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ABSTRACT 

This paper explores features available in PROC SURVEYMEANS to analyze continuous variables in a complex survey data 
set, where “complex” denotes a data set characterized by one or more of the following features: unequal weights, 
stratification, clustering, and finite population corrections.  Using a real-world complex survey data set, this paper 
demonstrates the necessary syntax to have PROC SURVEYMEANS properly estimate totals, means, ratios, and quantiles, as 
well as their corresponding design-based measures of variability. 

INTRODUCTION 

This paper explores the capabilities of PROC SURVEYMEANS for analyzing variables that can effectively be treated as 
continuous.  Discussion and syntax examples center around publically-available data from the 2003 Commercial Buildings 
Energy Consumption Survey (CBECS)—background given below—which teems with continuous variables.  Examples include 
square footage of the sampled building, its kilowatt-hours of electricity consumed, and any associated expenditures.  A limited 
amount of consideration is given to dichotomous or nominal variables, which can technically be analyzed in PROC 
SURVEYMEANS using the CLASS statement or by creating one or more 0/1 indicator variables (i.e., a unit is assigned a 
value of 1 if it has the given characteristic, and 0 otherwise). 

The paper conforms to a structure whereby a separate section is devoted to each of the four broad classes of statistics 
available in PROC SURVEYMEANS: totals, means, ratios, and quantiles.  Each estimator is first introduced algebraically 
along with a brief mention of how PROC SURVEYMEANS estimates its variance, followed by one or more elementary syntax 
examples.  Each section concludes with a tabular summarization of the statistical keywords available in the PROC statement. 
Before launching into these details, however, the paper begins with a brief background section on features of complex survey 
data as well as a brief background section on the CBECS. 

BACKGROUND ON FEATURES OF COMPLEX SURVEY DATA 

There are four distinct features of “complex” survey data that can arise: 

 Finite population corrections 

 Clustering 

 Stratification 

 Unequal weights 

In general, if the data emanate from a sample design that introduced one or more of these features, you should employ a 
SAS/STAT® analysis procedure prefixed by SURVEY.  There are currently five such procedures: 

 PROC SURVEYMEANS 

 PROC SURVEYFREQ 

 PROC SURVEYREG 

 PROC SURVEYLOGISTIC 

 PROC SURVEYPHREG 

All five share a common syntax structure to inform SAS® of these features in the input data set. 

In many introductory statistics courses, the implied data collection mechanism is simple random sampling with replacement 
(SRSWR), possibly from an infinite or hypothetical population.  Under that paradigm, data are assumed independently and 
identically distributed, or i.i.d. for short.  In contrast, survey researchers often select samples without replacement from finite, 
or enumerable, populations, and simple random sampling is the exception rather than the rule.  Alternative sample designs 
can yield efficiencies in many circumstances, but they are most often pursued out of necessity or to save on data collection 
costs. 

For sake of an example, assume a state board of education is interested in measuring the mathematical aptitude of N = 1,000 
students at a particular high school by way of a standardized test.  That is, the finite population of interest is the student body 
of the given school.  Instead of administering the test to all students, suppose a sample of n = 200 students is selected 
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randomly and that an aptitude yi is measured for each.  We know from standard statistical theory that the sample mean 

is
n
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i
 1ˆ an unbiased estimate of y , the true population mean, or the average test score for all students in the high 

school.  If the sample were selected with replacement, meaning each student in the population could be sampled (and 
measured via the test) more than once, the estimated variance of the sample mean would be calculated 

as
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.  If the sample were selected without replacement, however, the estimated variance formula would 

more accurately be
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.  In other words, sampling without replacement reduces the variance in 

proportion to the sampling rate—in this case, 20%. 

The term (1 – n / N) is called the finite population correction, or FPC, and enters other estimators’ variance formulas, not 
strictly that of the sample mean.  Notice that as the sampling rate n / N approaches 1, the variance tends to 0, which is an 
intuitive result.  Another way of conceptualizing this is that, as the portion of the population sampled increases, uncertainty in 
a sample-based estimate decreases.  In the most extreme case of a census (when n = N), the FPC is 0 and there is no 
variance.  The sample-based estimate defaults to the given population quantity. 

One straightforward way to incorporate the FPC is to use the TOTAL= option in the PROC statement.  SAS determines n from 
the input data set, but relies on the user to specify N.  Alternatively, you can specify the sampling rate n / N using the RATE= 
option.  If neither the TOTAL= or RATE= options is present, the SURVEY procedure assumes sampling was conducted with 
replacement and ignores the FPC. 

The second feature is clustering, which occurs when the unit sampled is actually a cluster of population units.  Returning to 
our hypothetical example, suppose that each student in the high school starts his or her school day in a homeroom where 
attendance is taken and other administrative matters handled.  For numeric concreteness, assume there are 40 homerooms, 
each comprised of 25 students.  From the standpoint of data collection logistics, it would be much easier to sample 
homerooms and administer the test therein as opposed to tracking down each sampled student independently.  One could 
still achieve a sample size of 200 by sampling 8 of the 40 homerooms.  This is a legitimate sample design, but the clustering 
should be accounted in the analysis stage by specifying a homeroom identifier variable in the CLUSTER statement of the 
respective SURVEY procedure. 

There is no mandate to sample all units within a cluster.  For instance, we could have achieved the same sample size by 
initially selecting 20 homerooms, then selecting 10 students from each at random.  This is an example of a multi-stage 
sampling design in which the primary sampling units (PSUs) are homerooms and the secondary sampling units (SSUs) are 
students.  It is worth emphasizing, however, that only the PSU identifier should be specified in the CLUSTER statement.  
When SAS sees two variables in the CLUSTER statement, it assumes the combination of the two defines a PSU, which can 
result in an unduly low variance estimate.  Specifying only the PSU implicitly invokes the ultimate cluster assumption (see p. 
35 of Kalton, 1983) that is frequently used to simplify variance calculations.  A common concern voiced by practitioners is that 
this does not account for all stages of sampling and, thus, may underestimate variability.  More commonly, however, the result 
is a slight overestimation of variability. 

The third feature of complex survey data is stratification, which arises when PSUs are allocated into one of a mutually 
exclusive and exhaustive set of groups, or strata (singular: stratum) and an independent sample is selected within each.  
Whereas clustering typically decreases precision, in all but a few rare circumstances, stratification increases precision.  The 
reason is that the overall variance consists of stratum-specific variance estimates summed over all strata.  When strata are 
constructed homogeneously with respect to the principle outcome variable(s), there can be considerable precision gains 
relative to simple random sampling. 

Returning to our hypothetical example, a prudent stratification variable might be grade level.  Suppose the 40 homerooms 
could be grouped into 4 sets of 10, one for each grade level—ninth through twelfth.  Figure 1 illustrates how this might look if 
2 homerooms were sampled within each grade.  Rows correspond to strata, columns to clusters, and a filled-in cell denotes 
being selected into the sample.  If this particular sample design was employed, however, we would need to inform SAS of the 
grade level identifier by placing it in the STRATA statement of the given SURVEY procedure. 
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Figure 1. Visual Representation of a Stratified, Cluster Sample for the Hypothetical Mathematics            

Aptitude Survey 

Parenthetically alluded to above was how sampling rates of clusters may vary across strata.  In general, when sampling rates 
vary amongst the ultimately sampled units, one should account for this by assigning a unit-level weight equaling the inverse of 
that unit’s selection probability.  Weights are the fourth feature of complex survey data and can be interpreted as the number 
of population units a sample unit represents.  For instance, if a sample unit’s selection probability was one-fourth, that unit 
would be assigned a weight of 4.  The unit’s survey responses represent itself and three other comparable units in the 
population.  Where applicable, these weights should be stored as a numeric weight variable and specified in the WEIGHT 
statement of the SURVEY procedure.  In the absence of a WEIGHT statement, units are implicitly assigned a weight of 1. 

BACKGROUND ON THE CBECS 

The Commercial Building Energy Consumption Survey (CBECS) 

(http://www.eia.gov/consumption/commercial/about.cfm) is sponsored by the Energy Information Administration, a 
statistical subagency of the U.S. Department of Energy.  The sampling unit in this survey is a building.  Eligible buildings 
include those at least 1,000 square feet in size and having more than 50% of its floorspace devoted to activities that are not 
residential, industrial, or agricultural in nature.  Key statistics of interest include characteristics of the building such as square 
footage, year of construction, types and uses of heating/cooling equipment, and the volume and associated expenditures of 
energy consumed by the building.  One high-profile usage of this survey’s data is that it serves as a benchmark for EPA’s 
ENERGY STAR rating system.  Specifically, a given building’s rating is based on a comparable set of buildings surveyed as 
part of CBECS with respect to size, location, number of occupants, and other factors.  For more information, see 

http://www.energystar.gov/index.cfm?c=evaluate_performance.pt_neprs_learn.  The survey was first administered in 
1979 and is generally conducted every four years.  In this paper, we will analyze data from the 2003 CBECS available for 

download at http://www.eia.gov/consumption/commercial/data/2003/index.cfm?view=microdata. 

The CBECS sample design begins with a stratified, clustered area probability sample.  PSUs are counties or groups of 
counties, and subsequent stage sampling units are at finer levels of geographic detail.  Ultimately, buildings in the finest 
applicable geographical unit sampled were listed and a random sample of them taken.  The area sampling approach is 
augmented by a few sample frames developed from specialized lists acquired for certain classes of buildings such as those 
devoted to Federal Government activities, colleges and universities, and hospitals.  Data on the sampled building is collected 
onsite by interviews with the building owners, managers, or tenants, although a supplemental supplier’s survey is fielded to 
capture additional information on energy consumption and expenditures, particularly for onsite respondents who are unable to 
satisfactorily provide this detailed information. 

TOTALS 

The first statistic we will consider is the estimated total for a survey outcome variable y, which can be expressed in the most 
general sense as 
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where H is the number of strata, nh is the number of PSUs selected from the h
th

 stratum, and mhi is the number of units 
selected from the nh

th
 PSU.  In essence, the estimated total is the weighted sum of all observations in the data set.  The 

expression is given in “the most general sense” because it assumes the sample design includes stratification, clustering, and 
unequal weights.  The expression simplifies in the absence of any of these features. 

At first glance, the estimated variance for this statistic is rather complicated.  Specifically, the formula provided in the 
documentation is 

http://www.eia.gov/consumption/commercial/about.cfm
http://www.energystar.gov/index.cfm?c=evaluate_performance.pt_neprs_learn
http://www.eia.gov/consumption/commercial/data/2003/index.cfm?view=microdata
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where Nh denotes the number of clusters in the h
th

 stratum’s population.  This equation is also given in the “most general 
sense,” and can simplify when certain complex survey features do not apply.  For instance, the rightmost term in parentheses 
represents a stratum-specific finite population correction with respect to the number of clusters selected in the first stage of 
sampling.  If the design involved multiple stages of clustering and the ultimate cluster assumption was implicitly invoked, this 
term would disappear.   

One of the key variables measured for all sampled buildings in the CBECS is square footage.  This is maintained in the 
variable SQFT8 on the publically-available data set.  (The data producers chose to end all variable names in the 2003 
CBECS data set with an “8,” because the 2003 administration was the 8

th
 in the survey’s history.)  As was discussed above, 

the CBECS sample design involves three features of complex survey data: stratification, clustering, and unequal weights.  
These can be accounted for in any SURVEY procedure by pointing SAS to the variables STRATUM8, PAIR8, and ADJWT8, 
respectively.  The example below illustrates the syntax necessary to estimate the total square footage of all buildings in the 
population.  (The criteria for determining whether a building is eligible for the survey is rather complex and will not be defined 

here.  More details can be found on the survey’s website: http://www.eia.gov/consumption/commercial/) 

Specifying the keyword SUM in the PROC statement is all that is needed to estimate the total for any variable listed in the 
VAR statement and its corresponding standard error, the square root of the quantity in (2).  This quantity is labeled “Std Dev” 
in the output, which is somewhat of a misnomer.  A listing of additional statistical keywords available in the PROC statement 
as they relate to totals will be given in Table 1 towards the end of this section. 

proc surveymeans data=CBECS_2003 sum; 

  strata STRATUM8; 

  cluster PAIR8; 

  var SQFT8; 

weight ADJWT8; 

run; 

PROC SURVEYMEANS output always begins with a brief summary of the complex survey features identified on the input 
data set.  From the “Data Summary” component of the output, we are informed that the 5,215 observations in the data set 
CBECS_2003 were found to be spread amongst 88 distinct PSUs in 44 distinct strata, and that the weights sum to 
approximately 4,858,745.  To avoid redundancy, this summary will not be shown in subsequent examples appearing in this 
paper.  The “Statistics” component of the output shows that the estimated total square footage is almost 72 billion with a 
standard error of 2.2 billion. 

Summations are also possible for categorical variables.  As an example, the variable STUSED8 indicates whether the 
building uses district steam for heating purposes.  A value of 1 indicates yes, whereas 2 means no.  The syntax example 
below demonstrates how we can estimate the total number of buildings for both conditions.  Since the STUSED8 variable is 
numeric but we want it treated as a nominal categorical variable, it is also specified in the CLASS statement (character 
variables listed in the VAR statement are treated as categorical by default).  For each CLASS statement variable, PROC 

 

The SURVEYMEANS Procedure 

 

Data Summary 

 

Number of Strata                  44 

Number of Clusters                88 

Number of Observations          5215 

Sum of Weights            4858749.82 

 

 

Statistics 

 

Variable             Sum         Std Dev 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

SQFT8        71657900522      2227163020 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

http://www.eia.gov/consumption/commercial/
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SURVEYMEANS constructs a sequence of K binary indicator variables, one for each of the k = 1, 2, …, K unique values 
(“levels” in SAS terminology), defined as yhij = 1 if the observation falls within that category, and yhij = 0 otherwise.  From 
there, formulas (1) and (2) can be employed. 

proc format; 

  value YESNO 

    1='Yes' 

    2='No'; 

run; 

 

proc surveymeans data=CBECS_2003 sum; 

  strata STRATUM8; 

  cluster PAIR8; 

  class STUSED8; 

  var STUSED8; 

weight ADJWT8; 

format STUSED8 YESNO.; 

run; 

 
We can gather from the output that an estimated total of 47,106 buildings use district steam and 4,811,644 did not.  Because 
all buildings are characterized by one of these two conditions, the sum of the two matches the sum of weights for the entire 

data set, 4,858,745.  In fact, this aggregation can be interpreted as an estimate of the total number of buildings N̂  in the 
population (as of 2003).  This is actually an estimate of interest, since it is not known elsewhere (i.e., there is no master list or 
combined set of lists enumerating all eligible buildings in the population).  Measures of variability associated with this 
particular statistic are not output by default.  If they are desired, one work-around would be to apply syntax of the form 
illustrated in the two examples above naming a user-defined numeric variable equaling 1 for all observations in the data set in 
the VAR statement.  An even simpler approach is to omit the WEIGHT statement, put ADJWT8 in the VAR statement, and 
specify the statistical keyword SUM in the PROC statement.  Another alternative would be to use PROC SURVEYFREQ—see 
Lewis (2013b). 

Table 1 summarizes the useful statistical keywords pertaining to estimated totals that can be requested in the PROC 
SURVEYMEANS statement.  Most are self-explanatory, although a few words are warranted about the complex survey 
degrees of freedom.  Under the default variance estimation procedure, the SURVEY procedures utilize a widely-adopted rule 
of thumb that the degrees of freedom equal the number of distinct PSUs minus the number of strata.  (Alternative variance 
estimation procedures discussed in Mukhopadhyay et al. (2008) abide by a different set of rules.)  This is true for any statistic, 
even linear models.  The important thing to realize is that this is often dramatically smaller than the number of observations 
minus one, what would be assumed for an SRSWR sample design.  For instance, the effective degrees of freedom in the 
examples above are 88 – 44 = 44 not 5,215 – 1 = 5,214.  These rules do not affect the point estimates or their estimated 
variances, but do affect confidence intervals, since their widths are contingent upon a reference t distribution with said 
degrees of freedom. 

 

 

 

Class Level Information 

 

                                 Class 

                                 Variable      Levels    Values 

 

                                 STUSED8            2    Yes No 

 

 

                                           Statistics 

 

                        Variable    Level             Sum         Std Dev 

                        ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

                        STUSED8     Yes             47106     7602.878471 

                                    No            4811644          239130 

                        ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
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Keyword Output 

SUM Estimated total of each variable listed in the VAR statement or all levels of each 
categorical variable listed in the CLASS statement 

STD Standard error of the estimated total, output by default when the SUM keyword is 
used 

VARSUM Variance of the estimated total 

CVSUM Coefficient of variation (STD divided by SUM) of the estimated total 

CLSUM Confidence interval of the estimated total based on the significance level specified in 
the ALPHA= option (default is ALPHA=.05) and complex survey degrees of freedom 
(# PSUs – # strata) 

 

Table 1. Summary of PROC SURVEYMEANS Statement Statistical Keywords Related to Estimated Totals 

 

Before proceeding, it is worth mentioning that there is no built-in mechanism for conducting significance tests on estimated 
totals.  In other words, there is no way to input a null hypothesis total and have PROC SURVEYMEANS compute a t-statistic 
and p-value.  Of course, all of the essential components are output for the user to do so without much hassle.  The same is 
true for other statistics estimated by PROC SURVEYMEANS, with the exception of the null hypothesis that the true population 
mean or ratio is 0 (see discussion in the documentation regarding the statistical keyword T).  Additional methods and 
considerations for conducting significance tests on sample means are discussed in Lewis (2013a). 

MEANS 

The second statistic considered in this paper is the sample mean for an outcome variable y, which can be expressed as 
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Another name for this estimator is the weighted mean.  It is the weighted sum of values for the given variable divided by the 
sum of the weights.  The weighted mean complicates the variance estimation task because it is actually a nonlinear function 

(ratio) of two estimated totals, 
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.  As noted by Heeringa et al. (2010), a closed-form variance 

formula such as (2) does not exist.  This requires one to make an approximation.  A popular method is Taylor series 
linearization (TSL), which is the default approach used by PROC SURVEYMEANS. 

While we will not delve too deeply into the computational details of how SAS carries out this TSL process, it turns out that the 
resulting TSL variance approximation for (3) is 
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Note that the variance terms in (4) are calculated in the manner demonstrated in the Totals section with respect to the 

complex sample design and )ˆ,ˆcov( NY represents the covariance of Ŷ and N̂ , also calculated with respect to the complex 

sample design.  Ignoring the FPC, this would be calculated as 
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Further note that in the absence of weights—when we effectively assume a uniform weight of 1 for all units in the data set—

the variance of N̂  is 0 as is any covariance involving N̂  and equation (4) defaults to an SRSWR sample mean variance 
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equation (the traditional, non-complex survey formula shown previously).  Again, suffice it to say the introduction of unequal 
weights complicates the process of computing variances.  Thankfully, we have SAS to do the legwork for us. 

The example below shows how to estimate the average square footage for all buildings in the CBECS population.  The syntax 
mirrors that seen previously, except the keyword MEAN is now specified in the PROC statement.  As shown in the output, the 
estimated mean is 14,748 and the standard error 625. 

proc surveymeans data=CBECS_2003 mean; 

  strata STRATUM8; 

  cluster PAIR8; 

  var SQFT8; 

weight ADJWT8; 

run; 

 
Means of categorical variables listed in the CLASS statement are output in the form of proportions.  In a manner similar to 
what occurs when totals are requested, PROC SURVEYMEANS constructs a sequence of binary indicator variables defined 
as 1 if the observation falls within the k

th
 level (k = 1,…,K) and 0 otherwise.  From there, the formulas of (3) and (4) are used. 

One way of thinking about the estimated proportion for the k
th

 category is that it is the sum of the weights for all observations 
falling within that category divided by the overall sum of weights.  It is not uncommon for textbooks to express the variance of 
proportions somewhat differently from sample means—indeed, the PROC SURVEYMEANS documentation distinguishes the 

two.  For instance, the estimated variance of a sample proportion p̂  in an SRSWR sample design is often written 

as
1

)ˆ1(ˆ
)ˆvar(






n

pp
p .  This expression is the result of an algebraic simplification that can be made when summing squared 

deviations of a variable consisting of either a 0 or 1 from its mean (i.e., the estimated proportion).  Calculating the variance 
this way is far less computationally intensive.  But the “standard” equation for a continuous variable still applies when an 
appropriately constructed 0/1 indicator variable is at hand. 

The example below illustrates these concepts by estimating the proportion of buildings in the CBECS population that use 
natural gas, a characteristic designated by the variable NGUSED8 in the CBECS_2003 data set.  This variable is specified in 
both the VAR and CLASS statements.  From the output, it appears about 52.2% of the buildings use natural gas and 47.8% 
do not.  Note that the standard errors of these two point estimates are equivalent.  This is a sensible result that occurs 
whenever K = 2 (i.e., from a variability perspective, it should not matter which category was assigned the 0 and which was 
assigned the 1). 

proc format; 

  value YESNO 

    1='Yes' 

    2='No'; 

run; 

 

proc surveymeans data=CBECS_2003 mean; 

  strata STRATUM8; 

  cluster PAIR8; 

  class NGUSED8; 

  var NGUSED8; 

weight ADJWT8; 

format NGUSED8 YESNO.; 

run; 

 

                                           Statistics 

                                                           Std Error 

                            Variable            Mean         of Mean 

                            ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

                            SQFT8              14748      625.460801 

                            ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
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Table 2 summarizes the relevant statistical keywords available for means. 

 

Keyword Output 

MEAN Estimated mean of each variable listed in the VAR statement or estimated 
proportion of all levels of each categorical variable listed in the CLASS 
statement 

STDERR Standard error of the estimated mean, output by default when the MEAN 
keyword is used 

VAR Variance of the estimated mean 

CV Coefficient of variation (MEAN divided by STDERR) of the estimated mean 

CLM Confidence interval of the estimated mean based on the significance level 
given in the ALPHA= option (default is ALPHA=.05) and complex survey de-
grees of freedom (# PSUs - # strata) 

  
 

Table 2. Summary of PROC SURVEYMEANS Statement Statistical Keywords Related to Estimated Means 

RATIOS 

The third statistic discussed in this paper is the ratio of two totals, Ŷ and X̂ , which can be expressed as 
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Recall it was noted that the weighted mean is a ratio in which the numerator consists of a variate equaling the weight times 
the given outcome variable and the denominator is simply the weight itself.  It is instructive to see how these two variates can 
be created and passed to PROC SURVEYMEANS to replicate the weighted mean estimation and inference process.  
Observe how the output from the syntax example matches the output from the mean square footage example above.  The two 
variates are created on the data set RATIO_EXAMPLE and named NUM for numerator and DEN for denominator.  The 
RATIO statistical keyword in the PROC SURVEYMEANS statement requests the point estimate and standard error for the 
ratio defined in the RATIO statement.  The required syntax calls for separating the numerator variable from the denominator 
variable with a slash.  These two variables should also be listed in the VAR statement; without a VAR statement, 
SURVEYMEANS outputs statistics for all numeric variables in the input data set not already designated for a complex survey 

 

                                      Class Level Information 

 

                                  Class 

                                  Variable      Levels    Values 

 

                                  NGUSED8            2    Yes No 

 

 

                                            Statistics 

 

                                                                 Std Error 

                         Variable    Level            Mean         of Mean 

                         ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

                         NGUSED8     Yes          0.522272        0.028083 

                                     No           0.477728        0.028083 

                         ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
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design feature.  Note that the WEIGHT statement is unnecessary since the NUM and DEN variables already account for the 
weighting. 

data ratio_example; 

  set CBECS_2003; 

num=(ADJWT8*SQFT8); 

den=ADJWT8; 

run; 

 

proc surveymeans data=ratio_example ratio; 

  strata STRATUM8; 

  cluster PAIR8; 

  var num den; 

  ratio num / den; 

run; 

 

 

The exchangeability is attributable to the fact that the variance of any kind of ratio mirrors what we have already seen for the 
weighted mean.  Specifically, the TSL variance approximation for (6) is 
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An example ratio estimated in the CBECS is electricity intensity, defined as the average amount of electricity expended per 
square foot of building space.  To get this figure, the total amount of kilowatt-hours of electricity consumed (ELCSN8) is 
divided by the total square footage (SQFT8).  The example below illustrates how to estimate this ratio.  From the output, we 
observe this statistic to be approximately 14.86 with standard error 0.42. 

proc surveymeans data=CBECS_2003 ratio; 

  strata STRATUM8; 

  cluster PAIR8; 

  var ELCNS8 SQFT8; 

  ratio ELCNS8 / SQFT8; 

weight ADJWT8; 

run; 

     
Ratio estimation is discussed at length in some of the classic sampling texts (c.f., Ch. 3 of Lohr, 1999; Ch. 6 of Cochran, 
1977).  For example, one application that can lead to significant efficiencies is when the total for the denominator is known 
with certainty, possibly from an external source.  This value might be denoted X (without a hat).  The idea is to estimate the 

ratio
X

Y
R

ˆ

ˆ
ˆ  from the sample and multiply it by X to get a better, more precise estimate of Y.  That is, instead of the estimator 

shown in (6), one would use 

 

                                          Ratio Analysis 

 

                        Numerator Denominator        Ratio         Std Err 

                        ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

                        num       den                14748      625.460801 

                        ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 

 

                                         Ratio Analysis 

 

                        Numerator Denominator        Ratio         Std Err 

                        ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

                        ELCNS8    SQFT8          14.864030        0.420386 

                        ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
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X

Y
XRXYratio ˆ

ˆ
ˆˆ          (8) 

with an estimated variance of 

 RXYratio
ˆvar)ˆvar( 2          (9) 

where  R̂var would be calculated as shown in (7).  There is no way to have this particular ratio estimator output directly, but 

an indirect way would be to create a new numerator variable equaling the original numerator times X, and then specify it 
variable in the RATIO statement alongside the original denominator.  From the output of a PROC SURVEYMEANS run 

comparable to the one shown above, the ratio reported would be ratioŶ and the standard error )ˆvar()ˆ(se ratioratio YY   .  Again, 

this estimator could prove more precise than the estimator in (6), but it requires we know X. 

Table 3 below summarizes the useful statistical keywords available in the PROC SURVEYMEANS statement as they relate to 
ratios.  Note that there is no coefficient of variation available like there is with the estimated total and mean, and that 
confidence intervals are requested using the same syntax as for means. 

 

Keyword Output 

MEAN Estimated mean of each variable listed in the VAR statement or estimated 
proportion of all levels of each categorical variable listed in the CLASS 
statement 

STDERR Standard error of the estimated mean, output by default when the MEAN 
keyword is used 

VAR Variance of the estimated mean 

CV Coefficient of variation (MEAN divided by STDERR) of the estimated mean 

CLM Confidence interval of the estimated mean based on the significance level 
given in the ALPHA= option (default is ALPHA=.05) and complex survey de-
grees of freedom (# PSUs - # strata) 

 

Table 3. Summary of PROC SURVEYMEANS Statement Statistical Keywords Related to Estimated Ratios 

QUANTILES 

The fourth and final class of statistics we will discuss in this paper is quantiles.  These became available much more recently 
than the first three, with the release of SAS version 9.2.  Although the term “quantiles” may not be immediately familiar to 
every reader, the concept of them likely is.  These include measures such as medians and percentiles.  The sorted values of 
yi are called the order statistics, and we will denote them y(j) (y(1) < y(2) < … < y(U)).  The median is the midpoint of the order 
statistics.  That is, the point in the order statistics sequence at which 50% of the unique values fall below it and 50% remain 
above.   

The formal mathematical definition of quantiles requires us to first define the cumulative density function (CDF) for a variable 
y as 

N

yyI

yF

N

i

ji

j






 1

)(

)(

)(

)(          (10) 

where )( )( ji yyI  is a 0/1 indicator variable of whether yi is less than or equal to the given value y(j).  The CDF is an 

increasing step function that runs from 0 to 1.  The population median yγ=.5 can then be defined as the smallest value of y 
such that the CDF is greater than or equal to 0.5.  Equivalently, this is termed the γ = 0.50 quantile or the 50

th
 percentile. 

The CDF can be estimated from a complex survey sample data set using the weights as follows: 
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where the order statistics are based on the sample.  There is no way to plot the estimated CDF from within PROC 
SURVEYMEANS, but one can be generated using the CDFPLOT statement in PROC UNIVARIATE.  Be advised this 
statement will not work in conjunction with a WEIGHT statement, but the FREQ statement can be used instead.  Note that the 
FREQ statement truncates the variable specified to the nearest integer.  For large weights—in the hundreds or thousands, 
say—the truncation will be inconsequential, but for smaller weights it would be wise to simply multiply all weights by 100.  A 
common weight inflation factor will have no impact on the appearance of CDF. 

PROC SURVEYMEANS estimates a population quantile yγ from the survey data set by first finding the value of j such 

that )(ˆ)(ˆ )1()(  jj yFyF  .  If we denote this value y(j), the γ
th

 quantile is estimated as 

)(
)(ˆ)(ˆ

)(ˆ
ˆ

)()1(

)()1(
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)( jj

jj

j
j yy

yFyF

yF
yy 




 




        (12) 

The second term is an interpolation correction factor whenever )(ˆ )( jyF .  If )(ˆ )( jyF , the term is zero and reduces to 

simply y(j).  The only additional exceptions worth pointing out are that whenever )(ˆ )1(yF  or )(ˆ )(UyF , the quantiles 

default to the minimum or maximum in the sample data set, respectively. 

The standard error of a given quantile is computed using a method attributable to Woodruff (1952) discussed in Dorfman and 
Valliant (1993) along with a few competing methods.  It involves several steps.  We will define them first, and then unify 
concepts with the help of an annotated visualization. 

The method begins by computing an estimated variance of )ˆ(ˆ yF with respect to the complex sample design as 
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where
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The estimated variance in (13) is used to form a confidence interval around )ˆ(ˆ yF using tdf,α/2, a reference t-statistic with df 

complex survey degrees of freedom and significance level α.  If we denote these endpoints )ˆ(ˆ
yFL  and )ˆ(ˆ

yFU , 

respectively, the next step is to invert the estimated CDF at these two points using (12).  If we label the two resulting 

values Lyˆ and Uyˆ , the next step is to solve an implied ŷ confidence interval equation for the standard error as follows: 

2/,2

ˆˆ
)ˆ(se






df

LU
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yy
y




          (14) 

There is no option available to request the variance of the quantile be output, although it can easily be obtained by simply 
squaring the quantity in (14).  As was done for the three other statistics covered in this paper, there will be a table given 
towards the end of this section summarizing all statistical keywords in the PROC SURVEYMEANS statement as they pertain 
to quantiles. 

A visualization of the Woodruff method is extremely helpful, if not imperative, for grasping the sequence of steps involved.  
This is the aim of Figure 2 below, an annotated plot of the estimated CDF for an example continuous variable in a survey data 

set.  The first step is to form a confidence interval around )ˆ(ˆ yF .  The second step is to translate the endpoints back to the 

variable scale to get quantile interval endpoints Lyˆ and Uyˆ .  The distance between these two endpoints provides the basis for 

solving for )ˆ(se y  (and thus )ˆ(var y ).  In the final step, PROC SURVEYMEANS uses )ˆ(se y to form confidence limits on the 

estimated quantile as )ˆ(seˆ
2/,  yty df .  (You can output the asymmetric confidence limits labeled (2) in Figure 2 by 

specifying the NONSYMCL option in the PROC SURVEYMEANS statement.) 
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Figure 2.  Visualization of the Woodruff Method for Quantile Variance Estimation. 

Suppose we were interested in estimating the quartiles of annual electricity expenditures in U.S. dollars of all buildings in the 
2003 CBECS population.  Quartiles are defined as the γ = 0.25, 0.50, and 0.75 quantiles of the variable—ELEXP8, in this 
case.  The example below demonstrates the syntax to have PROC SURVEYMEANS output these estimates as well as their 
standard errors and 95% confidence limits.  In addition to the QUARTILES keyword in the PROC statement, MEAN is also 
specified to permit a comparison of the estimated median with the mean.  We can observe the mean ($17,930) is significantly 
larger than the median ($4,301), a sign that the electricity expenditures distribution is heavily right-skewed. 

proc surveymeans data=CBECS_2003 quartiles mean; 

  strata STRATUM8; 

  cluster PAIR8; 

  var ELEXP8; 

weight ADJWT8; 

run; 

In the example above, note that placing the keyword QUARTILES in the PROC statement is tantamount to specifying 
QUANTILE=(.25 .50 .70), PERCENTILE=(25 50 75), or Q1 MEDIAN Q3.  Needless to say, there are a variety of ways to 
request estimated quantiles.  These are summarized in Table 4 alongside other pertinent statistical keywords.  With the 
exception of the minimum and maximum value, standard errors and confidence limits are output by default any time quantiles 
are requested.  At the time of this writing, there are no additional keywords available relating to measures of uncertainty. 

 

 

 

                                              Statistics 

 

                                                              Std Error 

                               Variable            Mean         of Mean 

                               ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

                               ELEXP8             17930      995.072145 

                               ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

 

 

                                              Quantiles 

 

          Variable       Percentile        Estimate       Std Error    95% Confidence Limits 

          ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

          ELEXP8            25% Q1      1619.675091      100.746908     1416.6330  1822.7171 

                            50% Median  4300.740709      298.693274     3698.7640  4902.7174 

                            75% Q3            12664      897.759484    10855.1304 14473.7611 

          ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
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Keyword Output 

MIN Minimum value 

MAX Maximum value 

RANGE MAX – MIN  

Q1 Lower quartile (25
th
 percentile) 

MEDIAN Median (50
th
 percentile) 

Q3 Upper quartile (75
th
 percentile) 

DECILES The 10
th
, 20

th
, …, 90

th
 percentiles 

PERCENTILES=(values) User-defined percentiles specified as whole numbers between 0 
and 100, separated by a space or comma 

QUANTILES=(values) User-defined quantiles specified as decimals between 0 and 
100, separated by a space or comma  

 

Table 4. Summary of PROC SURVEYMEANS Statement Statistical Keywords Related to Estimated Quantiles 

CONCLUSION 

This paper was comprised of four sections, one for each of the four major classes of statistics that can be estimated using 
PROC SURVEYMEANS—namely, totals, means, ratios, and quantiles.  The syntax examples were intentionally rudimentary 
to illustrate the fundamental concepts with minimal distraction.  Although it would have been excessive to demonstrate 
outputting all of the available statistical keywords, a tabular summarization of those most pertinent to the underlying stat istic 
was provided at the end of each section.  Note that if you ever want to simply canvass all reportable statistics associated with 
the underlying analysis, you can specify the ALL keyword in the PROC statement. 

The reader may have also observed all examples involved estimation at the population level.  Domain analysis is the term 
reserved for estimates focused only on a subset of the population (e.g., a particular region of the country or building type).  It 
is not advised to simply subset the data for the domain of interest or use a BY statement; instead, you should use the 
DOMAIN statement (available in all SURVEY procedures) or create a domain-specific weight in a prior DATA step.  These 
concepts are discussed in Lewis (2013a). 
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