more efficient solutions are required. One possibility is the use of a user

defined format.

 The format $RIGHTREG. is used to shift the values

to the right.
 PROC FREQ automatically uses formatted classification variables (REGION) to form the groups, but by default
the unformatted (INTERNAL) values determine the order. The ORDER= option can be used to control the display
order, which in this case is based on the formatted values.
 The FORMAT statement is used to create the association with the format and the variable REGION.

This technique will be faster than either of the first two as an extra pass of the data is not required.

When there are more than just a few regions, you could call the RIGHT function directly from the format. The

function appears as the label in square brackets and without quotes.
The format $RTFUNC would be used in the same way as $RIGHTREG
above .

data cregion;
 set regions;
 region=right(region); 
 run;

proc format;
 value $rightreg 
 '1' = ' 1'
 '2' = ' 2'
 '3' = ' 3'
 '10' = '10';
 run;
title1 'User Defined Format';
proc Freq data=regions
 order=formatted; 
 table region;
 format region $rightreg.; 
 run;

proc format;
 value $rtfunc
 other=[right()];
 run;

6

But what if I want region 3 to be first followed by region 10 then 2?

Trick the Format
Since blanks sort first, blanks can be inserted in the label portion of the format. Most ODS styles will left justify

character strings after the order has been determined,
consequently we can take advantage of this by adding as
many leading blanks on the format label as are needed.

 Three leading blanks will sort before two and so
on.

Using NOTSORTED
When neither the internal nor the formatted order is desired, and you are using the MEANS, SUMMARY,
TABULATE, or REPORT procedures, you can combine the use of the NOTSORTED option on the PROC FORMAT
statement along with preloading the format.

In this example we want the same region order as shown above, however we are not padding the label with

leading blanks.

 The NOTSORTED option on the VALUE statement
preserves the internal order of the items as they are
listed in the format definition. This option can effect
efficiencies if the number of items in the format is large,
but that will not be an issue for this format.
 Preloaded formats cannot be used with PROC FREQ,

however they are very practical for the
MEANS / SUMMARY procedure (see
Carpenter 2012 for more on preloaded
formats). The ORDER=DATA option
allows the format’s NOTSORTED order to
be surfaced.
 The format is associated with the

classification variable in the usual way.
 If w need to see the order preserved in the output
from PROC FREQ, which does not support preloaded
formats, we can use the data set generated by the
MEANS procedure as input to FREQ. The WEIGHT

statement forces the correct percentages to be calculated. Notice the use of the ORDER=DATA option, in this
procedure it preserves the incoming data order, which was created by the MEANS procedure.

proc format;
 value $regorder (notsorted) 
 '3' = '3'
 '10' = '10'
 '2' = '2'
 '1' = '1';
 run;

proc format;
 value $regorder
 '3' = ' 3'
 '10' = ' 10' 
 '2' = ' 2'
 '1' = '1';
 run;
title1 'Using Blanks';
proc Freq data=regions
 order=formatted;
 table region;
 format region $regorder.;
 run;

proc means data=regions nway noprint;
 class region / preloadfmt order=data; 
 output out=cnts n=number sum=totalcnt;
 format region $regorder.; 
 run;

proc freq data=cnts order=data;
 table region;
 weight number; 
 run;

7

COMPARISON ACROSS COLUMNS

How do I determine if the value of one variable is in a list of other variables?
Comparing the values of any two columns is very straight forward, but when the number of columns to compare
becomes large the solution is not so obvious. In the examples that follow we need to determine if the value in
the variable VALUE is also in one or more of the other variables in the data set. If it is found the variable INLIST
is set to ‘yes’, otherwise it is set to have a value of ‘no’.

In these examples there are only three variables to which we want to compare: TRT1, TRT2, and TRT3; but we
may in actuality need to allow for many more variables than just three.

Using IF-THEN/ELSE Processing
The simplest solution is to use IF-THEN/ELSE processing to compare the variable VALUE to the other variables.
Certainly this code solution is straightforward; however it is not very expandable. Imagine rewriting the IF

statement for 100 different TRT variables instead
of just three!

Essentially the same solution can be seen in the
following SQL step. Again the code will become
difficult to maintain as the number of comparison
variables increases.

Using SQL and the WHICHC Function
A variation on the previous
SQL step utilizes the
WHICHC function. This
function compares the first
argument to the remaining
arguments and returns the
number of the first match,
and a 0 if no matches are
found.

data IFcheck;
 set values;
 if value=trt1 or
 value=trt2 or
 value=trt3 then InList='yes';
 else inlist='no';
 run;

proc sql;
create table SQLcheck as
 select *,
 case
 when whichc(value,trt1,trt2,trt3)then 'yes'
 else 'no'
 end
 as InList format=$3.
 from values;
quit;

proc sql;
create table SQLWhen as
 select *,
 case
 when (value=trt1 or value=trt2 or value=trt3)then 'yes'
 else 'no'
 end
 as InList format=$3.
 from values;
quit;

8

Using the IN Operator
The IN operator will also compare an item to a list of values, however it cannot compare a variable’s value to a

list of variables as is done here.
Syntax such as is shown here
will result in an error. This
solution, even if it worked,
would have the same limitation
as the first solutions in that
each variable to be compared
would need to be listed

separately.

Although the IN operator cannot be used with a list of variables, it can be used to access the elements of an
array – which is essentially the same thing. This is the first solution for this problem that we have looked at in
this section that will work for any number of variables that start with the letters TRT.

 The array TRTVAL is declared. Its
dimension is not specified and the list
of variables includes all variables that
start with the letters TRT.
 Rather than list the variables only
the array name is used. The
comparison will be made for each

element of the array.

Using WHICHC in the DATA Step
This solution varies only slightly from the previous one. Instead of the IN operator the WHICHC function is used
in a fashion similar to how it is used in the SQL step shown above.

Again an array is set up
which will contain all the
comparison variables.

 The second argument
of the WHICHC function
is the array. Notice that
the syntax is different in

this function call as compared to how the array was called when used with the IN operator .

Discussion Thread
A question very similar to this one was posted on LinkedIn. The SQL solution using the WHICHC function was
suggested by Patrick Mather.
http://www.linkedin.com/groupItem?view=&srchtype=discussedNews&gid=70702&item=212076970&type=me
mber&trk=eml-anet_dig-b_pd-ttl-cn&ut=2QQE3h2AWA4lE1

data INCheck;
 set values;
 * This will not work !!!!;
 if value in(trt1,trt2,trt3) then InList='yes';
 else inlist='no';
 run;

data INCheck;
 set values;
 array trtval {*} trt:; 
 if value in trtval  then InList='yes';
 else inlist='no';
 run;

data WhichCheck;
 set values;
 array trtval {*} trt:; 
 if whichc(value,of trtval{*}) then InList='yes'; 
 else inlist='no';
 run;

9

http://www.linkedin.com/groupItem?view=&srchtype=discussedNews&gid=70702&item=212076970&type=member&trk=eml-anet_dig-b_pd-ttl-cn&ut=2QQE3h2AWA4lE1
http://www.linkedin.com/groupItem?view=&srchtype=discussedNews&gid=70702&item=212076970&type=member&trk=eml-anet_dig-b_pd-ttl-cn&ut=2QQE3h2AWA4lE1

COUNTING OBSERVATIONS

How do I determine how many observations are in my data set?
The number of observations in a data set can be important for a number of reasons. One of the most common
is to determine whether or not the data set is empty (0 observations). In each of the examples in this section
the macro variable &DSOBS is created to hold the number of observations in the data set WORK.REGIONS.

Counting Observations with the DATA Step
When a DATA step is executed there is an implied loop that executes for each incoming observation.
The automatic temporary variable _N_ counts the iterations of this implied loop; and by inference in this
simple DATA step, the number of observations on the incoming data set. The last observation is

detected by the END= option which
sets the temporary variable EOF to 1.
The SYMPUTX routine is then used
to load the largest value of _N_ into
the macro variable &DSOBS.

Compared to the techniques that

follow, this is a very inefficient way to obtain the number of observations. Not only do we have the
overhead of the DATA step, but worse yet, all the incoming observations must be read and counted. At
least we are using the _NULL_ to avoid the creation of a new data set.

Using SQL to Count Observations
Like in the previous example the observations can be counted in an SQL step. The previous DATA _NULL_ step is

roughly equivalent to this SQL step. The automatic macro
variable &SQLOBS counts the number of observations and
this value is written to the macro variable &DSOBS. Although
no data table is created, like the previous DATA step all
observations must be read and processed.

A similar alternative to using the macro variable &SQLOBS is
the COUNT function. In this example the COUNT function is

used to count all the observations in the
incoming data set. The result of the COUNT
function is then written into the macro variable
&DSOBS. The SEPARATED BY clause is not
necessary here, however by including it, the
value stored in the macro variable is left justified
and trimmed.

Like the DATA step approach shown above, this SQL step is inefficient in that all the observations of
WORK.REGIONS must be read in order for them to be counted.

proc sql noprint;
 select count(*)
 into :dsobs separated by ' '
 from regions;
 quit;
%put number of obs is &dsobs;

data _null_;
 set regions end=eof;
 if eof then call symputx('dsobs',_n_);
 run;
%put There are &dsobs observations.;

proc sql noprint;
create table _null_ as
 select *
 from regions;
 quit;
%let dsobs=&sqlobs;
%put number of obs is &dsobs;

10

Using CONTENTS to Access the Metadata
Since the number of observations in a data set is always stored as a part of that data set’s metadata, it is not
necessary to physically count the observations. Each of the methods shown below takes advantage of this
metadata one way or another. These approaches are not equivalent in either programming complexity or
processing efficiency.

Since PROC CONTENTS specifically works with
metadata, we can use it to abstract the value of
interest. Using the OUT= option results in a data set
with one observation per variable in the data set.
Some variables such as NOBS will be a constant
across all observations. We can read this data set
and place the value of the variable NOBS into the
macro variable &DSOBS using the SYMPUTX routine.
Notice the use of the STOP statement so that we
only read one of the observations.

Using the NOBS= SET Statement Option
 In the DATA step, the SET statement option NOBS= retrieves the number of observations stored in the
metadata. In this example the NOBS= option is used to place the number of observations in the temporary

variable (N_OBS) during the compilation
phase of the DATA step. Then during the
execution phase this value is transferred to
the macro variable &DSOBS by the SYMPUTX
routine. Notice the use of the stop statement
to prevent the reading of any observations
from the data set WORK.REGIONS.

Indirect Access of the Meta Data
Potions of the metadata of SAS data sets are also available through a series views in SASHELP and SQL
DICTIONARY tables that are automatically created by SAS. Of particular interest for this example are
SASHELP.VTABLE and DICTIONARY.TABLES.

The views in the SASHELP library are accessed as you would any SAS data set. SASHELP.VTABLE contains one

observation for each data set known to SAS. Here the
specific data set of interest has been selected in a
WHERE clause and the value, which contains the
number of observations and is stored in the variable
NOBS, is written to the macro variable &DSOBS.

Since a view is created when requested, and since
there may be a great many data sets known to SAS,

the creation of this view may be noticeably time consuming. When this view is requested the entire table is
created before the WHERE clause is applied, consequently selecting only one row from the view is unlikely to
improve the performance of this technique.

When using SQL, you may access both the SASHELP views as in the previous step as well as a series of
DICTIONARY tables only available in a SQL step. Like views, the DICTIONARY tables are always current, but they
tend to load faster than the SASHELP views.

data _null_;
 call symputx('dsobs',n_obs);
 stop;
 set regions nobs=n_obs;
 run;
%put There are &dsobs observations.;

data _null_;
 set sashelp.vtable(
 where=(libname='WORK' &
 memname='REGIONS'));
 call symputx('dsobs',nobs);
 run;

proc contents data=work.regions
 out=cont noprint;
 run;
data _null_;
 set cont(keep=nobs);
 call symputx('dsobs',nobs);
 stop;
 run;
%put From Contents count is &dsobs;

11

Similar to SASHELP.VTABLE the table DICTIONARY.TABLES has one row per data set known to SAS. It also
contains the variable NOBS, which contains the
number of observations. In this SQL step the value of
the variable NOBS is written to the macro variable
&DSOBS. The WHERE clause has been specified to
select only the table of interest.

In each of the previous two examples we have
wanted information from a specific data set, but

have created either a SASHELP view or a DICTIONARY table with many rows, all but one of which were
discarded.

Reading the Metadata Directly
In terms of processing speed the fastest way to retrieve the number of observations is to use the macro
language to read the value directly. The following macro function returns the number of observations in the

data set named in its one
parameter .

 The name of the data set
of interest is held in the
parameter &DSN.
 This is a macro function,
therefore all macro variables
created must be placed in the
local symbol table.
 The OPEN function allows
access to the data set. This

function returns a non-zero value when the named data set exists and is available for use. Stored in the macro
variable &DSID, this value is used in the ATTRN and CLOSE functions.
 The ATTRN function returns numeric attributes from the metadata. The first argument is the data set id
number (&DSID) and the second is the attribute to be retrieved. NLOBS returns the number of non deleted
observations.
 Good practices require that the data set be closed after use. This allows the data set to be used by others as
well.
 The value to be returned is written by the macro.
 The %OBSCNT macro returns the number of observations, and the resulting %LET statement is:

 %let dsobs = 10;

Counting Observations Thread
A similar discussion can be found on a LinkedIn thread:
http://www.linkedin.com/groupItem?view=&srchtype=discussedNews&gid=70702&item=209843149&type=me
mber&trk=eml-anet_dig-b_pd-ttl-cn&ut=3vaF17OB5xbRE1

proc sql noprint;
select nobs
 into :dsobs
 from dictionary.tables
 where libname='WORK' &
 memname='REGIONS';
quit;

%macro obscnt(dsn=); 
%local dsid obs; 
%let dsid = %sysfunc(open(&dsn)); 
%if &dsid %then
 %let obs = %sysfunc(attrn(&dsid,nlobs)); 
%else %let obs = .;
%let dsid = %sysfunc(close(&dsid)); 
&obs 
%mend obscnt;
%let dsobs = %obscnt(dsn=work.regions); 

12

http://www.linkedin.com/groupItem?view=&srchtype=discussedNews&gid=70702&item=209843149&type=member&trk=eml-anet_dig-b_pd-ttl-cn&ut=3vaF17OB5xbRE1
http://www.linkedin.com/groupItem?view=&srchtype=discussedNews&gid=70702&item=209843149&type=member&trk=eml-anet_dig-b_pd-ttl-cn&ut=3vaF17OB5xbRE1

RETURN THE LAST 10 OBSERVATIONS

How do I create a data set containing only the last 10 observations from my
incoming data set?
When we need to read a selected subset of the incoming data set, we need to establish a criterion for the
selection. In this series of examples the criterion is to select only the last 10 observations from the incoming
data set. The problem of course is to know which observations are in the last 10.

Some of the solutions shown here require the programmer to know the total number of observations in the data
set. Several solutions to this separate problem were discussed in the previous sections of this paper, and that
portion of the techniques shown below will not restate them.

Reading all Observations and Counting Them
One of the first solutions is to read all observations, number them and then only output the last 10. This
requires two passes of the data. This solution is only included here so that I can discourage its use. In the first

pass an observation counter (CNT) is added to the data set
and the total number of observations is then saved in a
macro variable. Note that the macro variable has been
resaved as each observation is counted. Then in a second
pass of the data a determination is made on the
acceptability of each observation. We have had to read
every observation twice. For large data sets this would be
very inefficient.

If we know how to determine the number of observations

without counting them, we can solve the problem with a single pass of the data.

The DATA step solution shown here utilizes the NOBS= option on the SET statement. The total number of
observations is stored in OBSCNT. Each observation is read and the temporary variable _N_ is automatically

incremented. When _N_ is within the
last 10 observations the current
observation is written to the new data
set. There are several DATA step and
SQL step variations on this solution.

Because all observations are read, this solution is clearly still less than optimal, especially as the size of the
incoming data set increases. Rather than reading all observations and throwing away what we do not want, we
would like a solution that reads only the observations of interest.

Using FIRSTOBS
The FIRSTOBS system option is used to declare the number of the first observation to read on a sequential read.
If we set options firstobs=10; all subsequent data reads will start at observation 10. This is of course
dangerous if we forget to reset it back to 1. Fortunately there is a equivalent data set option that we do not
need to reset. We can take advantage of the FIRSTOBS= data set option if we can calculate the number of the
observation to at which to start the read. This is an easy calculation if we know the total number of
observations in the incoming data set.

data lastten;
 set sightings nobs=obscnt;
 if obscnt-_n_ lt 10 then output lastten;
 run;

data nums;
 set sightings;
 cnt+1;
 call symputx('count',cnt);
 run;
data nums10(drop=cnt);
 set nums;
 if cnt > (&count-10);
 run;

13

In this solution the macro function %OBSCNT, which was discussed previously, is used to return the total
number of observations. If we assume that the incoming data set (SIGHTINGS) has 459 observations, the macro

call is replaced
with a number,
say 459, and the
macro function
%EVAL forces the
subtraction to

take place within the macro processor. This is important as the result (450) will be available when the SET
statement is compiled. It is as if we written :
 set sightings(firstobs=450);

A very nice side benefit of using this form of calculation in the data set option is that it is not constrained to the
DATA step. The same option would be applied virtually anywhere the incoming data set is named.

If the possibility exists that there might be fewer than 10 observations in the data set additional checking would
be necessary. This could be accomplished through the use of the MAX function.

Using the POINT= Option
Normally the SET statement causes the observations to be read in sequential order. However it is possible to
read the observations in any order, and this is accomplished through the use of the POINT= option on the SET
statement. The POINT= option names a temporary variable which contains the number of the next observation
that is to be read.

By setting up a non-sequential read of the incoming data set we are no longer constrained to starting the read at

the first observation.
 The NOBS= option stores the total
number of observations in the
temporary variable OBSCNT.
 The POINT= option identifies the
variable PTR as one that will contain
the value of the next observation which
is to be read.
 The index of this DO loop will range
so as to cover the last 10 observations.
Only these observations will be read.

 Whenever the SET statement appears inside of a DO loop (this is known as a DOW loop), there is the
possibility of creating an infinite loop. This is most likely when the POINT= option is involved. The STOP
statement terminates the DATA step (by now we have read the 10 observations) and prevents an infinite loop.

data pointer;
 do ptr = obscnt-9 to obscnt; 
 set sightings point=ptr 
 nobs=obscnt; 
 output pointer;
 end;
 stop;
 run;

data firstobs;
 set sightings
 (firstobs=%eval(%obscnt(dsn=work.sightings)-9));
 run;

proc print data=sightings(firstobs=%eval(%obscnt(dsn=work.sightings)-9));
 run;

proc print data=sightings(firstobs=
 %sysfunc(max(%eval(%obscnt(dsn=work.sightings)-9),1));
 run;

14

This is an efficient solution; however it does require the programmer to understand the concepts of SET
statement options and the DOW loop.

Working with SAS Dates

This last “How do I…” question comes directly from a SAS Forums thread
(https://communities.sas.com/thread/41182). The two primary responses are both to the point, but because
they take such different approaches they illustrate how varied our programming responses can be.

How do I remove leading zeros in days and months when using the MMDDYY
format?
The date value is to be displayed in the MMDDYY form, however if either the day or month values is a single

digit the leading zero is not to be displayed. By default the MMDDYY
format will display leading zeros for both months and days. What we want
is shown below:

MM/DD/YY. desired
11/03/2012  11/3/2012
04/11/2012  4/11/2012

Create a new variable
One solution is to create a character variable with the zeros removed. This is a fairly simple process and it can
be accomplished in several ways. The solution shown here (suggested by @Tom) takes the three numeric

portions of the date and converts
them to character using the CATX
function.

The MONTH and DAY functions
return numeric values (without

leading zeros and these are the values that are converted and inserted into the string.

Notice that like the INPUT function, CATX performs the numeric to character conversion without writing a
conversion note to the LOG.

data sample;
input dt MMDDYY10. ;
format dt mmddyy10.;
datalines ;
11/03/2012
04/11/2012
10/20/2012
;
run;

data sample1;
set sample;
dt1=catx('/',month(dt),day(dt),year(dt)); 
run;

15

https://communities.sas.com/thread/41182

Create a new format
Rather than create a new variable as was done in the previous solution, we can also create a format that will
accomplish the same thing. In this solution (suggested by @Peter Crawford), date directives are used in a

PICTURE format.

 Create the picture format MYDATE.
 The case sensitive %m, %d, and %Y date
directives return the numeric month, day, and
year values respectively, without leading zeros.
 The DATATYPE option tells the format how
to interpret the incoming value.
 Here the PUT function is used to create a
second variable, however the format could
have been used in a PROC step without
creating the second variable.

HOW DO I CONTINUE TO LEARN?

Devote 20 to 30 Minutes a Day to Learning
 Set aside some time everyday for learning something new. This is not easy to do, there are too many demands
for our time, but this is guaranteed to save you time in the long run. If the boss asks you what you are doing, tell
her: “Art told me to do this.”

Read User Papers
Thousands of papers have been written for various SAS user group conferences. Written by the people who use
SAS, these papers tend to concentrate on the useful and helpful. Almost 24,000 SAS related papers have been
collected and indexed by Lex Jansen. His web site (http://lexjansen.com/) has become a primary entry portal for
finding SAS papers.

The first SAS papers were published in 1976. Many are of course now dated, but many others like the one on
the “GENERAL LINEAR MODELS PROCEDURE” by Dr. J. Goodnight
(http://www.sascommunity.org/sugi/SUGI76/Sugi-76-02%20Goodnight.pdf) are still valuable today.

Look for User Written (SAS Press) Books
Unlike the documentation that tells us about the language, books written by the users of the language tend to
tell us how to use it, and perhaps more importantly, why to apply the various techniques. SAS Press
(http://support.sas.com/publishing), formerly known as Books by Users, specializes in these books. There are
now hundreds of books, and they have been written on virtually every SAS topic.

proc format;
 picture mydate 
 low-high = '%m/%d/%Y' 
 (datatype= date) ; 
 run;

data sample2;
 set sample;
 dt2=put(dt,mydate.);
 run;

16

http://lexjansen.com/
http://www.sascommunity.org/sugi/SUGI76/Sugi-76-02%20Goodnight.pdf
http://support.sas.com/publishing

Study the Documentation
Don’t just use the documentation to ‘look something up’, study it. Use it as a learning tool.

If you have been using SAS for awhile be sure to read
the “What’s new” section. This is where you will find
out about new options and new capabilities of existing
tools.

When we have been using a tool for awhile, we tend
not to look it up in the documentation, why would we?
But the fact is that even older elements evolve and
often they receive new options. The COMPRESS option
originally only removed blanks, now it can remove any
number of characters and in a number of different
ways.

The SAS language has a great many options,
statements, formats, informats, and functions. There
are too many to learn. How do you even determine
which of the over 450 functions you need to learn more
about? Whenever a category has a long list of items,
the documentation has a “BY Category” selection. This

is a very good place to start to learn
about what is available. The box to
the left shows the first few
functions in the “Functions and
CALL Routines by Category”. If you
were to read only the one or two
sentence description of 20 or so
functions a day, it would take you
about a month to get through all
the functions. Many of these
functions you will never use, but
how will you know about what is
available if you do not at least skim
through the brief descriptions. In

my consulting I cannot tell you how many times a client has shown me some cool code when they could have
used an existing function.

 Participate or at Least Lurk in the SAS Forums
SAS Technical Support is wonderful, but it is not an interactive forum. The SAS forums
(https://communities.sas.com/community/support-communities) allow users to post questions and some of the
best SAS programmers in the world provide answers. I regularly learn new techniques and approaches to
solving problems by reading their input. You need to establish a SAS profile to contribute (this is a good idea
anyway as it allows you to sign up for all sorts of information about SAS), but anyone can browse the site and
read responses. The idea for this paper came from reading multiple solutions to a problem posted in one of the
forums. It is amazing what you can learn just from the responses to posted questions.

17

https://communities.sas.com/community/support-communities

Art Tabachneck, the first SAS Forum participant to accumulate 10,000 points, suggests the following approach to
maximize your learning benefit when using the forums:

• Try to solve problems that are posted on the forum and then compare your solution with the other
solutions that were suggested. (much like was done in this paper)

• If you see a solution that was better than the one you came up with, take the time to internalize the
suggested approach.

• When you think your skills are up to the task, start posting your own solutions on the forum. You won't
always be providing the best solution but, over time, you'll be surprised how many new skills you've
amassed.

Explore sasCommunity.org
sasCommunity.org is a wiki site established and run by the SAS Global Users Group. Because it is user supplied
content much of its information is very practical in nature. The site features a ‘Tip of the Day’, which tends to
offer very ‘How to’ oriented tips on various aspects of SAS.

Also very popular is the Sasopedia section. You can access thousands of user written articles by examining:
Language Elements Things like statements, options, functions
Procedures Procedure name
Products SAS products and modules
Topics General topics like the Macro Language

Two papers that will help you get started
with this site include:
Carpenter, Art and Don Henderson,”
Taking Full Advantage of
sasCommunity.org: Your SAS® Site”
http://support.sas.com/resources/papers
/proceedings12/157-2012.pdf

Carpenter, Art, “sasCommunity.org - Your
SAS® Site: What it is and How to Get
Started”
http://www.sascommunity.org/wiki/imag
es/f/f2/83_sasCommunitySuperDemo.pdf

Read Blogs
There are a great many blogs about SAS; perhaps too many to keep track of them all. Fortunately there are a
couple of easy to reach blog consolidators. If you regularly go to sasCommunity.org (and I hope you will after
reading this paper) take a look at sasCommunity’s blog planet (http://www.sascommunity.org/planet/). SAS
Institute also has a collection of blog pages that you are likely to find interesting
(http://blogs.sas.com/content/).

Find a few blogs that you like and read them.

18

http://support.sas.com/resources/papers/proceedings12/157-2012.pdf
http://support.sas.com/resources/papers/proceedings12/157-2012.pdf
http://www.sascommunity.org/wiki/images/f/f2/83_sasCommunitySuperDemo.pdf
http://www.sascommunity.org/wiki/images/f/f2/83_sasCommunitySuperDemo.pdf
http://www.sascommunity.org/planet/
http://blogs.sas.com/content/

Take Classes and Attend Conferences
Never stop learning. Instructor led classes are offered by SAS Institute, as well as, by a number of independent
SAS trainers. Most user conferences offer classes as a part of the conference, and these tend to be especially
good deals. The papers presented at conferences can yield wonderful insight into how others have approached
and solved problems.

Find out more about user conferences in your area by visiting support.sas.com
(http://support.sas.com/usergroups/).

SUMMARY
As SAS programmers we regularly encounter problems that require coding solutions. Fortunately for us the SAS
language is both powerful and flexible. As a result of this flexibility we have the ability to solve most problems in
more than one way, and the various solutions will not all have the same efficiency (for the computer or for the
programmer).

As we continue to learn about the complexities of the SAS language, we should be constantly looking for new
ways to solve old problems. We need to be open to exploring learning opportunities that push the boundaries
of our knowledge. We must continually fight the urge to think that “I know it all” or perhaps worse “I know
enough”.

ABOUT THE AUTHOR
Art Carpenter’s publications list includes five books, and numerous papers and posters presented at SUGI, SAS
Global Forum, and other user group conferences. Art has been using SAS® since 1977 and has served in various
leadership positions in local, regional, national, and international user groups. He is a SAS Certified Advanced
Professional programmer, and through California Occidental Consultants he teaches SAS courses and provides
contract SAS programming support nationwide.

AUTHOR CONTACT
Arthur L. Carpenter
California Occidental Consultants
10606 Ketch Circle
Anchorage, AK 99515

(907) 865-9167
art@caloxy.com
www.caloxy.com

REFERENCES
Similar examples of some of the more advanced techniques discussed in this
paper can befound in the book Carpenter’s Guide to Innovative SAS® Techniques by Art Carpenter (SAS Press,
2012).

Carpenter, Art, 2001, “Table Lookups: From IF-THEN to Key-Indexing”,
http://www2.sas.com/proceedings/sugi26/p158-26.pdf

19

http://support.sas.com/usergroups/
http://www.caloxy.com/
https://support.sas.com/pubscat/bookdetails.jsp?pc=62454
http://www2.sas.com/proceedings/sugi26/p158-26.pdf

Carpenter, Arthur L, 2012, “Programming With CLASS: Keeping Your Options Open”. Published in the conference
proceedings for PharmaSUG 2012, WUSS 2012, MWSUG 2012.
http://www.pharmasug.org/proceedings/2012/TA/PharmaSUG-2012-TA10.pdf

TRADEMARK INFORMATION
SAS, SAS Certified Professional, SAS Certified Advanced Programmer, and all other SAS Institute Inc. product or
service names are registered trademarks of SAS Institute, Inc. in the USA and other countries.
® indicates USA registration.

20

http://www.pharmasug.org/proceedings/2012/TA/PharmaSUG-2012-TA10.pdf

	ABSTRACT
	INTRODUCTION
	THE CLASSIC TABLE LOOKUP
	How do I assign a value to a variable based on a code in another variable?
	IF-THEN/ELSE
	Merges and Joins
	User Defined Formats
	Advanced LOOKUP Techniques

	CHANGING THE ORDER OF DISPLAYED VALUES
	\How do I change the order of displayed values?
	Convert to Numeric
	Changing the Stored Value
	Using a User Defined Format

	But what if I want region 3 to be first followed by region 10 then 2?
	Trick the Format
	Using NOTSORTED

	COMPARISON ACROSS COLUMNS
	How do I determine if the value of one variable is in a list of other variables?
	Using IF-THEN/ELSE Processing
	Using SQL and the WHICHC Function
	Using the IN Operator
	Using WHICHC in the DATA Step
	Discussion Thread

	COUNTING OBSERVATIONS
	How do I determine how many observations are in my data set?
	Counting Observations with the DATA Step
	Using SQL to Count Observations
	Using CONTENTS to Access the Metadata
	Using the NOBS= SET Statement Option
	Indirect Access of the Meta Data
	Reading the Metadata Directly
	Counting Observations Thread

	RETURN THE LAST 10 OBSERVATIONS
	How do I create a data set containing only the last 10 observations from my incoming data set?
	Reading all Observations and Counting Them
	Using FIRSTOBS
	Using the POINT= Option

	Working with SAS Dates
	How do I remove leading zeros in days and months when using the MMDDYY format?
	Create a new variable
	Create a new format

	How Do I Continue to Learn?
	Devote 20 to 30 Minutes a Day to Learning
	Read User Papers
	Look for User Written (SAS Press) Books
	Study the Documentation
	Participate or at Least Lurk in the SAS Forums
	Explore sasCommunity.org
	Read Blogs
	Take Classes and Attend Conferences

	SUMMARY
	ABOUT THE AUTHOR
	AUTHOR CONTACT
	REFERENCES
	TRADEMARK INFORMATION

