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ABSTRACT 
 
The Information Value (IV) statistic is a popular screener for selecting predictor variables for binary logistic 
regression.  Familiar, but perhaps mysterious, guidelines for deciding if the IV of a predictor X is high enough to use 
in modeling are given in many textbooks on credit scoring.  For example, these texts say that IV > 0.3 shows X to be 
a strong predictor.  These guidelines must be considered in the context of binning.  A common practice in preparing a 
predictor X is to bin the levels of X to remove outliers and reveal a trend.  But IV decreases as the levels of X are 
collapsed.  This paper has two goals:  (1) Provide a method for collapsing the levels of X which maximizes IV at each 
iteration and (2) show how the guidelines (e.g. IV > 0.3) relate to other measures of predictive power.  All data 
processing was performed using Base SAS®. 

INTRODUCTION 
  
Information Value Statistic Defined:  The information value (IV) of a predictor X and the binary target Y can be 

given as a formula involving an X-Y frequency table as shown in Table 1. 

Notation:  "G" and "B" are taken from credit scoring where "G" is "good" (paid as agreed) and "B" is "bad" (default).   

Gk refers to the count of “goods” corresponding to X = Xk.  In contrast, gk refers to the percent of all goods 
corresponding to X = Xk.  Likewise for “bads”, Bk and bk . 
 
Table 1 – Information Value Example 

X 
Y = 0 
“B” 

Y = 1 
“G” 

b: Col % 
 Y = 0 

g: Col % 
 Y = 1 

Log(g/b) 
(base e) 

g - b (g - b) * Log(g/b) 

1 2 1 0.400 0.333 -0.1823 -0.067 0.0122 

2 1 1 0.200 0.333 0.5108 0.133 0.0681 

3 2 1 0.400 0.333 -0.1823 -0.067 0.0122 

SUM 5 3     IV = 0.0924 

 
As a formula IV is written as:  
 

IV = ∑k=1
K 

(gk - bk) * log(gk / bk) 

 
where the count of levels of X is K > 2 and gk and bk are positive for all k = 1,…,K 
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The IV statistic is appropriate for a predictor X with a modest number of levels, typically under 20, with no zero cells.  
Predictors with “continuous” value ranges (e.g. dollars, distances) must first undergo preliminary binning.
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Naively, we can say that log(gk / bk) measures the deviation between the distributions of g and b while (gk - bk) 
measures the importance of the deviation.  For example, considering the two equal odds of 0.02 / 0.01 and 0.2 / 0.1, 
the odds of 0.02 / 0.01 is less important in IV since it is weighted by (0.02 - 0.01) in the computation. 
 
Popular credit scoring text books give guidelines for evaluation of the strength of a predictor X for a binary target Y in 
terms of its IV statistic.  See Finlay (2010)

3
, Mays and Lynas (2010)

4
, and Siddiqi (2006).  

                                                           
 
 
1
 Since IV is defined by column percents of goods and bads, expected value of IV would be unchanged by stratified sampling of 

goods and bads (e.g. 100% of bads and 10% of goods).  This is also true for c-stat and x-stat which are discussed later in the paper. 
2
 See Finlay (2010) chapter 5 

3
 page 139 

4
 page 95 



 

 2   

The following is taken from Siddiqi, page 81. 
 
IV Rules of Thumb for evaluating the strength a predictor 
 

 Less than 0.02: unpredictive 

 0.02 to 0.1: weak 

 0.1 to 0.3: medium 

 0.3 +: strong 
 
These guidelines are familiar but perhaps mysterious.  Although they are firmly grounded in good practice, can these 
guidelines be related to other metrics?  This question is discussed in the second major section of this paper. 
 
A Brief Discussion of the c-statistic 
 

The c-statistic is a commonly used statistic to evaluate the strength of a numeric (or ordered) predictor X for potential 
usage in a logistic regression model with binary target Y.   
 
A formula for the c-statistic is given below: 
 

c-stat = ∑i=1
K-1 

∑j=i+1
K
 ( gi * bj ) + (0.5) * (∑i=1

K
 gi * bi) 

 
The c-statistic’s range is 0 to 1.  It is customary to require c-statistic > 0.5 by taking max(c-stat, 1 – c-stat). 
 
The “c” that occurs in the output of PROC LOGISTIC; MODEL Y = <predictors>  is the c-statistic of P, the probability 
from the MODEL, and the target Y.
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Weight-of-Evidence of a Predictor:  The log-odds factor "log(gk / bk)" in IV is the familiar quantity from the weight-

of-evidence (WOE) recoding of X.   
 
This recoding is given by:   

IF X = Xk THEN X_woe = log(gk / bk) for k = 1 to K. 
   

The x-statistic of X and Y 
 
We will use “x-statistic of X and Y” to refer to “c” from logistic regression PROC LOGISTIC; MODEL Y = X_woe.

6
   

 
Here are two important equivalent characteristics of the x-statistic of X and Y. 

 
a) x-statistic equals the “c” from:  PROC LOGISTIC;  CLASS X;  MODEL Y = X; 
b) x-statistic = 0.5 * (1 + ∑i=1

K-1 
∑j=i+1

K
 Abs ( gi*bj  -  gj*bi ) ) where Abs = absolute value. 

 
Of particular significance is that (b) gives a way to compute the x-statistic within a data step.  This is used in the SAS 
code in the macro %BEST_COLLAPSE discussed later and appearing in the Appendix. 
 
When X is numeric, the c-stat is defined and the x-stat is always equal to or greater than the c-stat.  When x-stat 
equals c-stat, then X is monotonic versus Y.  That is, Gk / (Gk + Bk) is non-decreasing (or non-increasing) with respect 
to the ordering of X. 
 
What is a good x-statistic value? The logistic model “c” (often called AUC for “area under ROC curve”) is a common 
measure of the discriminatory power of a logistic regression model.  Hosmer and Lemeshow (2000 p. 162) state that 
a logistic model with “c” of at least 0.7 provides acceptable discrimination.  As noted, the x-statistic is the “c” for the 
single variable model:  MODEL Y = X_woe. 
 
Some of the individual WOE predictors which have entered into a model may have an x-statistic vs. Y which is much 
less than 0.7.

 7
  Applications and data, of course, vary across industries.  Our experience in automotive direct 

                                                           
 
 
5
 From the PROC LOGISTIC output section: Association of Predicted Probabilities and Observed Responses. 

6
 The term x-statistic is preferable because the x-statistic can be computed without reference to PROC LOGISTIC as shown by (b).  

See Raimi and Lund (2012) for more discussion.  For Table 1, x-stat = 0.5667. 
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marketing models is that a predictor with an x-statistic of 0.55 is at the low end of being useful and that a predictor 
with an x-statistic of 0.60 is likely to be included in the model. 

RELATED WORK: 
 

Alec Zhixiao Lin (2013) contributed a paper to the SAS Global Forum  called “Variable Reduction in SAS by Using 
Weight of Evidence and Information Value”.  This paper includes a SAS macro which comparatively ranks predictors 
for a binary response model in terms of their predictive power as measured by Information Value. 

SECTION ONE: 
COLLAPSING LEVELS OF X WHILE MAXIMIZING IV 
 
A common practice in preparing a predictor X for use in a logistic model is to bin the levels of X to remove outliers 
and reveal a trend.  But IV decreases when two levels of X are collapsed with equality occurring only when the odds-
ratios from the two levels are equal.

8
  In some cases the modeler employs business knowledge when forming the 

bins.  Alternatively, the modeler may wish to rely on an algorithm to perform the collapsing into bins.  In this section a 
Best Collapse algorithm is described for collapsing the levels of X which maximizes IV at each iteration. 
 
Recalling the formula for IV: 
 

IV = ∑k=1
K 

(gk - bk) * log(gk / bk). 

 
The algorithm finds the two levels (call these levels i and j) when combined together decreases IV the least.  This is 
equivalent to finding i and j so that D is minimized where:  
 

D = (gi - bi) * log(gi / bi) + (gj - bj) * log(gj / bj)  -  (gi + gj - bi - bj) * log( (gi + gj )/ (bi + bj) ) 
 

The expression: (gi + gj - bi - bj) * log( (gi + gj ) / (bi + bj) ) is the contribution to IV from the combined levels i and j. 
 
The algorithm, as coded in SAS, at each iteration checks each pair (i, j) to find the minimum D.  This pair is then 
collapsed. 
 
Alternatively, if the predictive variable X is ordered and the modeler want to maintain the ordering of X during the 
collapsing, the algorithm has an option to collapse only adjacent levels of X. 
 
The algorithm is coded in a macro which we call %BEST_COLLAPSE. 

 
%BEST_COLLAPSE also provides the option to the modeler of using maximum log likelihood of X as a predictor of Y 

(as in logistic regression) as the criterion for selecting the levels of X to collapse.  This maximum log likelihood 
algorithm also has Modes A and J.

9
  The major focus of this paper will be on the Information Value statistic. 

MACRO %BEST_COLLAPSE 
 
This section discusses %BEST_COLLAPSE macro and gives several examples.   SAS code is given in the Appendix. 
 
Macro Call:   

 

%MACRO BEST_COLLAPSE(DATASET,X,Y,W,METHOD,MODE,VERBOSE,LL_STAT); 

                                                                                                                                                                                           
 
 
7
 The statement applies also to predictors X which are entered as a CLASS variable and to numeric predictors X which are 

monotonic versus Y (that is, monotonic versus P(Y=1 | X = Xk) since, for these, x-statistic = c-statistic.. 
8
 See the Appendix for a mathematical proof. 

9
 The maximum log likelihood criterion for collapsing was discussed and included in the macro by Lund and Raimi (2012) called 

%COLLAPSE_LEVELS.  The more complex %COLLAPSE_LEVELS includes full data input checking and also collapsing for 
multinomial targets but it does not include the option to collapse by maximizing IV at each iteration.  The %COLLAPSE_LEVELS is 
built around PROC FREQ and ODS outputs.  The algorithms in %BEST_COLLAPSE are implemented in a data step. 
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Parameter Definitions: 
 
DATASET: A dataset name - either one or two levels 
X: Character or numeric variable which can have MISSING values.  Missing values are ignored in all 

calculations. 
Y: Binary Target which is numeric and must have values 0 and 1 without MISSING values. 
W: Numeric frequency variable which has values which are positive integer values. 
METHOD: IV or LL 

  For METHOD = IV the criterion for selecting two eligible levels to collapse is to maximize the IV.  
The levels that are eligible for collapse is determined by the MODE parameter.  

  For METHOD = LL the criterion for selecting two eligible levels to collapse is to maximize the Log 
Likelihood.  The levels that are eligible for collapse is determined by the MODE parameter.   

MODE: A or J 

  For MODE = A all pairs of levels are compared when collapsing 
  For MODE = J only adjacent pairs of levels are compared when collapsing 
VERBOSE: If YES, then the entire history of collapsing is displayed in the SUMMARY REPORT.  Otherwise this 

history is not displayed in the SUMMARY REPORT. 
LL_STAT: If YES, then Log Likelihood for Model and Likelihood Ratio Chi Square Probability are displayed. 

 
LL_STAT is optional since the log likelihood and chi-square probability are not especially useful in practical situations.  
Specifically, due to large samples, the chi-square probability is often essentially equal to one. 
 
It is required that ALL cell counts in the X-Y Frequency Table are positive.  The Program ENDS if there is a zero cell 
and prints "ZERO CELL DETECTED". 
 
Predictor variables X with values having more than 2 characters or having a large number of levels may cause the 
lines from the PROC PRINT reports to wrap around. 
 
If the modeler wants to model missing values, then the missing values must be pre-coded to a non-missing value in a 
preliminary data step. 
 
Example 1 - Data: 

 
data IV_test_data; 

length x $1; 

input x $ w y @@; 

datalines; 

1 2 0   1 1 1   2 1 0   2 1 1   3 2 0   3 3 1 

; 

run; 

proc freq data = IV_test_data; 

tables x * y / norow nocol nopercent; 

weight w; 

run; 

x y  

Freq 0 1 Total 

1 2 1 3 

2 1 1 2 

3 2 3 5 

Total 5 5 10 

 

Example 1 - Macro Call: 
 

%BEST_COLLAPSE(IV_test_data, X, Y, W, IV, J, YES, NO); 

 

Note: MODE = J, so only adjacent pairs are considered for collapsing (these pairs are: 1+2 and 2+3). 
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Example 1 - Reports: 

 
The levels of X before collapsing: 
 

Dataset = IV_Example1_data, Predictor = X, Target = Y, Method = IV, Mode = J 

Collapse Step: Levels = 3 

 

Obs    x_char    _TYPE_    G    B 

 

 1                  0      5    5 

 2       1          1      1    2 

 3       2          1      1    1 

 4       3          1      3    2 

 

The 2 and 3 levels of X were collapsed in this iteration. 
 

Dataset = IV_Example1_data, Predictor = X, Target = Y, Method = IV, Mode = J 

Collapse Step: Levels = 2 

 

Obs    x_char    _TYPE_    G    B 

 

 1                  0      5    5 

 2      1           1      1    2 

 3      2+3         1      4    3 

 

The VERBOSE = YES parameter caused the three columns L1 L2 L3 to be printed.  Note that the SUMMARY 
includes the c-stat of Y and X.  The c-statistic is meaningful only if the ordering of X is meaningful. 
 

Dataset = IV_Example1_data, Predictor = X, Target = Y, Method = IV, Mode = J 

Summary Report 

 

k       IV      X_STAT    C_STAT    L1    L2     L3 

 

3    0.21972   0.62000   0.62000    1     2      3 

2    0.19617   0.60000   0.60000    1     2+3 

 

The “Binary Splits” report is produced only when MODE = J.  It gives the IV (or LL) values for the binary splits of the 
values of X.  For Example 1 there are only 2 binary splits which are: 1 and 2+3 (Split1) and 1+2 and 3 (Split2).   
 
The Binary Split report is used to check if the IV (or LL) collapsing became sub-optimal at some point during the 
iterations.  This sub-optimality would be shown if the maximum IV for the binary splits was greater than the IV in the 
Summary Report for k = 2.  In Example 1 the maximum binary split occurs for 1 vs. 2+3.  This agrees with the IV 
value for k=2 from the Summary Report.

10
 

 

Dataset = IV_Example1_data, Predictor = X, Target = Y, Method = IV, Mode = J 

Final Step Binary Splits for MODE = J 

 

Obs      Split1      Split2 

 

 1      0.19617     0.16219 

 

Example 2 (below) will provide an example where the IV collapsing process does become suboptimal. 
 
  

                                                           
 
 
10

 Even if the maximum IV from the binary split equals the IV from k=2 it is not ruled out that at some earlier iteration IV departed 
from optimal but then later returned to optimal. 
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Example 2 - Data 

 
The Table 2 has coded income levels called income_c versus a binary response Y.  The income_c will be regarded 

as ordered and %BEST_COLLAPSE will be run with METHOD = IV and MODE=J. 
 
Table 2 - IV_Test_Income Dataset 

 income_c  

Y 01 02 03 04 05 06 07 08 09 10 11 12 Total 

0 1393 6009 5083 4519 8319 4841 2689 2090 729 292 253 294 36511 

1 218 890 932 1035 2284 1593 1053 872 311 136 120 142 9586 

Total 1611 6899 6015 5554 10603 6434 3742 2962 1040 428 373 436 46097 

 
Example 2 - Macro Call: 

 
The Macro call is: %BEST_COLLAPSE(IV_Test_Income, Income_C, Y, W, IV, J, YES,  NO); 
 
Example 2 - Reports: 

 
Table 3 shows a partial listing of the Summary Report. 
 
Table 3 

Dataset = IV_Test_Income, Predictor = Income_C, Target = Y, Method = IV, Mode = J 

Summary Report 

k IV X_STAT C_STAT L1 L2 L3  
L4 to L12 
OMITTED 

        

12 0.12145 0.59795 0.59775 01 02 03  

11 0.12145 0.59795 0.59775 01 02 03  

10 0.12144 0.59795 0.59775 01 02 03  

9 0.12143 0.59793 0.59773 01 02 03  

8 0.12136 0.59783 0.59783 01+02 03 04  

7 0.12113 0.59753 0.59753 01+02 03 04  

6 0.12046 0.59707 0.59707 01+02 03 04  

5 0.11792 0.59463 0.59463 01+02 03 04+05  

4 0.11513 0.59282 0.59282 01+02+03 04+05 06  

3 0.11029 0.58905 0.58905 01+02+03 04+05 06+07+08+09+10+11+12  

2 0.08439 0.56457 0.56457 01+02+03 04+05+06+07+08+09+10+11+12   

 
When the collapsing process reached k = 8 the x-stat equaled the c-stat.  Therefore, the collapsed X has a monotonic 
relationship to Y starting with k = 8. 
 
The final collapse to k=2 levels gave a binary split of the values of X into [01 to 03] and [04 to 12].  The Binary Split 
report (Table 4) shows that this IV collapsing process became sub-optimal.  Specifically, the split [01 to 04] and [05 to 
12] gave the highest binary split with IV = 0.08883 which is greater than the final IV in Table 3 of 0.08439.  A “wrong 

path” occurred when the point “04” was joined to “05” instead of to “01+02+03” at k = 5. 
 
As a practical matter in this example the modeler would certainly stop the collapsing process before k=4 due to the 
large drop-offs in both IV and x-stat at k=6 and further down. 
 
Table 4 

Dataset = IV_Test_Income, Predictor = Income_C, Target = Y, Method = IV, Mode = J 

Final Step Binary Splits for MODE = J 

IVsplit1 IVsplit2 IVsplit3 IVsplit4 IVsplit5 IVsplit6 IVsplit7 IVsplit8 IVsplit9 IVsplit10 IVsplit11 

           

0.00822 0.05801 0.08439 0.08883 0.07797 0.05937 0.03710 0.01788 0.01132 0.00758 0.00417 
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Log Likelihood and Information Value do not Always Collapse in the Same Way 
 
Using the Income data set (Table 2) and collapsing by MODE = J, the maximum log likelihood and the IV algorithms 
collapse X differently. 
 

 LL: For k = 5 this algorithm collapsed “03” with “01+02” 

 IV: For k = 5 this algorithm collapsed “04” with “05”. 
 

An Algorithm For Collapsing That Appeared Promising But Failed 
 
The idea for an algorithm that collapses the levels of X comes from noting that collapsing two levels i and j where gi/bi 
= gj/bj gives the same IV as before the collapse.  So, collapsing two levels i and j where gi/bi and gj/bj are closest 
together should seemingly maximize IV among the other choices.  Such an algorithm would be efficient, needing a 
sort by g/b and an inspection of differences in the g/b across the successive observations to find the minimum.  But 
the algorithm fails. 
 
An example is given in Table 5.  Levels 3 and 4 have the closest g/b.  But this approach does not pick the levels to 
collapse which would maximize IV.  Collapsing levels 3 and 4 gives IV = 0.012497.  However, collapsing levels 2 and 
3 gives a higher IV = 0.012524.

11
 

 
Table 5 – Example showing the “minimum difference of g/b” algorithm fails to maximize IV. 

X 
Y = 0 
“B” 

Y = 1 
“G” 

b: Col % 
 Y = 0 

g: Col % 
 Y = 1 

g/b 
row to row 

change in g/b 

 

1 272 325 0.2747 0.3250 0.84538   

2 100 100 0.1010 0.1000 1.01010 0.16472  

3 99 95 0.1000 0.0950 1.05263 0.04253  

4 519 480 0.5242 0.4800 1.09217 0.03954  Minimum g/b change 

STOPPING GUIDELINES 
 
Subjective judgment by the modeler will inevitably play a large role in deciding when to stop collapsing levels when 
applying %BEST_COLLAPSE.  This is sound and practical since the modeler will be familiar with the predictor 
variable.  This judgment can be assisted by the statistics produced by %BEST_COLLAPSE: 
 
IV, x-stat, and c-stat 

 
The modeler can inspect the changes in IV and x-stat to determine when too much predictive power is lost by a 
collapse.  In the case of numeric predictors, the equality of x-stat and c-stat signals monotonicity. 
 
Log Odds Ratio of the Levels to be Collapsed 

 
If levels i and j are selected to be collapsed, then their log-odds ratio = LO = log( (Gi / Bi)  / (Gj / Bj) ).  The 
approximate standard deviation of the LO is LO_SD = SQRT (1/Gi + 1/Bi + 1/Gj + 1/Bj ).  Assuming cell counts in rows 
i and j are large, then LO is normally distributed and an approximate 95% confidence interval (CI) is: 
 

LO  +/-  2 * LO_SD  (approximate 95% confidence interval for true LO). 
 
If LO = 0, then gi / bi  = gj / bj and the collapsing of i and j is a good decision.  Roughly

12
, the more that LO deviates 

from 0, the greater will be the decrease in IV from collapsing.  A potential guideline is to consider stopping the 
collapsing process if LO  +/-  2* LO_SD does not include 0. 
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 This example was found by a trial and error process and after we failed to prove that the algorithm would maximize IV.  
12

 Recall the discussion surrounding Table 5. 
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In Table 6 the 95% CI for the log-odds at level 6 omits zero.  This suggests stopping at k = 7.  This conclusion is 
reinforced by examining the change in the IV and x-stat when going from 7 to 6 levels.  For each statistic there is a 
noticeable drop between k = 7 and k = 6.  (For example, IV drops from 0.12113 at k = 7 to 0.12046 at k = 6.) 
 
Table 6 

Dataset = IV_test_Income, Predictor = Income_C, Target = Y, Method = IV, Mode = J 

Log-odds with 95% CI 

k IV x-stat 
Collapsing 

to 
LO LO_SD LOminus2SD LOplus2SD 

        

12 0.12145 0.59795 11 -0.01820 0.15187 -0.32193 0.28553 

11 0.12145 0.59795 10 -0.02786 0.12722 -0.28229 0.22658 

10 0.12144 0.59795 9 -0.02225 0.07882 -0.17989 0.13539 

9 0.12143 0.59793 8 0.05507 0.08121 -0.10735 0.21749 

8 0.12136 0.59783 7 -0.06920 0.05022 -0.16963 0.03123 

7 0.12113 0.59753 6 -0.15575 0.06583 -0.28741 -0.02410 

6 0.12046 0.59707 5 -0.18128 0.04178 -0.26483 -0.09772 

5 0.11792 0.59463 4 -0.20287 0.04803 -0.29894 -0.10680 

4 0.11513 0.59282 3 -0.23202 0.03703 -0.30609 -0.15796 

3 0.11029 0.58905 2 -0.37940 0.02655 -0.43251 -0.32629 

2 0.08439 0.56457      

SECTION TWO:   
INFORMATION VALUE STATISTIC GUIDELINES - COMPARISON OF IV AND X-STATISTIC  
 
This section will focus on comparing IV to the x-statistic in order to better understand the IV Rules of Thumb for 

evaluating the strength a predictor.   
 
In addition to the x-statistic it is possible to compute chi-square statistics between X and Y and to look for significant 
values of association.  But the chi-square may be highly significant simply due to large sample sizes.  In contrast, the 
x-statistic and the IV statistic are not dependent on sample size. 
 
How to actually perform the comparison of IV and x-statistic? 
 

A program can be written to produce all the frequency tables with specified "N" total observations and "K" rows and 
where the cell counts Gk and Bk are non-zero (so that IV can be computed.)   Then IV and x-stat are computed for 
each table of the form of Table 7.   
 
Table 7 – Generic Table in the IV population with parameters K and N 
  Gk and Bk required to be non-zero 

 Y  

X Y = 0 Y = 1 TOTAL 

X1 B1 G1 N1. 

... ... ... … 

XK BK GK NK. 

   N 
A Small Complete Enumeration Example 

 
The IV and x-statistic values for all tables where N = 8 and K = 3 are shown below.  There are 21 tables but only 4 
unique combinations of IV and x-stat values, as shown in Table 8.  See the Appendix for a complete list of the 21 
tables. 
 
Table 8 – All unique IV and x-stat pairs for the population of tables with N = 8 and K = 3 

IV x-stat_mean 

0.00000 0.50000 

0.09242 0.56667 

0.29296 0.63333 

0.34657 0.65625 
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Complete Enumeration for N and K having a Large Number of Tables 

 
For fixed N and K there are examples where two tables have the same IV but have different x-stat values.  So there is 
not the concept of a list of IV values with their associated x-stat.

13
  But, as a practical matter, even for small N and K, 

there are far too many unique IV values to list.  Instead, the IV values are grouped into narrow ranges and x-stat 
distributional values are computed for the mean, 10

th
 percentile, 90

th
 percentile, 1

st
 percentile and 99

th
 percentile. 

 
In the Tables below four exemplary values of IV were selected and ranges of width +/- 0.005 were formed around 
each of them.  IV and x-stat distributional statistics are shown for these value-ranges of IV.  See Table 9A, 9B, 9C. 
 
For N = 50 and K = 3 there are 1,906,884 tables but only 155,351 unique pairs of IV and x-stat values.

14
 

 
Table 9A:  N = 50 and K = 3 based on enumeration 

IV range x_stat count x_stat_mean x_stat_P10 x_stat_P90 x_stat_P01 x_stat_P99 

       

0.02  +/- .005 1,303 0.53289 0.52564 0.53906 0.51843 0.54160 
0.1  +/- .005 1,278 0.57498 0.56160 0.58333 0.54800 0.58571 
0.2  +/- .005 1,209 0.60488 0.58732 0.61680 0.56981 0.62000 
0.3  +/- .005 1,126 0.62825 0.60480 0.64260 0.58847 0.64571 

 
For N = 50 and K = 4 there are 85,900,584 tables but only 1,709,364 unique pairs of IV and x-stat values. 

 
Table 9B:  N = 50 and K = 4 based on enumeration 

IV range x_stat count x_stat_mean x_stat_P10 x_stat_P90 x_stat_P01 x_stat_P99 

       

0.02  +/- .005 3,412 0.53424 0.52778 0.54000 0.52083 0.54221 
0.1  +/- .005 7,680 0.57732 0.56571 0.58508 0.55263 0.58766 
0.2  +/- .005 9,756 0.60967 0.59524 0.61969 0.57738 0.62240 
0.3  +/- .005 10,775 0.63361 0.61630 0.64569 0.59621 0.64881 

 
For N = 100 and K = 3 there are 71,523,144 tables but only 5,876,866 unique pairs of IV and x-stat values. 

 
Table 9C:  N = 100 and K = 3 based on enumeration 

IV range x_stat count x_stat_mean x_stat_P10 x_stat_P90 x_stat_P01 x_stat_P99 

       

0.02  +/- .005 47,931 0.53256 0.52505 0.53881 0.51662 0.54140 

0.1  +/- .005 44,521 0.57335 0.55838 0.58313 0.54071 0.58590 

0.2  +/- .005 41,830 0.60392 0.58472 0.61682 0.56151 0.61980 

0.3  +/- .005 37,742 0.62730 0.60471 0.64224 0.57791 0.64560 

 
Observations: 

 

 The mean x-stat increases as K increases from 3 to 4 for N = 50. 

 The mean x-stat decreases slightly as N increases from 50 to 100 for K = 3 
 
Table 9D:  Summary 

Complete Enumeration 

IV range N = 50 and K = 3 N = 50 and K = 4 N = 100 and K = 3 

 x_stat_mean 

0.02  +/- .005 0.53289 0.53424 0.53256 

0.1  +/- .005 0.57498 0.57732 0.57335 

0.2  +/- .005 0.60488 0.60967 0.60392 

0.3  +/- .005 0.62825 0.63361 0.62730 
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 There are also examples of two tables with the same x-stat but different IV values.  Contact the authors for examples. 
14

 proc sort data = population out = unique nodupkey; by IV6 x_stat6;  (To avoid spurious non-dupes due to calculation imprecision 
of IV and x-stat, the IV and x-stat were rounded to 6 decimal places to create IV6 and x_stat6.) 
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PROBLEM: 
 

A complete enumeration for larger tables is not practically possible even for modest size N and K.  For K levels there 
are 2*K cells in the table.  The general formula

15
 for the number of tables with N total frequency and 2*K cells (all 

being non-zero) is:  
 

C(N-1, 2*K-1) where C(n, k) = n! / ( (n-k)! * k! ) is the combination symbol. 
 
For K = 2 levels and N > 4 the formula works out to be (N

3
 – 6*N

2
 + 11*N – 6) / 6.  As shown by the formula the 

growth in table count is polynomial in N.  Expressed in terms of DO LOOPs the formula is: 
 
/* This formula is only valid for K = 2. For each one unit increase in K, two more DO 

LOOPs must be added following the pattern shown below */ 

N = <>;  /* N >= 4 */ 
K = 2;   
count = 0; 
do i1 = 1 to (N -(2*K - 1)); 

 do i2 = 1 to (N - i1 - (2*K - 2)); 

  do i3 = 1 to (N - i1 - i2 - (2*K - 3)); 

   count = count + 1;  /* Gives the count of tables */ 

   end; 

  end; 

 end; 

 

For N = 50 and K = 2 the table count is 18,424 (by the formula).  From Table 9A, there are 1,906,884 tables for N = 
50 and K = 3.  From Table 9B the count climbs to 85,900,584 for N = 50 and K = 4. 
 

SOLUTION: 
 

A SAS program was written to sample from the population of all possible tables for given N and K and then to 
compute IV and x-stat for the sampled tables.  Using this sample a function of the form  
 

F(N, K, IV) = x-stat 

can be developed by linear regression.  

THE REGRESSION EQUATION: F(N, K, IV) = X-STAT 
 
Values of N and K were selected that arise in the actual practice of building models.  Samples

16
 from the populations 

of tables determined by the N and K were obtained to form the data set for regression.  IV and x-stat were computed 
for each table in the sample.  For a given N and K only unique pairs of IV and x-stat were retained for fitting the 
model.

17
   

 
The Design of the data set for regression followed these rules: 

 

 Restricted the IV values to a range of practical interest.  IV in range 0.0 to 0.5. 

 Selected N for sizes commonly used for developing predictive models.  N: 500, 1000, 2000, 3000, 4000 

 Selected K for counts of levels often encountered.  K: 4, 6, 8, 10, 12 
 
Predictor variables for use in fitting F(N, K, IV) = x-stat were:  
 IV 
 IV squared 
 N_1K (=N/1000) 
 K 
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 This is a formula from the mathematical subject of Partition of Integers.  See http://mathforum.org/library/drmath/view/52268.html 
where the formula is derived.  This derivation uses an approach involving a “generating function”.  See the Appendix for an 
alternative elementary proof. 
16

 SAS code is not included in this paper but is available from the authors. 
17

 The use of unique pairs for given N and K will give equal weight in the regression to each value of IV occurring in the sample. 
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Results are given in Table 10. 
 
Table 10: F(N, K, IV) = x-stat 

Analysis of Variance 

Source DF 
Sum of Mean 

F Value Pr > F 
Squares Square 

Model 4 11.95321 2.9883 21420.7 <.0001 

Error 12206 1.70281 0.00013951 
  

Corrected Total 12210 13.65602 
   

      Root MSE 0.01181 R-Square 0.8753 
  

Dependent Mean 0.63598 Adj R-Sq 0.8753 
  

Coeff Var 1.85718 
    

      Parameter Estimates 

Variable DF 
Parameter Standard 

t Value Pr > |t| 
Estimate Error 

Intercept 1 0.53577 0.00056869 942.1 <.0001 

IV 1 0.42194 0.00394 107.12 <.0001 

IV_sq 1 -0.32069 0.0067 -47.88 <.0001 

N_1K 1 -0.00002699 0.00008419 -0.32 0.7485 

K 1 0.00071647 0.00004201 17.05 <.0001 

 
Except for N_1K, all predictors are significant.  Overall R-squared is strong at 88%. 
   
The regression model's fitted-values were computed for the design points of IV, N, and K and then extrapolated to 
K=14.  
 
Results are shown in Table 11. 
 
Table 11: Fitted values of x-stat for design points of N and K and extrapolated to K = 14. 

  X-STAT VALUES 
TABLE SIZE  LEVELS = K 

 
IV 4 6 8 10 12 14 

N=500 0.02 0.54693 0.54836 0.54980 0.55123 0.55266 0.55410 

 
0.1 0.57761 0.57904 0.58047 0.58191 0.58334 0.58477 

 
0.2 0.61018 0.61161 0.61305 0.61448 0.61591 0.61734 

 
0.3 0.63634 0.63777 0.63921 0.64064 0.64207 0.64350 

N=1000 0.02 0.54692 0.54835 0.54978 0.55122 0.55265 0.55408 

 
0.1 0.57759 0.57903 0.58046 0.58189 0.58333 0.58476 

 
0.2 0.61017 0.61160 0.61303 0.61447 0.61590 0.61733 

 
0.3 0.63633 0.63776 0.63919 0.64062 0.64206 0.64349 

N=2000 0.02 0.54689 0.54832 0.54976 0.55119 0.55262 0.55406 

 
0.1 0.57757 0.57900 0.58043 0.58187 0.58330 0.58473 

 
0.2 0.61014 0.61157 0.61301 0.61444 0.61587 0.61730 

 
0.3 0.63630 0.63773 0.63916 0.64060 0.64203 0.64346 

N=3000 0.02 0.54686 0.54830 0.54973 0.55116 0.55260 0.55403 

 
0.1 0.57754 0.57897 0.58041 0.58184 0.58327 0.58470 

 
0.2 0.61011 0.61155 0.61298 0.61441 0.61584 0.61728 

 
0.3 0.63627 0.63770 0.63914 0.64057 0.64200 0.64344 

N=4000 0.02 0.54684 0.54827 0.54970 0.55114 0.55257 0.55400 

 
0.1 0.57751 0.57895 0.58038 0.58181 0.58324 0.58468 

 
0.2 0.61009 0.61152 0.61295 0.61438 0.61582 0.61725 

 
0.3 0.63624 0.63768 0.63911 0.64054 0.64198 0.64341 
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As shown in Table 12, the extrapolated regression values for N = 50 and K = 4 are close to the complete enumeration 
averages except for the case of IV = 0.02  +/- .005 where the values are different by 0.0127. 
 
Table 12: For N=50 and K=4 Comparison of Enumeration and Regression 

 x-stat 

IV range 
Regression 

Fitted 
Enumeration 

   

0.02  +/- .005 0.54694 0.53424 
0.1  +/- .005 0.57762 0.57732 
0.2  +/- .005 0.61019 0.60967 
0.3  +/- .005 0.63635 0.63361 

 
Tables 11 and 12 support the conclusion that IV can be related to the x-stat across wide ranges of N and K according 
to the simplified Table 13 below: 
 
Table 13: Simplified IV to x-Stat Relationship 

IV X-STAT 

0.02 0.55 

0.1 0.58 

0.2 0.61 

0.3 0.64 

 
How to receive the programs in the IV and x-stat study: 

 
Contact the authors for the completion enumeration program, sampling program, and regression program. 
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APPENDIX 
 

%BEST_COLLAPSE 
 

%MACRO BEST_COLLAPSE(DATASET, X, Y, W, METHOD, MODE, VERBOSE, LL_STAT); 

* Best Collapse Version 6a; 

 

options ls=230 nocenter; 

 

/* !!! WARNING: There is No Input Data Checking in this Program !!! */ 

 

/* DATASET is a dataset name - either one or two levels */ 

/* X (Predictor) is a numeric or character variable which can have MISSING values */ 

 /* Missing values of X are ignored in all calculations */ 

 /*  "___x_Char" is RESERVED.  Do not use ___x_char as name of predictor */ 

/* Y (Target) has values 0 and 1 without MISSING values */ 

/* W (Freq) has values which are positive integers.  It represents a FREQUENCY variable */ 

/* METHOD is IV or LL */ 

 /* For METHOD = IV the collapsing maximizes IV 

  For METHOD = LL the collapsing maximizing Log likelihood */ 

/* MODE is A or J */ 

 /*  For MODE = A all pairs of levels are compared when collapsing IV 

  For MODE = J only adjacent pairs of levels are compared when collapsing IV */ 

/* VERBOSE = YES is used to display the entire history of collapsing in the SUMMARY REPORT */ 

 /* Otherwise this history is not displayed in the SUMMARY REPORT */ 

/* LL_STAT = YES is used to display Log Likelihood for Model and Likelihood Ratio Chi Square 

Probability */ 

 

/* It is required that ALL cell counts in the X-Y Frequency Table are positive */ 

/* The Program ENDS if there is a zero cell and prints "ZERO CELL DETECTED" */ 

 

%global num_levels; 

%global STOP; 

%global LL_inter; 

 

%IF &METHOD NE LL 

%THEN  

%DO;  

 %IF &METHOD NE IV 

 %THEN 

 %DO; 

  %PUT INVALID SUBSTITUTION METHOD = &METHOD; 

  %PUT ENDING EXECUTION; 

  %GOTO EXIT; 

  %END; 

 %END;  

 

proc means data = &DATASET noprint; class &X; var &Y; freq &W; 

types () &X; 

output out = mean_out_0 

sum = y; 

run; 

 

%let STOP = NO; 

 

data mean_in; set mean_out_0 nobs = num_levels; 

 length ___x_char $75; 

 LABEL ___x_char = "&X"; 

 keep ___x_char G B; 

 ___x_char = trim(&X); 

 B = _freq_ - y; 

 G = y; 

 if _n_ = 1 then call symput('num_levels',num_levels - 1); /*Subtracts 1 for _TYPE_=0*/ 

 if _n_ = 1 then call symput('num_levels_minus1',num_levels - 2); 
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 if _n_ = 1  

 then 

 do; 

  LL_Inter = B*log(B/_freq_) + G*log(G/_freq_); 

  call symput('LL_inter',LL_inter); 

  end; 

 if G = 0 or B = 0 then call symput("STOP","YES"); 

 if _type_ = 1 then output; 

run; 

 

 %IF &STOP = YES %THEN  

 %DO; 

  %PUT ZERO CELL DETECTED; 

  %PUT ENDING EXECUTION; 

  %GOTO EXIT; 

  %END; 

 

%MACRO BEST_COLLAPSE_LEVELS(NUM_LEVELS_R); 

 

proc means data = mean_in noprint; class ___x_char; var G B; 

output out = mean_out(keep = ___x_char G B _type_) 

sum = G B; 

run; 

 

proc print data = mean_out label; 

title1  

"Dataset= &DATASET, Predictor= &X, Target= &Y, Method= &METHOD, Mode= &MODE, RUN ON &SYSDATE 

&SYSTIME"; 

title2 " "; 

title3 "Collapse Step: Levels = &num_levels_r"; 

run; 

 

data   

 denorm&num_levels_r  

 mean_in(keep = ___x_char G B) 

   %IF ("%UPCASE(&MODE)" = "J" AND &num_levels_r = &num_levels) 

 %THEN %DO;  

  Split(keep = split1 - split%cmpres(&num_levels_minus1)) 

  %END;    

  ; 

 set mean_out end = eof; 

 

 length L1 - L&num_levels_r $75; 

 length ___x_char $75; 

 array Gx{*} G1 - G&num_levels_r; 

 array Bx{*} B1 - B&num_levels_r; 

 array LEVELx{*} $ L1 - L&num_levels_r; 

 

 array Splitx{*} Split1 - Split%cmpres(&num_levels_minus1); 

 retain G_total B_Total k collapsing_to IV LL_Model LRCS LR_Chi_Sq_Prob; 

 retain G1 - G&num_levels_r B1 - B&num_levels_r L1 - L&num_levels_r; 

 if _type_ = 0 

 then 

 do; 

  G_total = G; 

  B_total = B; 

  k = 0; 

  IV = 0; 

  LL_Model = 0; 

  end; 

 if _type_ = 1 

 then 

 do; 

  k + 1; 

  collapsing_to = k - 1; 

  Gx{k} = G; 

  Bx{k} = B; 

  LEVELx{k} = trim(left(___x_char)); 

  IV = IV + (G/G_total - B/B_total)*log((G/G_total) / (B/B_total)); 

  LL_Model = LL_Model + G * log(G/(G+B)) + B * log(B/(G+B)); 

  end; 
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 if eof 

 then 

 do; 

  Minus2_LL = -2*LL_Model; 

  LRCS = -2 * (&LL_inter - LL_Model); 

  LR_Chi_Sq_Prob = 1 - PROBCHI(LRCS,k-1); 

  LABEL Minus2_LL = "-2*Log L"; 

  LABEL LR_Chi_Sq_Prob = "Prob(x > LR_Chi_Sq)"; 

  LABEL LRCS = "Lik-Ratio Chi_Sq"; 

  LABEL LL_Model = "LL for Model"; 

 

  %IF "%UPCASE(&MODE)" = "J" AND "%UPCASE(&METHOD") = "IV" AND &num_levels_r = &num_levels 

  %THEN 

  %DO; 

   do r = 1 to &num_levels_r - 1; 

    SUM_G_left = 0; SUM_B_left = 0; 

    do s = 1 to r; 

     SUM_G_left = SUM_G_left + Gx{s}/G_total; 

     SUM_B_left = SUM_B_left + Bx{s}/B_total; 

     end; 

    SUM_G_right = 0; SUM_B_right = 0; 

    do s = r+1 to &num_levels_r; 

     SUM_G_right = SUM_G_right + Gx{s}/G_total; 

     SUM_B_right = SUM_B_right + Bx{s}/B_total; 

     end; 

    Splitx{r} = (SUM_G_left - SUM_B_left) * log(SUM_G_left / SUM_B_left) + 

       (SUM_G_right - SUM_B_right) * log(SUM_G_right / SUM_B_right); 

    end; 

   OUTPUT Split; 

   %END;  

  %IF "%UPCASE(&MODE)" = "J" AND "%UPCASE(&METHOD") = "LL" AND &num_levels_r = &num_levels 

  %THEN 

  %DO; 

   do r = 1 to &num_levels_r - 1; 

    SUM_G_left = 0; SUM_B_left = 0; 

    do s = 1 to r;  

     SUM_G_left = SUM_G_left + Gx{s}; 

     SUM_B_left = SUM_B_left + Bx{s};  

     end; 

    SUM_G_right = 0; SUM_B_right = 0; 

    do s = r+1 to &num_levels_r; 

     SUM_G_right = SUM_G_right + Gx{s}; 

     SUM_B_right = SUM_B_right + Bx{s}; 

     end; 

    Splitx{r} = SUM_G_left*log(SUM_G_left/(SUM_G_left+SUM_B_left)) +  

       SUM_B_left*log(SUM_B_left/(SUM_G_left+SUM_B_left)) + 

       SUM_G_right*log(SUM_G_right/(SUM_G_right+SUM_B_right)) + 

       SUM_B_right*log(SUM_B_right/(SUM_G_right+SUM_B_right)); 

    end; 

   OUTPUT Split; 

   %END; 

  

  min_C = 99999999; 

  X_STAT = 0; 

  C_STAT = 0; 

  do i = 1 to &num_levels_r - 1; 

   %IF "%UPCASE(&MODE)" = "A" %THEN %DO; do j = i+1 to &num_levels_r; %END; 

   %IF "%UPCASE(&MODE)" = "J" %THEN %DO; do j = i+1 to i+1; %END; 

    %IF &METHOD = LL 

    %THEN 

    %DO; 

     L_i = Gx{i}*log(Gx{i}/(Gx{i}+Bx{i})) + Bx{i}*log(Bx{i}/(Gx{i}+Bx{i})); 

     L_j = Gx{j}*log(Gx{j}/(Gx{j}+Bx{j})) + Bx{j}*log(Bx{j}/(Gx{j}+Bx{j})); 

     C_ij = L_i + L_j -  

      ( (Gx{i}+Gx{j})*log((Gx{i}+Gx{j})/(Gx{i}+Gx{j}+Bx{i}+Bx{j})) +  

      (Bx{i}+Bx{j})*log((Bx{i}+Bx{j})/(Gx{i}+Gx{j}+Bx{i}+Bx{j})) ); 

     if C_ij <= min_C 

     then 

     do; 

      i_index = i; 



 

 16   

      j_index = j; 

      min_C = C_ij; 

     %END; 

    %ELSE %IF &METHOD = IV 

    %THEN 

    %DO; 

     L_i = ( Gx{i}/G_total - Bx{i}/B_total ) *  

       log( (Gx{i}/G_total) / (Bx{i}/B_total) ); 

     L_j = ( Gx{j}/G_total - Bx{j}/B_total ) *  

       log( (Gx{j}/G_total) / (Bx{j}/B_total) );   

     C_ij = L_i + L_j - 

       ( (Gx{i} + Gx{j})/G_total - (Bx{i} + Bx{j})/B_total ) *  

       log( ((Gx{i} + Gx{j})/G_total) / ((Bx{i} + Bx{j})/B_total) ); 

     if C_ij <= min_C 

     then 

     do; 

      i_index = i; 

      j_index = j; 

     min_C = C_ij; 

     %END; 

 

     if &num_levels_r >= 3  

     then 

     do; 

      LO = log((Gx{i}*Bx{j})/(Gx{j}*Bx{i})); 

      LO_SD = sqrt(1/Gx{i} + 1/Gx{j} + 1/Bx{i} + 1/Bx{j}); 

      LOplus2SD = LO + 2*LO_SD; 

      LOminus2SD = LO - 2*LO_SD; 

      end; 

      

     end; 

    END; /* END OF J loop */ 

 

   do j = i+1 to &num_levels_r; 

    C_STAT = C_STAT  + Bx{I}*Gx{J}; 

    X_STAT = X_STAT  + ABS(Bx{i}*Gx{j} - Gx{i}*Bx{j}); 

 

    end; /* END OF: J loop */ 

   end; /* END OF: I loop */ 

 

  do i = 1 to &num_levels_r; 

   C_STAT  = C_STAT + .5*Bx{I}*Gx{I}; 

   END; 

 

   C_PAIR  = B_TOTAL * G_TOTAL; 

  C_STAT  = MAX( C_STAT  / C_PAIR,  1 - C_STAT  / C_PAIR ); 

  X_STAT  = .5 * (X_STAT  / C_PAIR  + 1); 

 

  OUTPUT denorm&num_levels_r; 

 

  do i = 1 to &num_levels_r; 

   if i = i_index or i = j_index  

    then ___x_char = compress(LEVELx{i_index}||"+"||LEVELx{j_index}); 

    else ___x_char = LEVELx{i}; 

   G = Gx{i}; 

   B = Bx{i}; 

   OUTPUT mean_in; 

   end; 

 

  end; /* END OF: if eof then do */ 

run; 

proc append base = denorm data = denorm&num_levels_r force nowarn; 

run; 

%MEND; 

 

%MACRO INTER; 

proc delete data = denorm; 

run; 

%do k = &num_levels %to 2 %by - 1; 

 %BEST_COLLAPSE_LEVELS(&k); 

 %end; 
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proc print data = denorm noobs label; 

var K  

%IF &LL_STAT = YES %THEN LL_Model Minus2_LL LRCS LR_Chi_Sq_Prob;  

IV X_STAT C_STAT  

%IF &VERBOSE = YES %THEN L1 - L%cmpres(&num_levels); ; 

format IV X_STAT C_STAT 8.5; 

title2 " "; 

title3 "Summary Report"; 

run; 

%IF ("&MODE" = "J")  

%THEN %DO;  

 proc print data = Split; 

 title2 " "; 

 title3 "Final Step Binary Splits for MODE = J"; 

 %END; 

run; 

  

proc print data = denorm noobs; 

var K  IV X_STAT collapsing_to LO LO_SD LOminus2SD LOplus2SD; 

format IV X_STAT LO LO_SD LOminus2SD LOplus2SD 8.5; 

title2 " "; 

title3 "Log-odds with 95% CI"; 

run; 

%MEND; 

 %INTER; 

%EXIT: %MEND; 

 

IV is non-increasing when collapsing levels of X 
 

To show that IV is non-increasing when two levels of X are collapsed it must be shown that: 
 

(g1 - b1) * log(g1/b1) + (g2 - b2) * log(g2/b2)  >  (g1 - b1 + g2 - b2) * log ((g1 + g2)/(b1 + b2)) 
 

 where 1 and 2 refer to two arbitrary levels of X, g is the "good" percent and b is the "bad" percent. 
 
This inequality is derived from the Log-Sum Inequality which says: 

 
∑i=1

n
 Ai * log(Ai/Bi) < (∑i=1

n
 Ai ) * log( ∑i=1

n
 Ai / ∑i=1

n
 Bi ) for Ai and Bi positive and i = 1 to n 

 
Equality occurs in the Log-Sum Inequality if only if Ai/B

i
 are equal for all i 

 
Proof: 
 
(g1 - b1) * log(g1/b1) + (g2 - b2) * log(g2/b2)  =   g1 * log(g1/b1) + b1 * log(b1/g1) + g2 * log(g2/b2) + b2 * log(b2/g2) 
 
= { g1 * log(g1/b1) + g2 * log(g2/b2) } + { b1 * log(b1/g1) + b2 * log(b2/g2) } 
 
Using 2 applications of the Log-Sum Inequality gives: 
 
>  (g1 + g2) * log ((g1+g2)/(b1+b2))  + (b1 + b2) * log ((b1+b2)/(g1+g2)) 
   
=  (g1 + g2) * log ((g1+g2)/(b1+b2))  -  (b1 + b2) * log ((g1+g2)/(b1+b2)) 
 
=  (g1 - b1 + g2 - b2) * log ((g1+g2)/(b1+b2)) 

 
If g1/b1 = g2/b2 then the Log-Sum Inequality is an equality.  The inequality in the calculation above becomes an 
equality. 
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Complete Enumeration of Tables for N = 8 and K = 3 (with nonzero cells) 
 

Obs IV x_stat G1 G2 G3 B1 B2 B3 

1 0.29296 0.63333 1 1 1 1 1 3 

2 0.09242 0.56667 1 1 1 1 2 2 

3 0.29296 0.63333 1 1 1 1 3 1 

4 0.09242 0.56667 1 1 1 2 1 2 

5 0.09242 0.56667 1 1 1 2 2 1 

6 0.29296 0.63333 1 1 1 3 1 1 

7 0 0.5 1 1 2 1 1 2 

8 0.34657 0.65625 1 1 2 1 2 1 

9 0.34657 0.65625 1 1 2 2 1 1 

10 0.29296 0.63333 1 1 3 1 1 1 

11 0.34657 0.65625 1 2 1 1 1 2 

12 0 0.5 1 2 1 1 2 1 

13 0.34657 0.65625 1 2 1 2 1 1 

14 0.09242 0.56667 1 2 2 1 1 1 

15 0.29296 0.63333 1 3 1 1 1 1 

16 0.34657 0.65625 2 1 1 1 1 2 

17 0.34657 0.65625 2 1 1 1 2 1 

18 0 0.5 2 1 1 2 1 1 

19 0.09242 0.56667 2 1 2 1 1 1 

20 0.09242 0.56667 2 2 1 1 1 1 

21 0.29296 0.63333 3 1 1 1 1 1 

 
Number of Positive Integer Solutions to x1 + … + xk = n is C(n-1, k-1) 
 
If k and m are positive integers, Laurendi (2005) in his Example 5 gives a simple demonstration that the number of 
non-negative integer solutions (x1 … xk)  (each xi > 0) to  
 

x1 + … + xk = m  … (A) 
is C(m+k-1, k-1) 
 
We will show that there is a 1 to 1 correspondence between non-negative integer solutions to (A) and the positive 
integer solutions (each xi > 0)  to: 
 

x1 + … + xk = m + k … (B) 
 
This will prove that the number of positive solutions to (B) is C(m+k-1, k-1).   
 
Since m is an arbitrary positive integer, we can define n = m + k and re-state the conclusion to say:  If n > 2 and 
k > 1, then the number of positive solutions to  

 
x1 + … + xk = n  … (C) 

 
is C(n-1, k-1). 
 
Now for the 1-1 correspondence:   
 
Let (a1,…, ak) solve (A). Then (a1 +1, …, ak +1) solves (C). 
   
Conversely, if (b1,…, bk) solves (C), then (b1 -1,…, bk -1) solves (A) 
  


