Paper BB-02-2013

Same Data Different Attributes: Cloning Issues with Data Sets
Brian Varney, Experis Business Analytics, Portage, Ml

ABSTRACT

When dealing with data from multiple or unstructured data sources, there can be data set variable attribute conflicts.
These conflicts can be cumbersome to deal with when developing code. This paper intends to discuss issues and
table driven strategies for dealing with data sets with inconsistent variable attributes.

INTRODUCTION

This paper intends to provide information to SAS® programmers of all levels and help them resolve issues when
combining data that has content that is appropriate for combining but variable attributes that are not identical.
Depending on the situation with your data and the method you are using to combine the data, inconsistent variable
attributes can significantly affect the results from your program. This paper will also show you how to set up a data
set with the desired attributes and then use it as the standard template for others programmatically.

One disclaimer for this paper is that at the time this paper was written, | only had brief exposure to SAS 9.4. There
could be features and functionality that | am not familiar with.

DATA SET AND VARIABLE ATTRIBUTES

SAS data set and variable attributes can be viewed by examining results from a PROC CONTENTS. Consider the
program and results shown below. The PROC CONTENTS results are show in 4 figures based on the how the output
is organized. For the purpose of this paper, | have used SASHELP.ZIPCODE. It should be readily available within
any SAS environment.

proc contents data=sashelp.zipcode;

run;

Data Set Name SASHELP ZIPCODE Observations 41267
Member Type DATA Variables 19
Engine V3 Indexes 1
Created 06/20/2013 01:37:16 Qbservation Length | §16
Last Modified 06/20/2013 01:37:16 Deleted Observations | 0
Protection Compressed NO
Data Set Type Sorted YES
Label US Zipcodes; Source: zipcodedownload.com Jan 2013, SAS Release 9.3

Data Representation | WINDOWS_64
Enceding us-ascii ASCII (ANSI)

Figure 1. Top Section of SAS Data Set Attributes from PROC CONTENTS Output

Data Set Page Size

Number of Data Set Pages

First Data Page

Max Obs per Page

Obs in First Data Page

Index File Page Size

Number of Index File Pages

Number of Data Set Repairs

ExtendObsCounter

Filename
Release Create

Host Created

d

Engine/Host Dependent Information
65536
817
1
80
74
4096
186
0
YES
C:\Program Files\SASHome34\SASFoundation\9 4\core‘\sashelp\zipcode_sasTbdat
9.0401B0
¥64_TPRO

Figure 2. Second Section of SAS Data Set Attributes from PROC CONTENTS Output

| Variable

18 | ALIAS_CITY
19 | ALIAS_CITYN
12 | AREACODE
13 | AREACODES
5| CITY

9 COUNTY

10 | COUNTYNM
16 DST

15 | GMTOFFSET
11 MSA

17 | PONAME

6 | STATE

T | STATECODE
8 | STATENAME
14 | TIMEZONE
30X

2Y

1/ ZIP

4 ZIP_CLASS

Alphabetic List of Variables and Attributes

Type | Len Format Label

Char
Char
MNum
Char
Char
Num
Char
Char
Num
MNum
Char
Num
Char
Char
Char
Num
MNum
MNum

Char

300
300
8
12
35
8
25

1

8

i
35

25

8
i

11.6
11.6
Z5.

USPS - alternate names of city separated by ||

Local - alternate names of city separated by ||

Single Area Code for ZIP Code.

Multiple Area Codes for ZIP Code.

Name of city/org

FIPS county code.

Name of county/parish.

ZIP Code obeys Daylight Savings: Y-Yes N-No

Diff (hrs) between GMT and time zone for ZIP Code

Metro Statistical Area code by common pop-pre 2003; no MSA for rural
USPS Post Office Name: same as City

Two-digit number (FIPS code) for state/terntory

Two-letter abbrev. for state name.

Full name of state/territory

Time Zone for ZIP Code.

Longitude (degrees) of the center (centroid) of ZIP Code.

Latitude (degrees) of the center (centroid) of ZIP Code.

The 5-digit ZIP Code

ZIP Code Classification-P=P0 Box U=Unique zip used for large orgs/businesses/bldgs Blank=Standard/non-unique

Figure 3. Section of Variable Attributes from PROC CONTENTS Output

Alphabetic List
of Indexes and
Attributes

of
Unique
Index Values

1 ZIP 41267

Sort Information
Sortedby ZIP ZIP_CLASS
Validated YES
Character Set ANSI

Figure 4. Bottom Section with Additional Data Set Attributes from PROC CONTENTS Output

SAS DATA SET ATTRIBUTES

Referencing the output shown in the four previous figures, the SAS data set attributes are shown in figures 1, 2, and
4. They are not the focus of this paper but they have other issues depending on how you are working with SAS Data
Sets.

One important issue with SAS Data Set attributes is that they do not persist if you re-create a SAS Data Set during
processing. Consider the code below...

data zipcodes;
set zipcodes;
run;

Or

proc sqgl;
create table zipcodes as
select *
from zipcodes;

quit;

If you were to run the above code, any data set attributes that you have added such as data set labels, indexes,
constraints, flags that indicate the data set has been sorted, etc. will be lost.

SAS VARIABLE ATTRIBUTES

Figure 3 from shows the variable attributes from the SAS Data Set SASHELP.ZIPCODES that are displayed by
PROC CONTENTS. This paper will be focusing on the variable attributes type, length, and format but to be complete
| have leveraged SASHELP.VCOLUMN to show all of the variable attributes contained in the SAS Dictionary Tables.

proc print data=sashelp.vcolumn;
where libname=’SASHELP’ and memname='ZIPCODE’;
run;

This information can also be leveraged from DICTIONARY.COLUMNS if you are using PROC SQL.

proc sqgl;

select *

from dictionary.columns

where libname=’SASHELP’ and memname=’'ZIPCODE’;
quit;

The data set SASHELP.VCOLUMN is actually a view that points at DICTIONARY.COLUMNS. Additionally,
SASHELP.VTABLE and DICTIONARY.TABLES contain information about the SAS data set attributes. There are
many other dictionary tables. You can see the list of all dictionary tables by querying DICTIONARY.DICTIONARIES.

To learn more about the SAS Dictionary Tables, please reference the SAS web site.

http://support.sas.com/documentation/cdl/en/lrcon/64801/HTML/default/viewer.htm#p11h9yhja6t25an1 mkx8xgy3wcw
m.htm

Obs libname | memname | memtype name type length npos|vamum | label format | informat idxusage sortedby xtype notnull precision scale | transcode
2785 SASHELP ZIPCODE DATA P num 8 0 1| The &-digit ZIP Code Zs5. SIMPLE 1 num no . - yes
2786 SASHELP | ZIPCODE | DATA Y num 8 8 2 | Latitude (degrees) of the center 116 0 num | no . _ yes
(centroid) of ZIP Code.
2787 SASHELP ZIPCODE | DATA X num 8 16 3| Longitude (degrees) of the center 11.6 0 num | no B .| yes
(centroid) of ZIP Code.
2788 SASHELP ZIPCODE | DATA ZIP_CLASS char 1 64 4 ZIP Code Classification:P=PQ Box 2 char |no yes
U=Unique zip used for large
orgs/businesses/bldgs
Blank=Standard/non-unique
2789 SASHELP | ZIPCODE | DATA CITY char 35 65 5 Mame of city/org 0 char | no yes
2790 SASHELP ZIPCODE | DATA STATE num 8 24 6 | Two-digit number (FIPS code) for 0 num | no B .| yes
state/territory
2791 SASHELP ZIPCODE | DATA STATECODE | char 2 100 7 | Two-letter abbrev. for state name. 0 char | no yes
2792 SASHELP | ZIPCODE | DATA STATENAME char 25 102 8 | Full name of state/territory 0 char | no yes
2793 SASHELP ZIPCODE | DATA COUNTY num 8 32 9 | FIPS county code. 0 num | no yes
2794 SASHELP | ZIPCODE | DATA COUNTYNM char 25 127 10 Name of county/parish. 0 char | no yes
2795 SASHELP ZIPCODE | DATA MSA num 8 40 11 | Metro Statistical Area code by 0 num | no yes
common pop-pre 2003; no MSA for
rural
2796 SASHELP ZIPCODE | DATA AREACODE num 8 48 12 | Single Area Code for ZIP Code. 0 num | no yes
2797 SASHELP | ZIPCODE | DATA AREACODES char 12 152 13 | Multiple Area Codes for ZIP Code. 0 char | no yes
2798 SASHELP ZIPCODE | DATA TIMEZONE char 9 164 14 Time Zone for ZIP Code. 0 char | no yes
2799 SASHELP | ZIPCODE | DATA GMTOFFSET num 8 56 15 | Diff (hrs) between GMT and time 0 num | no yes

zone for ZIP Code

Figure 5. Listing from SASHELP.VCOLUMN for the SAS Data Set SASHELP.ZIPCODE

Now that we have looked at all of the SAS data set and variable attributes, let us re-focus to the variable attributes of
interest for this paper (type, length, and format). When combining SAS Data Sets with inconsistent type, length, and
format definitions, results can be compromised. Next we will discuss the methods for combining SAS Data Sets that
are relevant to this paper.

METHODS FOR COMBINING SAS DATA SETS

At this point it is appropriate to discuss some of the different methods for combining SAS data sets. To start off with,
let’s discuss the three different scenarios for combining data; adding rows, adding columns, and modifying existing
values. Please note that there are probably more methods available than discussed in this paper. We will mention
three different data combination scenarios but in this paper we will focus on the Adding Rows scenario.

Modifying Existing Data Values

This type of operation is typically a master transaction type of update. You have two data sets. The first data set has
all of the data and the other has some records with values that are meant to update a few values in the first data set
by using primary keys to indicate which records are updated.

Adding Columns

This type of operation is typically a join/merge operation. You have two or more data sets with different variables
except for the keys that are appropriate for matching up the records. In SAS terms this is known as a Data Step
Merge or a PROC SQL Join.

Adding Rows

This type of operation is typically a stacking operation. You have multiple data sets with the same variables and you
want to stack them. In SAS terms this is known as a Data Step SET, PROC APPEND, or PROC SQL OUTER UNION
CORRESPONDING.

COMBINING SAS DATA SETS WITH NON-SAS DATA

Although the focus of this paper is not how to read in data from non-SAS data sources, it is worth mentioning the
potential issues with some of the non-SAS sources.

EXCEL

Although an Excel worksheet looks and feels like a table, the attributes for a column do not necessarily need to be
consistent. Attributes can change on a cell to cell basis thus making data extracts somewhat unpredictable. By
default, SAS uses the first eight rows of data in a column to determine the optimal variable attributes.

ASCIl / EBCDIC

Although ASCII / EBCDIC data does not have built in data set or variable attributes, you have complete control over
how the data is read in. By using INFILE and INPUT statements, you can control the name, type, length and format of
each variable.

OTHER STRUCTURED DBMS

This is the best non-SAS data to read in as structured databases enforce column attributes like in SAS data sets.

CREATING A TEMPLATE DATA SET

A useful approach in combining data sets with like variables but potentially inconsistent attributes is to create a SAS
data set that has the desired data set and variable attributes but without any actual data records. There are a few
methods for achieving this in SAS.

MANUAL METHODS

Using the SAS Data Step, you can create an empty SAS Data Set with the exact desired variable attributes.

Data Step Method

data class;
attrib name length=$8 label='Name’
sex length=$1 label='Sex’
age length=8 label='Age’ format=3.
height length=8 label='Height CM’ format=5.1
weight length=8 label='Weight lbs’ format=5.1

stop;
run;

PROC SQL Method

proc sqgl;
create table class
(name char (8) label='Name’,
sex char (1) label='Sex’,
age num label="Age’ format=3.,
height num label="Height CM’ format=5.1,
weight num label="Weight 1lbs’ format=5.1
)i
quit;

AUTOMATICALLY BY USING ANOTHER SAS DATA SET

If there is another SAS data set which has the desired attributes, it is not efficient to re-invent the wheel as we did in
the previous section. It is more efficient to point at another SAS Data Set that has the variable attributes that we
desire.

Data Step Method

data zipcode;
if 0 then
set sashelp.zipcode;
stop;
run;

PROC SQL Method

proc sqgl;
create table class like sashelp.zipcode;
quit;

HANDLING ATTRIBUTE INCONSISTENCIES WHILE APPENDING

Since the focus of this paper is stacking SAS data sets with the same variables, this section will only focus on Data
Step Set, PROC APPEND, and PROC SQL OUTER UNION CORRESPONDING.

VARIABLE TYPE MISMATCHES

Variable type mismatches will stop a data set stacking process in its tracks. A variable type mismatch happens when
one data set has a variable that is type numeric and then another data set has a variable that is type character. A
program will encounter an error condition and the data will need to be fixed. This is true regardless of the method
used to combine the SAS Data Sets.

VARIABLE LENGTH, FORMAT, AND LABEL MISMATCHES

It is possible to get around variable length, format, and label mismatches; but you probably want them to be
consistent to avoid data quality and/or value truncation problems. As long as the variable types are the same and the
variables have the same name, PROC SQL OUTER UNION CORRESPONDING will use the longest length across
all of the data sets while Data Step and PROC APPEND use the first reference to the variable based on the order of
the data sets.

WHAT TO DO?

Ask for the source data with the appropriate attribute so we do not have this problem in the first place. Often we do
not have control over this and the entity sending the data will not conform. We could spend significant time working
with each data source manually and get the attributes consistent. Or we could use our data drive skills along with the
SAS Metadata contained in the SAS Dictionary Tables.

A DATA DRIVEN STRATEGY

It is possible to get around variable type, length, format, and label mismatches programmatically by using the SAS
metadata. One method uses the SAS Dictionary Tables. The full code will be shared in the presentation but a sample
is below. This sample code assumes that the SAS Data Set SASHELP.CLASS has the desired SAS variable
attributes and we create NEWCLASSDATA as a hypothetical data set that we want to append to it.

***;

** Create a hypothetical data set with different attributes
***;
data newclassdata;

length name $20 sex $8 height 4 weight 4;

label name='Student Name';

format height words60.;

set sashelp.class(rename=(age=tage));

age=left (put (tage,2.));
run;

***;

** Read the SAS Data Set Metadata into a SAS Data Set so we can work
** with it programmatically and in a data driven manner.
***;
proc sqgl;
create table compare_attributes as
select target.name,
target.type as target_type,

new.type as new_type,
target.length as target_length,
new.length as new_length,
target.format as target_format,
new.format as new_format,
target.label as target_label,
new.label as new_label

from (select *
from dictionary.columns
where libname='SASHELP' and memname='CLASS') as target,
(select *
from dictionary.columns
where libname='WORK' and memname='NEWCLASSDATA') as new
where lowcase(target.name)=lowcase (new.name) ;
quit;

Now that the SAS variable attributes are in a SAS Data Set, we can make decisions and generate code in a data
driven manner.

Obs | name | target type new_type target_length new_length | target format new_format target_label | new_label

1| MName | char char g 20 Student Name
2| Sex char char 1 8

3 Age num char 8 2

4 | Height | num num 8 4 WORDSED.

5 Weight = num num] 4

Figure 6. COMPARE_ATTRIBUTES Data Set Resulting from previous PROC SQL.

We can generate code to ...
e recognize type mismatches and generate an input or put function
e recognize the maximum length and generate a length statement to ensure data truncation will not take place
e use the target format or generate an appropriate format based on the desired length
e use the target label

CONCLUSION

Using the information and methods in this paper should result in a more stable process for combining SAS data sets.
This will improve the consistency and quality of the data you want to use for analysis.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Brian Varney

Experis Business Analytics
5220 Lovers Lane, Suite 200
Portage, MI 49002

Phone: 269-553-5185

Fax: 269-553-5101
E-mail: brian.varney@experis.com
Web: www.experis.us/analytics

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

