
Paper AA-04-2013

Logistics Performance Metrics using SAS® Macros

Michael C. Frick, General Motors - Retired, Warren, MI

ABSTRACT

Performance metrics for time-related processes, such as logistics delivery times, often follow an all too familiar
pattern that is highly skewed to the right. In such cases, traditional central tendency statistics are of little use as they
are dominated by the out-of-process events in the tail of the distribution and do not adequately describe the
distribution of delivery times for in-process events. In this work, I propose a methodology that first splits the
distribution into its two main components using a SAS

®
macro that employs piece-wise linear regression to

automatically determine the break point between the main body of the distribution and the tail. Using this automated
splitting mechanism, we are able to classify the performance of a large number of individual shipping lanes across
three categories: (1) percent of out-of-process events, (2) average performance for in-process events against an
expected standard, and (3) variation in performance for in-process events.

INTRODUCTION:

More often than not, measurements of time-related processes that physically move objects through space follow the
shape of the distribution in Figure 1. We can see why by examining a rather simple task –driving across town. The
majority of drive times will vary somewhat around
your expected drive time (minor variation due to
traffics lights, funeral processions, bad weather,
etc.). Yet, no matter how often you drive it,
physics dictates that it has to take a certain
minimum amount of time to get there; hence the
distribution is truncated on the left. Further, if you
drive it often enough, there will be a number of
times that it takes considerably longer than normal
to get there (flat tire, road closures, etc.); hence
the distribution will have an elongated tail on the
right.

Earlier I used the words “expected” and “normal” to
quantify our expected drive times. The context is
that it usually takes an approximate amount of time
for you to arrive at your destination. Let’s return to
Figure 1. Notice where the two statistical expected
times (mean and median) would land on the
distribution. Clearly they would not reflect an
individual’s usual expected drive time. In fact, Figure 1
represents my own personal drive times to work
over about a 14-week period. When asked (even
before I did the study) I would respond that my
drive takes about 30 minutes.

Given the shape of the distribution, one might be
tempted to fit a theoretical distribution to the data.
Figure 2 shows an Inverse Gaussian fit. Finding
such a fit allows one to make inferences about
how the distribution should behave. But how does
one turn that information into performance metrics
that can be shared with an operations group, not
to mention the practical difficulties of fitting curves
across a large number of shipping lanes.

It is the impact of the tail, which is generally
outside of an operational group’s control, which
causes a difference between the statistical
expected and a personal expected. This
difference can be quite large when manufacturing
issues delay departures after units have been released
for shipment. I remember having a long conversation
with a supplier responsible for load-makeup and

Figure 1: Distribution of Drive Times

Figure 2: Inverse Gaussian Fit to Drive Times

 2

shipment from a large manufacturing facility. He refused to believe that his reported average load makeup-time was
accurate. The issue was simple, the vast majority of shipments went out as expected (which is what he sees); but a
small number had been held in the yard for repairs for enough extra time to move the “statistical” average to a value
that was meaningless to him – a serious problem. If you want operational folk to take a performance metric seriously,
it must have a physical interpretation that is meaningful to them.

A common response to this phenomenon is to exclude long-delivery records from the measurement process,
especially those that are deemed to have somehow been out-of-process. See Frick [1] for a detailed discussion of
performance metrics in general as well as the pitfalls of excluding records; but, my main concern here is that simply
dropping records ignores/hides failed performance on a potentially large number of customer deliveries. A better
response is to break the distribution into its two key components (body and tail) and then measure.

SPLITTING THE DISTRIBUTION:

Let’s return a third time to Figure 1 on the previous page. Left to their own devices, most people would have no
problem splitting the tail from the main body manually at around 38 minutes, although some might make the case to
split it around 45 minutes. Easy enough if we wish to analyze a small number of shipping lanes, but impossible if the
number is large. In this section, I describe a SAS macro that employs piece-wise linear regression to automatically
determine the break point between the main body of the distribution and the tail. The macro takes advantage of the
shape of the distribution. The mode of the distribution will be close to the actual process capability (the personal
expected time). Minor disruptions in delivery times will cause the shape of the distribution to be “bell-like” in the
immediate vicinity of the mode. Major disruptions will result in random delivery times in the tail to the right of the “bell-
like” area.

The distribution can be approximated using 4 straight lines (left panel of Figure 3): (1) one fitted to the truncated tail
on the left side of the distribution, (2) one fitted to the left side of the “bell-like” body of the distribution, (3) one fitted to
the right side of the “bell-like” body of the distribution, and (4) one fitted to the long tail on the right side of the
distribution. As the truncated tail on the left is usually unimportant, the macro focuses on finding the best two lines on

the right side of the distribution using brute force and piecewise linear regression. It assumes the first line will be
anchored on its left at the mode and the second line will be anchored on its right on the far right of the distribution. As
the regression lines are only used to find the break point, I am not concerned about continuity at the break point.
Hence, the macro simply tries all combinations of break points between the two and selects the two regression lines
that minimize the sum of squared residuals. The right panel of Figure 3 shows the two best regression lines for my
driving times shown originally in Figure 1. The SAS code for splitting the distribution is given in Appendix A.

PERFORMANCE METRICS:

In an earlier MWSUG paper [1], I presented 9 pitfalls (DO's/DON'Ts) when developing a set of performance metrics
that were drawn from over 10 years of working experience with both executive leadership and operational groups in a
large supply chain organization. In that work, I discussed the difference between desired performance, current
process capability, and current actual performance. Metrics aimed at the comparison of desired and current process
capability must be assigned to a non-operational group (e.g. the supply chain planning organization.) They have
access to the resources necessary to define and implement initiatives to narrow the gap between current and desired
capability. Metrics aimed at the comparison of current process capability and current actual performance must be
assigned to an operational group. As the previously defined macro is built to help analyze actual performance, our
focus here will be on operational metrics. But what makes a “good” operational performance metric?

1

2

3

4

Figure 3: Linearly Approximated Distribution

 3

To be considered "good", a performance metric should shine a light on potential areas of improvement. Simple
pass/fail is not good enough. It should be presented in such a way that the interpretation of the metric has a physical
meaning to the group. For our data in Figure 1, many people would first consider using mean, standard deviation,
and perhaps the 90

th
 percentile.

1

So assume we report that our data in Figure 1 has a mean of 36.7, standard deviation of 10.3, and a 90
th

 percentile of
48 and that the current process capability is set at 30. What actions might an operational group take from the above
statistics? Most likely, they will see the difference between the mean and the desired performance and decide, if we
can improve our process by a week, we will hit our target and improve our process variability at the same time. But
we can see from Figure 1 that most of the distribution appears to be following the expected process and it is already
centered on our expected time. This is a recipe for disaster. When they can’t improve the average, they will look at
eliminating issues observed in the tail. But by definition, things in the tail are usually one-time, unexpected events.
Since the data in Figure 1 are my own personal drive times, I can tell you that no operational initiative will stop me
from being stuck on a freeway that is closed or from getting a traffic citation. One logistics supervisor I used to work
with called working on the items in the tail “Whack-a-mole”. Management insisted that they work on the 10 worst.
They did and could claim victory.
But 10 others always seem to
crop up and the size of the tail
never really changed.

Let’s revisit the data after it has
been separated into its two
components as shown in Figure
3. The panels of Figures 4 & 5
show the results from PROC
UNIVARIATE on all 65 data
points (top) and just the data
points after the tail has been
excluded (bottom). Notice how
the three central tendency
statistics and standard deviation
have tightened up after the tail
units have been excluded. Plus
or minus 3 minutes to an
average of 31 is pretty
consistent performance.

Despite my whack-a-mole story
above, we are still obligated to root-
cause drive times in the tail. Notice the
clump of drive times between 40-
45 minutes in Figure 1. Luckily
when I recorded my drive times I
decided to keep notes. It turns
out that the majority of these
drive times came on days I
stopped for gas. This may be
actionable. In my case, I could
have stopped for gas on
weekends. If I were to critique
my drive time performance, I
would make the following
observation. If I could just leave
for work on time and make sure
to get gas on the weekends, I
could count on getting to work in
very close to 30 minutes on most
days (i.e. I need to focus on fixing
the tail).

1
 Some may be tempted to use medians and quartiles; but these are bad choices in a metrics environment involving non-technical

leadership. Try explaining why the sum of 3 sub-process medians doesn’t equal the total process median.

Figure 4: Univariate Statistics for Drive Times -- Tail Included

Figure 5: Univariate Statistics for Drive Times -- Tail Excluded

 4

Assume now, that we provide an operational group with metrics based on the mean and standard deviation of the
main body of the distribution and the percent of deliveries in the tail. In the case above, the group can ignore the
entire body of the distribution as it is performing well. The tail actually starts at the 70

th
percentile, not at an arbitrarily

decided 90
th

percentile. Given the unusually large amount of volume in the tail, it’s clear that the group should dig in
to root cause issues. By splitting the data into two pieces (main body and tail) we can now answer the following
questions about a particular distribution lane:

1. How many deliveries appear to be following the intended process?

2. Are the units following the intended process, on average, hitting our expected process capability?

3. Are the units following the intended process experiencing too much variation?

Assuming we can define target criteria for these questions, we can determine whether this particular lane is
performing well under 3 separate criteria, which in turn provides specific direction on where to shine the spotlight:
average time for the main body, variation in the main body, or excessively large tail. Given an automated process for
splitting distributions and target criteria for each of the three attributes above, we can now automatically classify a
large number of lanes based on their performance and manage process improvement by exception.

DISCUSSION:

After spending over 10 years working with both executive leadership and operational groups on performance metrics,
I have found the following to be true:

 Operational groups can sabotage, cheat, or out and out ignore performance metrics for which they see no
value.

 Operational groups can move mountains to achieve performance improvements if they see value.

Hence, when developing performance metrics for an operational group, it is imperative that those metrics have the
following characteristics:

 The operational group, through its normal work output, must be able to influence improvements.

 The metrics must make intuitive sense to the operational group. There has to be a physical interpretation to
the metrics.

 The metrics must be presented in a form that helps point the way towards areas of potential improvement.

In the main body of this work, I have made the case for splitting logistics delivery times into two groups, those that
appear to be following the intended delivery process and those that appear to have been derailed (pun intended)
while in transit prior to taking measurements. I believe this gives one the best chance at presenting measurements
to an operational group that will be consistent with what they see every day.

In the tail of this work (Appendix A), I presented a set of SAS Macros that would enable one to split the tail from the
main body of a highly skewed distribution. To implement a measurement process across a large number of shipping
lanes, one would need to beef up these macros in the following way:

1. An outer macro would be needed to loop through the macros shown in Appendix A for each measurement
lane, capturing the primary statistics for each as it went along.

2. A classification process would need to be built which would join expected performance with actual
performance on each lane and assign a judgmental value as to whether the performance on each of the
three criteria (average & standard deviation for in-process event, quantity of out of process events) were
within tolerance. The process would need to be able to rank the delivery lanes by best opportunity
(combination of severity and type of bad performance and the shipping volume for each lane.)

3. The macros in Appendix A would need to be beefed up to provide a number of key checks. (e.g. low
volume lanes, lanes without a clear cut mode, zero slope in the tail, etc.)

4. Depending on the number of lanes and if speed is an issue, one might be try to use the shape of the
distribution to smarten up the search algorithm (i.e. once the slope of the second regression line is relatively
flat do we still need to keep searching for a better fit?

 5

APPENDIX A – TAIL SPLITTING SAS MACROS

In this section, I describe a set of three SAS macros that are able to automatically find the break point between the
main body and tail of a highly skewed distribution. (See Appendix B for some helpful hints if you are not familiar with
the SAS macro language). The macros assume that the distribution has the shape as shown earlier in Figure 1 and
that the best place to split the data is between the mode and max of the distribution. The algorithm therefore, albeit
dumb, is straightforward. It starts by placing the mode and the first data point to the right of the mode in one subset.
The remaining data points to the right of this subset are placed into a second subset. Individual regressions are run
on each subset of data and the combined residual sum of squares is saved for the current candidate break point.
The algorithm then moves the second data point to the right of the mode from the second subset to the first subset
and recalculates the regressions. This process is continued until all possible break point candidates have been
examined. The break point associated with the two regressions that minimize the consolidated sum of squared
residuals is selected as the best.

The code segment below shows the SAS macro LOOPER that controls the iterative search for the best break point.
The parameter (DSN) is the name of the data set that contains the data points in our distribution shown in Figure 1.
The PROC UNIVARIATE finds the mode of the distribution, which is subsequently stored in the macro variable
MODE using the SYMPUT function. Next, a macro variable is created for every data point to the right of the mode.
The names of the new variables have a prefix of “XVAL” and a numeric suffix such that the first data point to the right
of the mode is named XVAL1, the second is named XVAL2, and so on. The value assigned to each new macro
variable is the x-coordinate of the data point. A final new macro variable, NLOOPS, is set to the number of data
points to the right of the mode. Perhaps the most interesting part of the code is the %DO - %END Loop. These
innocent looking 3 lines of code control 19 separate expansions of the macro “REGIT”. Each macro expansion
corresponds to a unique split of the data set into two subsets. We will return to the %DO Loop as we take a quick
look at macro REGIT below.

The best way to see what’s going on with the macro variable creation is to look at the result of executing the “%put
user” command, which dumps the symbol table to the SAS log (Figure 6 on next page). For each entry you can
see the Macro Name, the Macro Variable Name, and the text value associated with each Macro variable. The first
entry is XVAL14 with the associated text of “48”. You will have to ask a SAS guru why the entries appear to have a
random order. However, if you scan the list, you can see that MODE has a value of 30 as expected. XVAL1 the first
data point to the right of the mode has a value 31. NLOOPS has a value of 19, as there are 19 data points to the
right of the mode.

%macro looper(dsn);

proc delete data=main_stats;

proc sort data=&dsn.;

 by x;

proc univariate data=&dsn. noprint;

 var x;

 freq y;

 output out=main_stats mode=mode;

data _null_;

 set main_stats;

 call symput('mode',trim(left(put(mode,4.))));

data _null_;

 set &dsn. end=endf;

 retain n 0;

 if x>&mode. then
 do;

 n=n+1;

 call symput('xval' || trim(left(put(n,4.))),trim(left(put(x,6.))));

 end;

 if endf then call symput('nloops',trim(left(put(n,4.))));

run;

%put _user_;

%do nn=1 %to &nloops;

 %regit(&dsn.,&nn.,&mode.,&&xval&nn..);

 %end;

run;

proc sort data=mdls;

 by descending rsq;

options linesize=100;

proc print data=mdls;

 format slope1 sse1 rsq1 sstot1 slope2 sse2 rsq2 sstot2 sse rsq sstot 5.2;

run;

%mend;

 6

The MACRO REGIT (code segment below) expects 4 parameters. The first, DSN, is just the name of the data set.
The second is an iteration counter. The third, X1, is set to the MODE. The fourth, X2, is the current test break point.
The first PROC REG operates on data between X1 and X2 (i.e. from the mode to the current break point candidate).
The second PROC REG operates on all data points to the right of the current break point candidate. The rest of the
macro saves the results from the two regressions, computes the consolidated sum of squared residuals, and then
saves the results of this model with those from previous macro calls in a data set named MDLS for later analysis.

%macro regit(dsn,loop,x1,x2);

proc delete data=est1 est2 est;

proc reg data=&dsn. noprint

 outest=est1(keep=x _rsq_ _sse_

 rename=(_rsq_=RSQ1 _sse_=SSE1 x=slope1));

 model y=x / rsquare sse;

 where &x1.<=x<=&x2.;

proc reg data=&dsn. noprint

 outest=est2(keep=x _rsq_ _sse_

 rename=(_rsq_=RSQ2 _sse_=SSE2 x=slope2));

 model y=x / rsquare sse;

 where x>&x2.;

data est1;

 set est1;

 SStot1=SSE1/(1-RSQ1);

data est2;

 set est2;

 SStot2=SSE2/(1-RSQ2);

data est;

 merge est1 est2;

data est;

 set est;

 length modelid $ 20;

 modelid=compress("Model: &loop.");

 x1=&x1.;

 x2=&x2.;

 SSE=SSE1+SSE2;

 SStot=SStot1+SStot2;

 RSQ=1-(SSE/SStot);

proc append base=mdls data=est;

 run;

%mend;

Figure 6: Symbol Table Dump

 7

Now let’s return to the %DO Loop shown previously in the macro LOOPER.

%do nn=1 %to &nloops;

 %regit(&dsn.,&nn.,&mode.,&&xval&nn..);

 %end;

The macro call to expand REGIT
can admittedly be a bit
overwhelming as it makes use of
a SAS macro language construct
called a MACRO array. MACRO
arrays are described in detail in
Carpenter [2]. The 4

th
 time we

execute the %DO Loop, we are
asking the SAS Macro processor
to expand REGIT with the
current value of the macro
variable DSN (xy), the current
value of the macro variable NN
(4), the current value of the
macro variable MODE (30), and
the current value of the macro
variable XVAL4 (34). Notice how
in the unexpanded version of the
macro, page 5, the PROC REGs
point to the macro variable DSN
while in the expanded version of
the macro (Figure 7) they read

“proc reg data=xy”. The expansion of
a SAS macro is nothing more exotic
than an insertion of the code in-line at
the point of the expansion request coupled with text substitution. Again, notice how the WHERE clause in the PROC
REG looks at the macro variables X1

2
 and X2 when unexpanded but looks at the values of X1 (30) and X2 (34) for a

particular expansion. We can tie this back to the symbol table shown in Figure 6 where you can see that XVAL4
does indeed have a value of 34.

The third macro, ANALYZE, creates summary statistics for the two subsets that correspond to the best break point.
First, it applies a flag to observations in the tail of the distribution and then computes their frequency. Then it
calculates univariate statistics for just those observations considered to be in the main body of the distribution.
ANALYZE obviously just scratches the surface of functionality one might want to see here. See the Discussion
section in the main body of the text for potential enhancements/extension to the macros presented in this appendix.

%macro analyze(dsn,mdls);

 proc delete data=x;

 data x;

 set &mdls.;

 if _n_=1;

 keep x1 x2;

 data &dsn.;

 set &dsn.;

if _n_=1 then set x;

 if x>x2 then tail=1;

 else

 tail=0;

 proc print data=&dsn.;
 proc freq data=&dsn.;

 tables tail;
 weight y;
 proc univariate data=&dsn.;

 var x;
 where x<=x2;

 freq y;

run;

%mend;

2
 Parameters for SAS macro expansion are positional in this example. So in the macro call, MODE is aligned with X1

as both are in the third position.

Figure 7: 4th Expansion of SAS Macro REGIT

 8

APPENDIX B – SAS MACRO LANGUAGE OVERVIEW

This section provides a quick overview of the SAS macro language constructs used in Appendix A. Its primary
purpose is to allow a person unfamiliar with SAS macros to be able to follow the above code. To find out everything
you might ever have wanted to know about SAS macros, Carpenter's classic reference [2]. Prior to looking at some
specific code, a quick note about SAS macro processing. SAS macros are NOT equivalent to Excel [3] macros.
Excel macros are chunks of code that are compiled and then executed each time they are invoked. SAS macros are
chunks of code passed through a preprocessor prior to compilation and then executed each time they are invoked.
That is, an Excel macro is the identical code executed over and over. It can just do it on different sets of data. The
code in a SAS macro can be changed on the fly to operate completely differently.

The primary building block of the SAS macro language is the macro variable. The naming convention for defining a
new macro variable follows the normal rules for defining a variable in a data step; however, when you reference one
in a code segment it must have an “&” as a prefix and should have a “.” as a suffix. SAS macro variables are different
than other SAS variables in that the only value they can take on are text strings. SAS macro variables are normally
defined and assigned a value in one of three ways: (1) a %LET statement (which can occur in open SAS code
outside of a macro), (2) an input parameter in the SAS macro definition, (3) a %SYMPUT function inside of a SAS
macro. SAS macro variables are generally only visible to SAS code in the macro in which they are defined. Again,
Carpenter [2] is a great source for details on the scope of SAS macro variables.

Figure 8 shows a typical macro
definition. I have purposely cut and
pasted the code segment as a
bitmap from the SAS editor rather
than pasting it as text. I feel it is
important to see the visual queues
the editor provides when working
with SAS macros. The macro
definition starts with the keyword
"%MACRO" and is finalized with
the keyword "%MEND". Notice
that both keywords are shown as a
dark blue. The name of the macro
is "AgeSubsetter". There are four
parameters that can be passed to
the macro at the time it is
invoked: "DataSetName",
"AgeLower", "AgeUpper", and "PrintIt".
Notice how the macro variables defined
as parameters in the macro definition statement are sprinkled throughout the body of the macrocode segment (shown
in an aqua-green color). We will come back to this thought in a minute.

Since macros are not executed at the
time they are defined, we need a
mechanism to execute them - which
are the macro invocation statements
shown at the bottom of Figure 8. The
invocation starts with a leading %
sign followed by the name of macro
and parameters we wish to pass to
the macro. The parameters specified
in the macro invocation can be any
SAS expression that results in a text
string. Figure 9 shows the expansion
of the macro after it has been invoked
with the first invocation in Figure 8.
Notice how the strings passed as
parameters in Figure 8 are
substituted for their corresponding
macro variable names from the
macro definition to produce the
executable block of SAS code shown
in Figure 9. This is quite literally a gigantic
"COPY and PASTE" and then "REPLACE
ALL" type of process.

Figure 8: SAS Macro AgeSubSetter

Figure 9: Expansion of Macro AgeSubsetter # 1

 9

The beauty is you get to decide at execution time (perhaps in the middle of a SAS job) what copy, paste, and replace
to process. Refer back to the macro definition in Figure 8. The %IF-%DO-%END construct is a conditional execution
statement that is evaluated by the macro
processor prior to execution of the SAS code.
If the PRINTIT parameter is passed a value of
“Y” then PROC PRINT is included in the
macro expansion and executed. If it is set to
anything else (i.e. “N”), the PROC PRINT is
never even shown to the compiler, much less
executed. Compare the expanded code
segments shown previously in Figure 9 to the
one in Figure 10. The choice to
include/exclude the PROC PRINT is made by
the preprocessor, not the compiler. Think of
the power. I can sprinkle all of my code with
key debugging aids that are normally turned
off but can be turned on as needed. Assuming
you have trapped an error code (%SYSERR)
after a job/routine has been run, you could
automatically re-execute the module with your
debugging turned on – a great time saving for
large jobs run overnight.

The final concept I would like to discuss here is that of a SAS macro array. Technically, the SAS macro language
does not have an array capability. But, because,
at its heart, it is a text substitution facility, you can
fake it out. Let’s assume you have defined 3
macro variables Age1, Age2, and Age3 and Age1 has been assigned the value of “16”. Then the statement
 x = &Age1.; would resolve to x = 16;
When the macro pre-processor sees the “&” sign, it knows it needs to do a text substation. But what if I have a fourth
macro variable defined, K., which has been assigned the value of “1” and changed the assignment statement to
 x =&&Age&K..
The doubled “&&” sign causes the macro processor to do two successive text substitutions. The first replaces the
“&K” with its value of 1, yielding &Age1 while the second replaces &Age1 with its value of 16. If you couple this
facility with a macro %Do %End loop using K as the macro loop variable, you in effect have an array capability.

REFERENCES

[1] Frick, Michael 2009, DO’s and DON’Ts of Generating Performance Metrics, Proceedings of the Twentieth Midwest
SAS Users Group Conference, paper T04-2009.

[2] Carpenter, Art 2004. Carpenter’s Complete Guide to the SAS® Macro Language, Second Edition. Cary, NC: SAS
Institute Inc.

[3] Excel (Part of Microsoft Office Professional Edition) [computer program]. Microsoft; 2010.

Contact Information

Your comments and questions are valued and encouraged. Contact the author at:

Name: Michael C. Frick

Enterprise: General Motors, Retired

Address: 30238 Underwood Drive
City, State ZIP: Warren, MI 48092
Work Phone: 586-573-0977
Fax: N/A
E-mail: mcfdaf001@yahoo.com
Web: N/A

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® Indicates USA registration. Other brand and product names are
registered trademarks or trademarks of their respective companies

Figure 10: Expansion of Macro AgeSubSetter #2

