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ABSTRACT 

Performance metrics for time-related processes, such as logistics delivery times, often follow an all too familiar 
pattern that is highly skewed to the right.  In such cases, traditional central tendency statistics are of little use as they 
are dominated by the out-of-process events in the tail of the distribution and do not adequately describe the 
distribution of delivery times for in-process events.  In this work, I propose a methodology that first splits the 
distribution into its two main components using a SAS

® 
macro that employs piece-wise linear regression to 

automatically determine the break point between the main body of the distribution and the tail.  Using this automated 
splitting mechanism, we are able to classify the performance of a large number of individual shipping lanes across 
three categories: (1) percent of out-of-process events, (2) average performance for in-process events against an 
expected standard, and (3) variation in performance for in-process events. 

INTRODUCTION:  

More often than not, measurements of time-related processes that physically move objects through space follow the 
shape of the distribution in Figure 1.  We can see why by examining a rather simple task –driving across town.  The 
majority of drive times will vary somewhat around 
your expected drive time (minor variation due to 
traffics lights, funeral processions, bad weather, 
etc.).  Yet, no matter how often you drive it, 
physics dictates that it has to take a certain 
minimum amount of time to get there; hence the 
distribution is truncated on the left.  Further, if you 
drive it often enough, there will be a number of 
times that it takes considerably longer than normal 
to get there (flat tire, road closures, etc.); hence 
the distribution will have an elongated tail on the 
right.  

Earlier I used the words “expected” and “normal” to 
quantify our expected drive times.  The context is 
that it usually takes an approximate amount of time 
for you to arrive at your destination.  Let’s return to 
Figure 1.  Notice where the two statistical expected 
times (mean and median) would land on the 
distribution.  Clearly they would not reflect an 
individual’s usual expected drive time.  In fact, Figure 1 
represents my own personal drive times to work 
over about a 14-week period.  When asked (even 
before I did the study) I would respond that my 
drive takes about 30 minutes. 

Given the shape of the distribution, one might be 
tempted to fit a theoretical distribution to the data.  
Figure 2 shows an Inverse Gaussian fit.  Finding 
such a fit allows one to make inferences about 
how the distribution should behave.  But how does 
one turn that information into performance metrics 
that can be shared with an operations group, not 
to mention the practical difficulties of fitting curves 
across a large number of shipping lanes. 

It is the impact of the tail, which is generally 
outside of an operational group’s control, which 
causes a difference between the statistical 
expected and a personal expected.  This 
difference can be quite large when manufacturing 
issues delay departures after units have been released 
for shipment.  I remember having a long conversation 
with a supplier responsible for load-makeup and 

Figure 1:  Distribution of Drive Times 

Figure 2:  Inverse Gaussian Fit to Drive Times 
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shipment from a large manufacturing facility.  He refused to believe that his reported average load makeup-time was 
accurate.  The issue was simple, the vast majority of shipments went out as expected (which is what he sees); but a 
small number had been held in the yard for repairs for enough extra time to move the “statistical” average to a value 
that was meaningless to him – a serious problem.  If you want operational folk to take a performance metric seriously, 
it must have a physical interpretation that is meaningful to them. 

A common response to this phenomenon is to exclude long-delivery records from the measurement process, 
especially those that are deemed to have somehow been out-of-process.  See Frick [1] for a detailed discussion of 
performance metrics in general as well as the pitfalls of excluding records; but, my main concern here is that simply 
dropping records ignores/hides failed performance on a potentially large number of customer deliveries.  A better 
response is to break the distribution into its two key components (body and tail) and then measure. 

SPLITTING THE DISTRIBUTION:  

Let’s return a third time to Figure 1 on the previous page.  Left to their own devices, most people would have no 
problem splitting the tail from the main body manually at around 38 minutes, although some might make the case to 
split it around 45 minutes.  Easy enough if we wish to analyze a small number of shipping lanes, but impossible if the 
number is large.  In this section, I describe a SAS macro that employs piece-wise linear regression to automatically 
determine the break point between the main body of the distribution and the tail.  The macro takes advantage of the 
shape of the distribution.  The mode of the distribution will be close to the actual process capability (the personal 
expected time).  Minor disruptions in delivery times will cause the shape of the distribution to be “bell-like” in the 
immediate vicinity of the mode.  Major disruptions will result in random delivery times in the tail to the right of the “bell-
like” area. 

The distribution can be approximated using 4 straight lines (left panel of Figure 3): (1) one fitted to the truncated tail 
on the left side of the distribution, (2) one fitted to the left side of the “bell-like” body of the distribution, (3) one fitted to 
the right side of the “bell-like” body of the distribution, and (4) one fitted to the long tail on the right side of the 
distribution.  As the truncated tail on the left is usually unimportant, the macro focuses on finding the best two lines on 

the right side of the distribution using brute force and piecewise linear regression.  It assumes the first line will be 
anchored on its left at the mode and the second line will be anchored on its right on the far right of the distribution.  As 
the regression lines are only used to find the break point, I am not concerned about continuity at the break point.  
Hence, the macro simply tries all combinations of break points between the two and selects the two regression lines 
that minimize the sum of squared residuals.  The right panel of Figure 3 shows the two best regression lines for my 
driving times shown originally in Figure 1.  The SAS code for splitting the distribution is given in Appendix A. 

PERFORMANCE METRICS:  

In an earlier MWSUG paper [1], I presented 9 pitfalls (DO's/DON'Ts) when developing a set of performance metrics 
that were drawn from over 10 years of working experience with both executive leadership and operational groups in a 
large supply chain organization.  In that work, I discussed the difference between desired performance, current 
process capability, and current actual performance.  Metrics aimed at the comparison of desired and current process 
capability must be assigned to a non-operational group (e.g. the supply chain planning organization.)  They have 
access to the resources necessary to define and implement initiatives to narrow the gap between current and desired 
capability.  Metrics aimed at the comparison of current process capability and current actual performance must be 
assigned to an operational group.  As the previously defined macro is built to help analyze actual performance, our 
focus here will be on operational metrics.  But what makes a “good” operational performance metric? 
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Figure 3:  Linearly Approximated Distribution 
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To be considered "good", a performance metric should shine a light on potential areas of improvement.  Simple 
pass/fail is not good enough.  It should be presented in such a way that the interpretation of the metric has a physical 
meaning to the group.  For our data in Figure 1, many people would first consider using mean, standard deviation, 
and perhaps the 90

th
 percentile. 

1
 

So assume we report that our data in Figure 1 has a mean of 36.7, standard deviation of 10.3, and a 90
th

 percentile of 
48 and that the current process capability is set at 30. What actions might an operational group take from the above 
statistics?  Most likely, they will see the difference between the mean and the desired performance and decide, if we 
can improve our process by a week, we will hit our target and improve our process variability at the same time.  But 
we can see from Figure 1 that most of the distribution appears to be following the expected process and it is already 
centered on our expected time.  This is a recipe for disaster.  When they can’t improve the average, they will look at 
eliminating issues observed in the tail.  But by definition, things in the tail are usually one-time, unexpected events.  
Since the data in Figure 1 are my own personal drive times, I can tell you that no operational initiative will stop me 
from being stuck on a freeway that is closed or from getting a traffic citation.  One logistics supervisor I used to work 
with called working on the items in the tail “Whack-a-mole”.  Management insisted that they work on the 10 worst.  
They did and could claim victory.  
But 10 others always seem to 
crop up and the size of the tail 
never really changed. 

Let’s revisit the data after it has 
been separated into its two 
components as shown in Figure 
3.  The panels of Figures 4 & 5 
show the results from PROC 
UNIVARIATE on all 65 data 
points (top) and just the data 
points after the tail has been 
excluded (bottom).  Notice how 
the three central tendency 
statistics and standard deviation 
have tightened up after the tail 
units have been excluded.  Plus 
or minus 3 minutes to an 
average of 31 is pretty 
consistent performance.  

Despite my whack-a-mole story 
above, we are still obligated to root-
cause drive times in the tail.  Notice the 
clump of drive times between 40-
45 minutes in Figure 1.  Luckily 
when I recorded my drive times I 
decided to keep notes.  It turns 
out that the majority of these 
drive times came on days I 
stopped for gas.  This may be 
actionable.  In my case, I could 
have stopped for gas on 
weekends.  If I were to critique 
my drive time performance, I 
would make the following 
observation.  If I could just leave 
for work on time and make sure 
to get gas on the weekends, I 
could count on getting to work in 
very close to 30 minutes on most 
days (i.e. I need to focus on fixing 
the tail). 

  

                                                 
1
 Some may be tempted to use medians and quartiles; but these are bad choices in a metrics environment involving non-technical 

leadership.  Try explaining why the sum of 3 sub-process medians doesn’t equal the total process median.  

Figure 4:  Univariate Statistics for Drive Times -- Tail Included 

Figure 5:  Univariate Statistics for Drive Times -- Tail Excluded 



 4 

Assume now, that we provide an operational group with metrics based on the mean and standard deviation of the 
main body of the distribution and the percent of deliveries in the tail.  In the case above, the group can ignore the 
entire body of the distribution as it is performing well.  The tail actually starts at the 70

th 
percentile, not at an arbitrarily 

decided 90
th 

percentile.  Given the unusually large amount of volume in the tail, it’s clear that the group should dig in 
to root cause issues.  By splitting the data into two pieces (main body and tail) we can now answer the following 
questions about a particular distribution lane: 

1. How many deliveries appear to be following the intended process? 

2. Are the units following the intended process, on average, hitting our expected process capability? 

3. Are the units following the intended process experiencing too much variation? 

Assuming we can define target criteria for these questions, we can determine whether this particular lane is 
performing well under 3 separate criteria, which in turn provides specific direction on where to shine the spotlight:  
average time for the main body, variation in the main body, or excessively large tail.  Given an automated process for 
splitting distributions and target criteria for each of the three attributes above, we can now automatically classify a 
large number of lanes based on their performance and manage process improvement by exception. 

DISCUSSION: 

After spending over 10 years working with both executive leadership and operational groups on performance metrics, 
I have found the following to be true: 

 Operational groups can sabotage, cheat, or out and out ignore performance metrics for which they see no 
value. 

 Operational groups can move mountains to achieve performance improvements if they see value. 

Hence, when developing performance metrics for an operational group, it is imperative that those metrics have the 
following characteristics: 

 The operational group, through its normal work output, must be able to influence improvements. 

 The metrics must make intuitive sense to the operational group.  There has to be a physical interpretation to 
the metrics. 

 The metrics must be presented in a form that helps point the way towards areas of potential improvement. 

In the main body of this work, I have made the case for splitting logistics delivery times into two groups, those that 
appear to be following the intended delivery process and those that appear to have been derailed (pun intended) 
while in transit prior to taking measurements.  I believe this gives one the best chance at presenting measurements 
to an operational group that will be consistent with what they see every day. 

In the tail of this work (Appendix A), I presented a set of SAS Macros that would enable one to split the tail from the 
main body of a highly skewed distribution.  To implement a measurement process across a large number of shipping 
lanes, one would need to beef up these macros in the following way: 

1. An outer macro would be needed to loop through the macros shown in Appendix A for each measurement 
lane, capturing the primary statistics for each as it went along. 

2. A classification process would need to be built which would join expected performance with actual 
performance on each lane and assign a judgmental value as to whether the performance on each of the 
three criteria (average & standard deviation for in-process event, quantity of out of process events) were 
within tolerance.  The process would need to be able to rank the delivery lanes by best opportunity 
(combination of severity and type of bad performance and the shipping volume for each lane.) 

3. The macros in Appendix A would need to be beefed up to provide a number of key checks.  (e.g. low 
volume lanes, lanes without a clear cut mode, zero slope in the tail, etc.) 

4. Depending on the number of lanes and if speed is an issue, one might be try to use the shape of the 
distribution to smarten up the search algorithm (i.e. once the slope of the second regression line is relatively 
flat do we still need to keep searching for a better fit? 
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APPENDIX A – TAIL SPLITTING SAS MACROS 

In this section, I describe a set of three SAS macros that are able to automatically find the break point between the 
main body and tail of a highly skewed distribution.  (See Appendix B for some helpful hints if you are not familiar with 
the SAS macro language).  The macros assume that the distribution has the shape as shown earlier in Figure 1 and 
that the best place to split the data is between the mode and max of the distribution.  The algorithm therefore, albeit 
dumb, is straightforward.  It starts by placing the mode and the first data point to the right of the mode in one subset.  
The remaining data points to the right of this subset are placed into a second subset.  Individual regressions are run 
on each subset of data and the combined residual sum of squares is saved for the current candidate break point.  
The algorithm then moves the second data point to the right of the mode from the second subset to the first subset 
and recalculates the regressions.  This process is continued until all possible break point candidates have been 
examined.  The break point associated with the two regressions that minimize the consolidated sum of squared 
residuals is selected as the best. 

The code segment below shows the SAS macro LOOPER that controls the iterative search for the best break point.  
The parameter (DSN) is the name of the data set that contains the data points in our distribution shown in Figure 1.  
The PROC UNIVARIATE finds the mode of the distribution, which is subsequently stored in the macro variable 
MODE using the SYMPUT function.  Next, a macro variable is created for every data point to the right of the mode.  
The names of the new variables have a prefix of “XVAL” and a numeric suffix such that the first data point to the right 
of the mode is named XVAL1, the second is named XVAL2, and so on.  The value assigned to each new macro 
variable is the x-coordinate of the data point.  A final new macro variable, NLOOPS, is set to the number of data 
points to the right of the mode.  Perhaps the most interesting part of the code is the %DO - %END Loop.  These 
innocent looking 3 lines of code control 19 separate expansions of the macro “REGIT”.  Each macro expansion 
corresponds to a unique split of the data set into two subsets.  We will return to the %DO Loop as we take a quick 
look at macro REGIT below. 

The best way to see what’s going on with the macro variable creation is to look at the result of executing the “%put 
_user_” command, which dumps the symbol table to the SAS log (Figure 6 on next page).  For each entry you can 
see the Macro Name, the Macro Variable Name, and the text value associated with each Macro variable.  The first 
entry is XVAL14 with the associated text of “48”.  You will have to ask a SAS guru why the entries appear to have a 
random order.  However, if you scan the list, you can see that MODE has a value of 30 as expected.  XVAL1 the first 
data point to the right of the mode has a value 31.  NLOOPS has a value of 19, as there are 19 data points to the 
right of the mode. 

%macro looper(dsn); 

proc delete data=main_stats; 

proc sort data=&dsn.; 

  by x; 

proc univariate data=&dsn. noprint; 

  var x; 

  freq y; 

  output out=main_stats mode=mode; 

data _null_; 

  set main_stats; 

  call symput('mode',trim(left(put(mode,4.)))); 

data _null_; 

  set &dsn. end=endf; 

  retain n 0; 

    if x>&mode. then 
     do; 

     n=n+1; 

       call symput('xval' || trim(left(put(n,4.))),trim(left(put(x,6.)))); 

     end; 

  if endf then call symput('nloops',trim(left(put(n,4.)))); 

run; 

%put _user_; 

%do nn=1 %to &nloops; 

   %regit(&dsn.,&nn.,&mode.,&&xval&nn..); 

  %end; 

run; 

proc sort data=mdls; 

  by descending rsq; 

options linesize=100; 

proc print data=mdls; 

  format slope1 sse1 rsq1 sstot1 slope2 sse2 rsq2 sstot2 sse rsq sstot 5.2; 

run; 

%mend; 
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The MACRO REGIT (code segment below) expects 4 parameters.  The first, DSN, is just the name of the data set.  
The second is an iteration counter.  The third, X1, is set to the MODE.  The fourth, X2, is the current test break point.  
The first PROC REG operates on data between X1 and X2 (i.e. from the mode to the current break point candidate).  
The second PROC REG operates on all data points to the right of the current break point candidate.  The rest of the 
macro saves the results from the two regressions, computes the consolidated sum of squared residuals, and then 
saves the results of this model with those from previous macro calls in a data set named MDLS for later analysis. 

 

%macro regit(dsn,loop,x1,x2); 

proc delete data=est1 est2 est; 

proc reg data=&dsn. noprint 

  outest=est1(keep=x _rsq_ _sse_  

  rename=(_rsq_=RSQ1 _sse_=SSE1 x=slope1)); 

  model y=x / rsquare sse; 

  where &x1.<=x<=&x2.; 

proc reg data=&dsn. noprint 

  outest=est2(keep=x _rsq_ _sse_  

  rename=(_rsq_=RSQ2 _sse_=SSE2 x=slope2)); 

  model y=x / rsquare sse; 

  where x>&x2.; 

data est1; 

  set est1; 

  SStot1=SSE1/(1-RSQ1); 

data est2; 

  set est2; 

  SStot2=SSE2/(1-RSQ2); 

data est; 

  merge est1 est2; 

data est; 

  set est; 

  length modelid $ 20; 

  modelid=compress("Model: &loop."); 

  x1=&x1.; 

  x2=&x2.; 

  SSE=SSE1+SSE2; 

  SStot=SStot1+SStot2; 

  RSQ=1-(SSE/SStot); 

proc append base=mdls data=est; 

  run; 

%mend; 

Figure 6:  Symbol Table Dump 
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Now let’s return to the %DO Loop shown  previously in the macro LOOPER. 

%do nn=1 %to &nloops; 

   %regit(&dsn.,&nn.,&mode.,&&xval&nn..); 

  %end; 

The macro call to expand REGIT 
can admittedly be a bit 
overwhelming as it makes use of 
a SAS macro language construct 
called a MACRO array.  MACRO 
arrays are described in detail in 
Carpenter [2].  The 4

th
 time we 

execute the %DO Loop, we are 
asking the SAS Macro processor 
to expand REGIT with the 
current value of the macro 
variable DSN (xy), the current 
value of the macro variable NN 
(4), the current value of the 
macro variable MODE (30), and 
the current value of the macro 
variable XVAL4 (34).  Notice how 
in the unexpanded version of the 
macro, page 5, the PROC REGs 
point to the macro variable DSN 
while in the expanded version of 
the macro (Figure 7) they read 

“proc reg data=xy”.  The expansion of 
a SAS macro is nothing more exotic 
than an insertion of the code in-line at 
the point of the expansion request coupled with text substitution.  Again, notice how the WHERE clause in the PROC 
REG looks at the macro variables X1

2
 and X2 when unexpanded but looks at the values of X1 (30) and X2 (34) for a 

particular expansion.  We can tie this back to the symbol table shown in Figure 6 where you can see that XVAL4 
does indeed have a value of 34. 

The third macro, ANALYZE, creates summary statistics for the two subsets that correspond to the best break point.  
First, it applies a flag to observations in the tail of the distribution and then computes their frequency.  Then it 
calculates univariate statistics for just those observations considered to be in the main body of the distribution.  
ANALYZE obviously just scratches the surface of functionality one might want to see here.  See the Discussion 
section in the main body of the text for potential enhancements/extension to the macros presented in this appendix. 

%macro analyze(dsn,mdls); 

  proc delete data=x; 

  data x; 

   set &mdls.; 

   if _n_=1; 

   keep x1 x2; 

  data &dsn.; 

   set &dsn.; 

if _n_=1 then set x; 

   if x>x2 then tail=1; 

   else 

      tail=0; 

 proc print data=&dsn.; 
 proc freq data=&dsn.; 

   tables tail; 
   weight y; 
 proc univariate data=&dsn.; 

  var x; 
  where x<=x2; 

  freq y; 

run; 

%mend; 

                                                 
2
 Parameters for SAS macro expansion are positional in this example.  So in the macro call, MODE is aligned with X1 

as both are in the third position. 

Figure 7:  4th Expansion of SAS Macro REGIT 
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APPENDIX B – SAS MACRO LANGUAGE OVERVIEW 

This section provides a quick overview of the SAS macro language constructs used in Appendix A.  Its primary 
purpose is to allow a person unfamiliar with SAS macros to be able to follow the above code.  To find out everything 
you might ever have wanted to know about SAS macros, Carpenter's classic reference [2].  Prior to looking at some 
specific code, a quick note about SAS macro processing.  SAS macros are NOT equivalent to Excel [3] macros.  
Excel macros are chunks of code that are compiled and then executed each time they are invoked.  SAS macros are 
chunks of code passed through a preprocessor prior to compilation and then executed each time they are invoked.  
That is, an Excel macro is the identical code executed over and over.  It can just do it on different sets of data.  The 
code in a SAS macro can be changed on the fly to operate completely differently. 

The primary building block of the SAS macro language is the macro variable.  The naming convention for defining a 
new macro variable follows the normal rules for defining a variable in a data step; however, when you reference one 
in a code segment it must have an “&” as a prefix and should have a “.” as a suffix.  SAS macro variables are different 
than other SAS variables in that the only value they can take on are text strings.  SAS macro variables are normally 
defined and assigned a value in one of three ways: (1) a %LET statement (which can occur in open SAS code 
outside of a macro), (2) an input parameter in the SAS macro definition, (3) a %SYMPUT function inside of a SAS 
macro. SAS macro variables are generally only visible to SAS code in the macro in which they are defined.  Again, 
Carpenter [2] is a great source for details on the scope of SAS macro variables. 

Figure 8 shows a typical macro 
definition.  I have purposely cut and 
pasted the code segment as a 
bitmap from the SAS editor rather 
than pasting it as text.  I feel it is 
important to see the visual queues 
the editor provides when working 
with SAS macros.   The macro 
definition starts with the keyword 
"%MACRO" and is finalized with 
the keyword "%MEND".  Notice 
that both keywords are shown as a 
dark blue.  The name of the macro 
is "AgeSubsetter".  There are four 
parameters that can be passed to 
the macro at the time it is 
invoked:  "DataSetName", 
"AgeLower",  "AgeUpper", and "PrintIt".  
Notice how the macro variables defined 
as parameters in the macro definition statement are sprinkled throughout the body of the macrocode segment (shown 
in an aqua-green color).  We will come back to this thought in a minute.  

Since macros are not executed at the 
time they are defined, we need a 
mechanism to execute them - which 
are the macro invocation statements 
shown at the bottom of Figure 8.  The 
invocation starts with a leading % 
sign followed by the name of macro 
and parameters we wish to pass to 
the macro.  The parameters specified 
in the macro invocation can be any 
SAS expression that results in a text 
string.  Figure 9 shows the expansion 
of the macro after it has been invoked 
with the first invocation in Figure 8.  
Notice how the strings passed as 
parameters in Figure 8 are 
substituted for their corresponding 
macro variable names from the 
macro definition to produce the 
executable block of SAS code shown 
in Figure 9.  This is quite literally a gigantic 
"COPY and PASTE" and then "REPLACE 
ALL" type of process. 

Figure 8:  SAS Macro AgeSubSetter 

Figure 9:  Expansion of Macro AgeSubsetter # 1 
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The beauty is you get to decide at execution time (perhaps in the middle of a SAS job) what copy, paste, and replace 
to process.  Refer back to the macro definition in Figure 8.  The %IF-%DO-%END construct is a conditional execution 
statement that is evaluated by the macro 
processor prior to execution of the SAS code.  
If the PRINTIT parameter is passed a value of 
“Y” then PROC PRINT is included in the 
macro expansion and executed.  If it is set to 
anything else (i.e. “N”), the PROC PRINT is 
never even shown to the compiler, much less 
executed.  Compare the expanded code 
segments shown previously in Figure 9 to the 
one in Figure 10.  The choice to 
include/exclude the PROC PRINT is made by 
the preprocessor, not the compiler.  Think of 
the power.  I can sprinkle all of my code with 
key debugging aids that are normally turned 
off but can be turned on as needed.  Assuming 
you have trapped an error code (%SYSERR) 
after a job/routine has been run, you could 
automatically re-execute the module with your 
debugging turned on – a great time saving for 
large jobs run overnight. 

The final concept I would like to discuss here is that of a SAS macro array.  Technically, the SAS macro language 
does not have an array capability.  But, because, 
at its heart, it is a text substitution facility, you can 
fake it out.  Let’s assume you have defined 3 
macro variables Age1, Age2, and Age3 and Age1 has been assigned the value of “16”.  Then the statement 
                                    x = &Age1.;    would resolve to   x = 16; 
When the macro pre-processor sees the “&” sign, it knows it needs to do a text substation.  But what if I have a fourth 
macro variable defined, K., which has been assigned the value of “1” and changed the assignment statement to 
                                    x =&&Age&K.. 
The doubled “&&” sign causes the macro processor to do two successive text substitutions.  The first replaces the 
“&K” with its value of 1, yielding &Age1 while the second replaces &Age1 with its value of 16.  If you couple this 
facility with a macro %Do %End loop using K as the macro loop variable, you in effect have an array capability. 
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