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Abstract 
 
Ordinal responses are commonly collected in medical studies, yet the various types of analyses possible with these 
data with SAS procedures are not well known. Interpretation of ordinal logistic regression output requires 
consideration of how data are coded and the computing options or formats invoked. Although the cumulative and 
generalized logit models can easily be run with statistical procedures such as LOGISTIC, CATMOD, GENMOD, or 
GLIMMIX, these and several other models can also be developed through programming statements entered in the 
NLMIXED procedure. This talk provides a survey of the various models for ordinal data that NLMIXED can run such 
as the proportional odds and partial proportional odds models, adjacent logits, continuation ratio, and the stereotype 
model.  Odds ratios and predicted values from these models also require programming statements that help to 
interpret the results and to test the goodness of fit. Comparisons with odds ratios computed from the more common 
ordinal response models will also be given. Implementing these models assumes a background with categorical data 
analysis including maximum likelihood equations and computing odds ratios with binary data. 
 

Ordinal Data 
 
It is not recommended that existing numerical data be recoded into ordinal categories; working with actual numerical 
data almost always preferable to avoid unnecessary measurement error. However, it is relatively common to not be 
able to measure variables with a numerical value.  Instead, the data are coded into distinct categories where their 
inherent order is meaningful.  Ordinal data analysis in this paper is defined as methods to evaluate responses that 
have a well-defined order with 3, 4, or perhaps as many as 5 or 6 possible values.  Working with six or more levels of 
an ordinal response is less common and perhaps more difficult to work with ordinal data modeling procedures.   
 
In biomedical studies, ordinal responses commonly occur when a subject progresses gradually through the levels of a 
response that is difficult to quantify, such as specific durations or severity levels of a disease.  Other common 
examples are opinions collected at one point in time that are not expected to change suddenly and are measured on 
a Likert scale, such as having a choice of five responses ranging from total disagreement to total agreement. Scales, 
the sum of several Likert responses producing a reasonably large alpha coefficient, often have an adequate range 
and nearly symmetric distribution of values so that the normality condition is a reasonable choice.   Almost any single 
response variable where the underlying interpretation has an increasing or decreasing order of levels which are not 
easy to quantify would qualify as ordinal data.  Though often coded numerically (e.g., as increasing non-negative 
integers 1, 2, 3, ..) the actual values of the integers do not imply that a difference between any pair of them has a 
meaningful quantitative interpretation.  For data analysis statistical methods designed for continuous data based on a 
normal distribution of residuals may be routinely invoked by assuming these conditions also apply for ordinal 
responses. The sample size, range of values, and the central limit theorem all work together and in some cases may 
make a normal theory model a reasonable choice.  However, the purpose of this paper is to explore alternatives, in 
particular how SAS/STAT software may be applied to ordinal response data of the types described in Chapters 3 and 
4 of “Analysis of Ordinal Data, “ 2

nd
 Ed. by Agresti. 

 

SAS Procedures for Analyzing Ordinal Data 
 
SAS/STAT procedures with capabilities for analyzing ordinal response data with one or more covariates are 
LOGISTIC, GENMOD, and GLIMMIX (among a few others).  For ease of interpretation the odds ratios will be the 
desired output which also gives predicted probabilities of the response for stated values of the covariates. With these 
three procedures, the cumulative logit (proportional odds) and generalized logit models are available by specifying 
link=clogit or link=glogit on the MODEL statement.   The first model represents the most general situation, the 
proportional odds, and the second, the most specific, the generalized logit (designed for nominal data, which usually 
ignores ordinal nature of the data).  PROC CATMOD also is designed for categorical response models, but generally 
works with weighted least squares, not maximum likelihood and is optimized for use with categorical explanatory data 
(numerical explanatory variables are entered through a DIRECT statement), and for some is cumbersome and 
difficult to apply. Methods to analyze ordinal response models that allow computation of odds ratios in between these 
two extremes are not well known or not readily available. These types of ordinal data models include the partial 
proportional odds, the adjacent category logit, continuation ratio, and stereotype models. 
 
Since maximum likelihood estimation (MLE) techniques are often a preferred method of estimation, the ideal 
condition of sufficiently large sample sizes will be assumed for application of these models.  For MLEs to work 
reasonably well, the majority of combinations of categorical factors in a contingency table should have 10 or more 
counts for most of the cells and even larger counts are desirable for the study to be mathematically sound. 
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When coded as single digit integers, the actual text value of the response can easily be attached with a format.  
When working with SAS procedures and formats it is also necessary to apply the order=internal option on the PROC 
statement so that the inherent ordering of the ordinal responses remains as required for the analysis interpretation. 

 
Example 
 
As a simple introduction to modeling ordinal categorical data, four levels of an ordered response variable will be 
evaluated with one categorical explanatory variable having two levels.  The data come from a paper by Ananth and 
Kleinbaum concerning a clinical trial of a single-dose, post-operative analgesic drug. 
 

----------------------------------------------------------------------------- 

|            |    Rating of the drugs    |      |      |      |      |      | 

|            |---------------------------|      |      |      |      |      | 

|            |      |      |      | VGd/ |      |      |      |      | Very | 

|            | Poor | Fair | Good | Excl | All  | Poor | Fair | Good | Good | 

|            |------+------+------+------+------+------+------+------+------| 

|            |  N   |  N   |  N   |  N   |  N   |Row % |Row % |Row % |Row % | 

|------------+------+------+------+------+------+------+------+------+------| 

|Drug        |      |      |      |      |      |      |      |      |      | 

|C15 & C60   |    17|    18|    20|     5|    60|  28.3|  30.0|  33.3|   8.3| 

|Z100 & EC4  |    10|     4|    13|    34|    61|  16.4|   6.6|  21.3|  55.7| 

----------------------------------------------------------------------------- 

 
The SAS data set that produces this table consists of 8 records defined by the 4 responses and 2 levels of the 
treatment drug.  The treatment variable is coded as drug=1 for “C15 & C60” and drug=2 for Z100 & EC4.  The four 
ordinal ratings are coded as y= 1 (Poor), =2 (Fair), =3 (Good), and =4 (VGd/Excl)  (the fourth and fifth levels were 
combined due to sparse cell counts).  With discrete data, the cell frequencies printed in the table are more efficiently 
stored with a variable called count, though the results would be the same when working with individual responses. 
 

Generalized Logit Model 
 
A generalized or baseline logit treats the response as nominal (the ordered nature of the response categories is not 
maintained) and provides a perfect fit to these data. the results are the same as computing individual 2x2 tables for 
Poor, Fair, and Good compared with VGd/Excl as the reference level.  The statements for a generalized logit model 
with PROC LOGISTIC produce the following maximum likelihood estimates and odds ratios: 
 

PROC LOGISTIC DATA=cltr order=internal; 

CLASS drug / PARAM=ref; 

FREQ count; 

MODEL y = drug / link= glogit; 

ODDSRATIOS drug / cl=pl; 

FORMAT drug drg. rsp yy. ; 

RUN; 

 

Parameter              Rating   Estimate   Odds Ratios 

Intercept               Poor    -1.2238       

Intercept               Fair    -2.1401       

Intercept               Good    -0.9614       

drug      C15 & C60     Poor     2.4475     11.56  = (17/5) / (10/34) 

drug      C15 & C60     Fair     3.4210     30.60  = (18/5) / (4/34) 

drug      C15 & C60     Good     2.3477     10.46  = (20/5) / (13/34) 

 
The entries in the column for odds ratios are computed from the Estimate column, EXP(estimate), or can be derived 
directly from the respective cell counts in the table. Since a format is applied to both the response and explanatory 
data, it is important to enter the order=internal to maintain the coded order, not alphabetical of the formatted values. 
 

PROC NLMIXED 
 
This paper will focus on how statements from the SAS procedure NLMIXED are written to estimate several types of 
ordinal response models. Other SAS procedures such as NLIN or MODEL may also be possible to estimate them, 
though the necessary components for maximum likelihood estimation are readily available in NLMIXED.  The general 
layout of statements for NLMIXED with a four level ordinal response variable includes the following statements: 
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PROC NLMIXED DATA=indat; 

PARMS < enter initial values of parameters >; 

 

* Statements for the three linear predictors (eta1, eta2, eta3); 

* Statements to compute four response probabilities (p1, p2, p3, p4); 

  

* Enter one of these Maximum Likelihood Equations (with 4 response levels); 

  

lk = (p1**(y=1)) * (p2**(y=2)) * (p3**(y=3)) * (p4**(y=4)); * ascending; 

lk = (p4**(y=1)) * (p3**(y=2)) * (p2**(y=3)) * (p1**(y=4)); * descending; 

  

* Compute loglikelihood; 

IF (lk > 1e-8) then llk = log(lk); else llk=-1e100; * computational safety ; 

 

* Estimate model; 

MODEL y ~ general(llk); 

 

REPLICATE count;  * for categorical data entered as counts; 

ESTIMATE statements for odds ratios; 

PREDICT statements for predicted probabilities; 

RUN; 

 
Model Fit 
 
The model fit based on comparing predicted counts with the actual values can be obtained from the output data sets 
derived from the PREDICT statements, one for each level of the response. Each file contains a variable called pred 
for its predicted probability of the respective values of the response.  Append all files together, sort by drug and 
response levels, and then multiply the predicted value, pred, by the respective row total for each level of the 
explanatory variable (i.e., merge in the row totals for drug computed with PROC FREQ).  For a categorical 
explanatory variable both the Pearson and log-likelihood chi-square statistics can then be accumulated across all 
records: 
 

pearsonchisq + ((count - pred_c)**2)/pred_c; 

loglikechisq + (2*count*(LOG(count/pred_c))); 

 

Significance (e.g., goodness of fit) is determined by comparing the computed values to the given critical value for the 
degrees of freedom. 
 

Cumulative Logit Model 
 
The cumulative logit model can be fit with PROC LOGISTIC by entering link=clogit in the MODEL statement. The 
PROC NLMIXED statements listed below also estimate the cumulative logit or proportional odds model and is a 
helpful starting point to begin.  In particular, to maintain ordinality, note the starting values of the PARMS and the 
construction of the statements for the linear predictors: 

 
PROC NLMIXED DATA=cltr ; 

PARMS Int_1 -2 Int_2 -1 Int_3 1 _d0 .1 ; 

 

* linear predictors; 

eta1 = Int_1 + _d0*(drug=1); * drug=2 (bottom row) as reference; 

eta2 = Int_2 + _d0*(drug=1); 

eta3 = Int_3 + _d0*(drug=1); 

 

* ordered logit model cumulative probabilities; 

cp1 = 1 / (1 + exp(-eta1)); 

cp2 = 1 / (1 + exp(-eta2)); 

cp3 = 1 / (1 + exp(-eta3)); 

 

p1 = cp1; 

p2 = cp2-cp1; 

p3 = cp3-cp2; 

p4 = 1-cp3; 

 

lk = (p1**(y=1)) * (p2**(y=2)) * (p3**(y=3)) * (p4**(y=4)); * ascending order ; 

IF (lk > 1e-8) then llk = log(lk); else llk=-1e100; 
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MODEL y ~ general(llk); 

REPLICATE count; 

ESTIMATE ‘Odds Ratio: C15 & C60” vs Z100 & EC4’ EXP(_d0); 

 

PREDICT p1 OUT=p1(where=(y=1)); * contains predicted value called pred ; 

PREDICT p2 OUT=p2(where=(y=2)); 

PREDICT p3 OUT=p3(where=(y=3)); 

PREDICT p4 OUT=p4(where=(y=4)); 

RUN; 

 
Initial values for the three intercepts are entered in the PARMS statement with an increasing order from negative to 
positive. These entries are necessary to reflect the ascending order of the cumulative probability for the response 
(i.e., the order of the response of the variables listed in the likelihood statement).  It is also crucial to structure the 
model and choose starting values for the parameters (on a log scale) that will compute valid probabilities – p1, p2, p3, 
p4 – that is, all values lie between 0 and 1. 
 
The cumulative odds ratio from this model is 5.88 (also produced with PROC LOGISTIC with link=clogit).  It implies 
that if the four responses are grouped in pairs -- 1 vs 234, 12, vs 34, and 123 vs 4 -- the odds ratio formed from the 
predicted counts for each of the three aggregated 2 x 2 tables is 5.88.  With the POM inference is extended to 
underlying continuum of responses and is invariant with respect to choice of categories to compare. 

 

--------------------------------------------------------------------------- 

|NLMIXED      |              Rating           |      |      |      |      | 

|clogit:      |-------------------------------|      |      |      |      | 

|predicted    |   1   |   2   |   3   |   4   |  1   |  2   |  3   |  4   | 

|counts and   |-------+-------+-------+-------+------+------+------+------| 

|row percents | Pred  | Pred  | Pred  | Pred  |Row % |Row % |Row % |Row % | 

|-------------+-------+-------+-------+-------+------+------+------+------| 

|Drug         |       |       |       |       |      |      |      |      | 

|C15 & C60    |   20.6|   13.9|   16.2|    9.3|  34.3|  23.2|  27.1|  15.4| 

|Z100 & EC4   |    5.0|    6.4|   18.0|   31.6|   8.2|  10.5|  29.5|  51.8| 

--------------------------------------------------------------------------- 

 
------------------------------------------- ------------------------------------------- 

|           | y = 1 | y= 234| odds | odrt | |           |y = 12 | y= 34 | odds | odrt | 

|-----------+-------+-------+------+------| |-----------+-------+-------+------+------| 

|Drug       |       |       |      |      | |Drug       |       |       |      |      | 

|C15 & C60  |   20.6|   39.4| 0.522|      | |C15 & C60  |   34.5|   25.5| 1.353|      | 

|Z100 & EC4 |    5.0|   56.0| 0.089| 5.877| |Z100 & EC4 |   11.4|   49.6| 0.230| 5.877| 

------------------------------------------- ------------------------------------------- 

 
The fit for this model is Chi-sq = 12.2 with 4 d.f., indicating the fit is not adequate. With the clogit model, PROC 
LOGISTIC also provides a score test for the proportional odds assumption: 

 
Chi-Square       DF     Pr > ChiSq 

 

   14.2431        2        <0.001 

 

One way to observe why this test rejects the proportional odds assumption can be observed by comparing separate 
odds ratios for each 2x2 table are estimated with PROC LOGISTIC: 

 
 2x2                   Odds 

Table     Estimate    Ratio 

 

1 vs 234    0.701     2.02 

12 vs 34    1.548     4.70 

123 vs 4    2.628    13.85 

 

Adequacy of the proportional odds model would imply the three values under the Estimate column would be 
reasonably similar. Also, the estimates are nearly linear when plotted against the three comparisons (coded 1,2,3). 
 

Partial Proportional Odds 
 
The unequal values of the individual logits for aggregated 2x2 tables indicate an alternative to this proportional odds 
model could be the partial proportional odds model.  The NLMIXED statements are the same as above except for 
revised linear predictors and to include three ESTIMATE statements for the odds ratios: 
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eta1 = Int_1 + _d0*(drug=1) + 0*_d1*(drug=1); * for a linear trend of the estimate, 

eta2 = Int_2 + _d0*(drug=1) + 1*_d1*(drug=1); * add an extra amount to the logit; 

eta3 = Int_3 + _d0*(drug=1) + 2*_d1*(drug=1); * when drug = 1 ; 

 

ESTIMATE 'y: 1 v 234' _d0 + 0*_d1; 

ESTIMATE 'y: 12 v 34' _d0 + 1*_d1; 

ESTIMATE 'y: 123 v 4' _d0 + 2*_d1; 

 

                        Standard 

Parameter    Estimate    Error     Probt 

 

 int_1       -1.6357     0.3440    0.001 

 int_2       -1.2429     0.2959    0.003 

 int_3       -0.2213     0.2573    0.415 

 _d0          0.6899     0.4495    0.163 

 _d1          0.9216     0.2661    0.008 

 

--------------------------------------------------------------------------- 

|NLMIXED:     |            Ratings            |      |      |      |      | 

|Predicted    |-------------------------------|      |      |      |      | 

|values and   |   1   |   2   |   3   |   4   |  1   |  2   |  3   |  4   | 

|row percents |-------+-------+-------+-------+------+------+------+------| 

|             | Pred  | Pred  | Pred  | Pred  |Row % |Row % |Row % |Row % | 

|-------------+-------+-------+-------+-------+------+------+------+------| 

|Drug         |       |       |       |       |      |      |      |      | 

|C15 & C60    |   16.8|   18.7|   19.1|    5.4|  28.0|  31.1|  31.9|   9.0| 

|Z100 & EC4   |    9.9|    3.7|   13.5|   33.9|  16.3|   6.1|  22.1|  55.5| 

--------------------------------------------------------------------------- 

 

The fit for this model is Chi-sq = 0.139 with 3 d.f., indicating an extremely good fit. For The modified logits (Estimates) 
and odds ratios can be compared to the proportional odds model above. 
 

                              odds_  

      rsp        Estimate     ratio  

 

  rsp 1 v 234      0.690      1.994  

  rsp 12 v 34      1.612      5.010  

  rsp 123 v 4      2.533     12.593  

 

In Section 15.13 of Stokes, et. al. (2000) a method with PROC GENMOD is described that computes a Partial 
Proportional Odds Model by first restructuring the data set to include a dichotomous variable for the p-1 (=3) 
comparisons and then adding a REPEATED statement (to work with the multiple observations in the data file that 
result from each subject).  PROC LOGISTIC (Version 12.1) provides the partial proportional odds logistic regression 
(unconstrained) with the UNEQUALSLOPES option in the MODEL statement. A detailed example of how LOGISTIC 
works with this model is described in Chapter 9.2.4 of Stokes, et. al. (2012). Details of these approaches will not be 
given here. 
 
NLMIXED also allows the addition of individual effects to the betas (constrained) rather than a linear fit: 
 

eta1 = _Int_1 + _d0*(drug=1) + d1*(drug=1); * add separate components, d1, d2,d3 ; 

eta2 = _Int_2 + _d0*(drug=1) + d2*(drug=1); * to the linear predictor; 

eta3 = _Int_3 + _d0*(drug=1) + d3*(drug=1); 

 

ESTIMATE 'rsp 1 v 234' _d0 + d1; 

ESTIMATE 'rsp 12 v 34' _d0 + d2; 

ESTIMATE 'rsp 123 v 4' _d0 + d3; 

 

Resulting in these Odds Ratios: 
 

                             odds_ 

     rsp        Estimate     ratio 

 

 Rsp 1 v 234      0.701      2.016 

 Rsp 12 v 34      1.548      4.700 

 Rsp 123 v 4      2.628     13.852 
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Adjacent Logits 

 
Adjacent logit models (ALM) provide comparisons of responses for specified pairs of adjacent categories, that is, it 
compares the ratio of two adjacent probabilities across the two levels of the explanatory variable (rather than the 
underlying continuum of all responses).  For two adjacent columns the linear predictors constructed below compare 
the ratios of probabilities right-to-left for both rows 1 and 2. 
 
        Log(p2/p1) = α1 + α2 + ß*x 

        Log(p3/p2) = α1 + α3 + ß*x 

        Log(p4/p3) = α1      + ß*x 

 
The NLMIXED statements to estimate the adjacent logit model are the same as above with these modifications for 
the linear predictors and probability statements: 

 
Linear predictors 

 

eta1 = alpha1 + alpha2 + drg*(drug=1); * drug = 2 is reference category; 

eta2 = alpha1 + alpha3 + drg*(drug=1); 

eta3 = alpha1          + drg*(drug=1); 

 

To compute probabilities, with these equations work backwards from three values of eta to find p4/p3, p3/p2, and 
p2/p1.  The necessary total for the probabilities to sum to 1 is: 
 
Total = (1 + exp(eta1) + exp(eta1+eta2) + exp(eta1+eta2+eta3)); 

 
The probability calculations are then: 
 

p1 = 1 / total; 

p2 = exp(eta1)*p1; 

p3 = exp(eta2)*p2; 

p4 = exp(eta3)*p3; 

 

The parameter estimates from this model are 
 

                       Standard 

Parameter   Estimate      Error    EXP(Estimate) 

 

alpha1         0.445      0.242    

alpha2       -0.0663      0.395    

alpha3         0.396      0.444    

drg           -0.809      0.188     0.445 

 
To compare this result with the proportional odds model, which assumes an increasing order of the response 
categories, the sign of the estimate is reversed or take ratio of the exponentiated coefficient, since ALM compares 
probs right to left: 
 
Exp(Estimate) = 1/0.445 = 2.25 

 
The parameter estimates produce the following table of predicted values: 
 

---------------------------------------------------------------------- 

|Predicted   |           Counts          |          Proportions      | 

|Values      |---------------------------|---------------------------| 

|            |      |      |      |VGd/  |      |      |      | VGd/ | 

|            | Poor | Fair | Good | Excl | Poor | Fair | Good | Excl | 

|------------+------+------+------+------|------+------+------+------| 

|Drug        |      |      |      |      |      |      |      |      | 

|C15 & C60   |  21.5|  14.0|  14.4|  10.0| 0.359| 0.233| 0.241| 0.167| 

|Z100 & EC4  |   5.5|   8.0|  18.6|  29.0| 0.090| 0.131| 0.304| 0.475| 

---------------------------------------------------------------------- 

 

The fit for this model is Chi-sq = 15.0 with 4 d.f., indicating the fit is not adequate.  To see how these predicted 
proportions are computed, the ratios of adjacent values all equal the exponentiated value of the coefficient. 
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  Fair vs Poor:     [0.233 / 0.359] / [0.131 / 0.090] = 0.445 

  Good vs Fair:     [0.241 / 0.233] / [0.304 / 0.131] = 0.445 

  VGd/Excl vs Good: [0.167 / 0.241] / [0.475 / 0.304] = 0.445 

 

If these ratios are allowed to vary freely (consider how the linear predictors would be formed), the predicted values 
would produce a perfect fit, the same end result as the generalized logit. 
 
The analogous statements in CATMOD would be: 

 
PROC CATMOD DATA= indat ; 

WEIGHT count; 

MODEL rsp = _response_ drug / param=ref ; 

RESPONSE alogit out=acr; 

RUN; QUIT; 

 
Drug is treated as a class effect with the request for reference category coding (param=ref ) rather than the default 
effect coding. The addition of _response_ to the model statement estimates a single set of coefficients for each pair 
of adjacent probabilities.  One difference between the CATMOD and the NLMIXED solutions is that for the 4 levels of 
the ordinal response, CATMOD estimates a drug coefficient = -0.681, so the ratios of adjacent probabilities are still 
held fixed, but when examining the contents of the output data set acr the adjacent cell probabilities are conditional 
and do not sum to 1. 

 
Continuation Ratio 

 
The continuation ratio (CR) model estimates the probability of a response at a specific level of the ordinal value, given 
the number of responses at that level or higher (one can also evaluate from higher to lower).  An important 
assumption is that the subject proceeds gradually through the levels of the response and will not reverse the trend.  
As the restructured table of the example data shown below, assuming a four level ordinal response variable, the 
continuation ratio model examines the binary nature of the four responses divided into three stages. The 
mathematical derivation of the CR model is beyond the scope of this paper, but is outlined in Chapter 6, Problem 3 in 
Agresti (1984).  It computes the probability of the number of ratings at stage i (i = 1,2,3) given the number of counts 
that exist in the levels greater than i.  The process essentially groups the table into multiple sets of 2x2 tables where 
y2 models the binary nature of the responses at each stage. 

 

---------------------------------------------- 

|Rating        |    y2     |     |     |     | 

|Comparisons   |-----------|     |     |     | 

|              |  0  |  1  | All |  0  |  1  | 

|              |-----+-----+-----+-----+-----| 

|i vs y > i    |  N  |  N  |  N  |Row %|Row %| 

|--------------+-----+-----+-----+-----+-----| 

|1 vs 2,3,4    |     |     |     |     |     | 

|  C15 & C60   |   17|   43|   60| 28.3| 71.7| 

|  Z100 & EC4  |   10|   51|   61| 16.4| 83.6| 

|2 vs 3,4      |     |     |     |     |     | 

|  C15 & C60   |   18|   25|   43| 41.9| 58.1| 

|  Z100 & EC4  |    4|   47|   51|  7.8| 92.2| 

|3 vs 4        |     |     |     |     |     | 

|  C15 & C60   |   20|    5|   25| 80.0| 20.0| 

|  100 & EC4   |   13|   34|   47| 27.7| 72.3| 

---------------------------------------------- 

 
The mathematical derivation of the CR model and equivalence to the stage-wise process described above indicates 
how NLMIXED code works directly with the original data set (no restructuring necessary), with these specific 
commands: 
 

PARMS int_1 .1 int_2 .1 int_3 .1 drg .7  ; 

eta1 = int_1 + drg*(drug=1); 

eta2 = int_2 + drg*(drug=1); 

eta3 = int_3 + drg*(drug=1); 

p1 =  1 / (1 + exp(-eta1)); 

p2 = (1 / (1 + exp(-eta2)))*(1 - p1); 

p3 = (1 / (1 + exp(-eta3)))*(1 - p1 - p2); 

p4 =  1 - (p1 + p2 + p3); 
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Parameter    Estimate    Odds Ratio 

 

Int_1        -2.216      

int_2        -2.084      

int_3        -0.723      

drg           1.597       4.94 

  

With the restructured dataset PROC LOGISTIC produces the same results (notice the param=GLM coding in the 
CLASS statement and NOint option on the MODEL statement): 
 
ODS SELECT responseprofile parameterestimates oddsratiospl; 

 

PROC LOGISTIC DATA=cltrCR order=internal; 

FREQ count; 

CLASS stg drug / param=GLM; 

MODEL rsp2 = stg drug / NOINT aggregate scale=none expb; 

ODDSRATIO drug / cl=pl; 

RUN; 

 

Parameter               DF    Estimate   Odds Ratio 

 

stg       1 vs 2,3,4     1     -2.216         

stg       2 vs 3,4       1     -2.084         

stg       3 vs 4         1     -0.723         

drug      1              1      1.597        4.94 

drug      2              0          0 

 
The parameter estimates for the intercepts due to the stages are the same as the CR and the odds ratio is also found 
to be 4.94 though the increasing wider differences in proportions between drugs observed at each stage in the table 
above may make it suspect. 
 
If the comparisons of the response levels were made in the decreasing order [i.e., 4 vs 1,2,3 / 3 vs 12 / 2 vs 1 ], the 
resulting odds ratio of 0.341 does not have the equivalent inverse relation found with the proportional odds model 
(i.e., 0.341 is not equal to 1/4.94=0.202). The methodology for implementation (with a restructured data set) and how 
to interpret and diagnose the adequacy of the Continuation Ratio model with PROC LOGISTIC is described in 
Chapter 6, Section 7 of Paul Allison’s book on Logistic Regression (2012). 
 
Another interesting relationship with the CR model occurs when the cloglog link is chosen.  The observed coefficient 
for drug is the same when running PROC LOGISTIC with either the original data or the restructured data sets. 
 
PROC LOGISTIC DATA=cltr ; * original data set; 

CLASS drug / param=glm; 

FREQ count; 

MODEL y = drug / link = cloglog; * ordinal responses; 

RUN; 

 

PROC LOGISTIC DATA=cltrCR ; * restructured data set; 

CLASS stg drug / param=GLM; 

FREQ count; 

MODEL y2 = stg drug / NOINT link = cloglog; * binary data; 

RUN; 

 
Both approaches compute the coefficient for drug as 1.345 (the intercepts are necessarily different).  The cloglog link 
has been recommended as a way to avoid data restructuring for the CR model, though as shown in this example, the 
logit link can also be applied with NLMIXED to the original data set.  

 
 
 
Stereotype Model 
 
First, consider the generalized logit model with four response levels (J=4) and three explanatory variables (p=3). The 
linear predictors are coded as: 
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  Log(π1(x) / π4(x)) = α1 + ß11x1 + ß12x2 + ß13x3 
  Log(π2(x) / π4(x)) = α2 + ß21x1 + ß22x2 + ß23x3 
  Log(π3(x) / π4(x)) = α3 + ß31x1 + ß32x2 + ß33x3 
 
Estimation of all 12 parameters produces a perfect fit.  Consider how computation of the beta coefficients can be 
modified: 

 
  Log(π1(x) / π4(x)) = α1 + φ1*(ß1x1 + ß2x2 + ß3x3) 
  Log(π2(x) / π4(x)) = α2 + φ2*(ß1x1 + ß2x2 + ß3x3) 
  Log(π3(x) / π4(x)) = α3 + φ3*(ß1x1 + ß2x2 + ß3x3) 

 
  φ1 *ß1  vs  ß11           φ1 *ß2  vs ß12         φ1 *ß3  vs   ß13 
  φ2 *ß1  vs  ß21           φ2 *ß2  vs ß22         φ2 *ß3  vs   ß23 
  φ3 *ß1  vs  ß31           φ3 *ß2  vs ß32         φ3 *ß3  vs   ß33 

 
For identifiability set φ1 = 1 (α4 = 0 and φ4 = 0 are assumed from the fourth unwritten equation) resulting in the 
estimation of 8 parameters, 4 fewer than the generalized logit.   For a stereotype model, the number of parameters to 
be estimated depends on the number of response categories and the number of explanatory variables: 
 
J = number of response levels 

p = number of explanatory variables 

 

Generalized Logit: (J−1) + (J−1) * p 

       Stereotype:  2*J − 3 + p 

 
This table compares the efficiency possible for 2 or 3 explanatory variables with a stereotype model (ST) versus a 
generalized baseline (GL): 
 

-------------------------------- 

|      |   Explanatory Vars    | 

|      |-----------------------| 

|      |   1   |   2   |   3   | 

|      |-------+-------+-------| 

|      |GL |ST |GL |ST |GL |ST | 

|------+---+---+---+---+---+---| 

|Resp  |   |   |   |   |   |   | 

|3     |  4|  4|  6|  5|  8|  6| 

|4     |  6|  6|  9|  7| 12|  8| 

|5     |  8|  8| 12|  9| 16| 10| 

|6     | 10| 10| 15| 11| 20| 12| 

-------------------------------- 

 
The example data presented above with other types of models does not work for the stereotype model, namely 
because as the table indicates, with one categorical explanatory variable, the stereotype model requires the same 
number of parameters, thus making it equivalent to the generalized logit. 
 
As an alternative, consider this example data with J = 4 responses, p = 2 explanatory variables (coded 1/2) for a total 
400 observations. 

 
---------------------------------------- 

| Counts |           y           |     | 

|        |-----------------------|     | 

|        |  1  |  2  |  3  |  4  | All | 

|--------+-----+-----+-----+-----+-----| 

|x1  x2  |     |     |     |     |     | 

|1   1   |   21|   12|   18|   34|   85| 

|    2   |   44|   19|   35|   40|  138| 

|2   1   |    9|    6|   17|   41|   73| 

|    2   |   20|   11|   29|   44|  104| 

---------------------------------------- 
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The following NLMIXED commands estimate the stereotype model: 
 
PARMS theta1 .1 theta2 .1 theta3 .1  phi2 .3 phi3 .7  b_x1 .1 b_x2 .1 ; 

phi1=1;  * fix these parameters as specified values ; 

phi4=0; theta4=0; 

eta1 = theta1 + phi1*( b_x1*(x1=1) + b_x2*(x2=1) ); 

eta2 = theta2 + phi2*( b_x1*(x1=1) + b_x2*(x2=1) ); 

eta3 = theta3 + phi3*( b_x1*(x1=1) + b_x2*(x2=1) ); 

eta4 = theta4 + phi4*( b_x1*(x1=1) + b_x2*(x2=1) ); 

tot = exp(eta1) + exp(eta2) + exp(eta3) + exp(eta4); 

p1 = exp(eta1) / tot; 

p2 = exp(eta2) / tot; 

p3 = exp(eta3) / tot; 

p4 = exp(eta4) / tot; 

 
Coefficients are estimated for the stereotype model and compared with the proportional odds and generalized logit 
models: 
 
Parameter      POM      Stereo   Generalized 

                        Type     Logit 

 

Intercept 1   -1.419   -0.828   -0.822 

Intercept 2   -0.816   -1.389   -1.44 

Intercept 3    0.237   -0.567   -0.411 

x1        1    0.674    0.946    0.939 

          2             0.691    0.735 

          3             0.412    0.275 

x2        1   -0.456   -0.627   -0.634 

          2            -0.458   -0.389 

          3            -0.273   -0.487 

                      Φ2  = 0.731 

                      Φ3  = 0.436  

 

For ordinal response data with four levels, the two estimated Φ coefficients need to maintain the specific ordering of 

values bounded between 0 and 1 and also that: 

 
     Φ1 =1 > Φ2 > Φ3 > Φ4 =0 

 
That is, estimation of the values of Φ should not determine order of response levels, that is, how to interpret the 

model if Φ3 is greater than Φ2.  The equality of these coefficients can be tested with ESTIMATE statements in 

NLMIXED (not shown) which may lead to a decision to collapse two or more response categories into one. 
 
With one categorical explanatory variable (drug), the stereotype coding of the linear predictors has an interesting 
relationship to other logistic regression models.  The phi coefficients of the linear predictors set as 1/0: 
 
eta1 = int_1 + 1 * (d0*(drug=1)); 

eta2 = int_1 + 1 * (d0*(drug=1)); 

eta3 =     0 + 0 * (d0*(drug=1)); 

eta4 =     0 + 0 * (d0*(drug=1)); 

 
produces the same results as recoding the ordinal responses 1,2 as 0 and 3,4 as 1 and running binary logistic 
regression with PROC LOGISTIC (d0=1.548, odds ratio=4.70). 
 
Entering descending integer values for the phi coefficients: 
 
eta1 = theta1 + 3*d0*(drug=1); 

eta2 = theta2 + 2*d0*(drug=1); 

eta3 = theta3 + 1*d0*(drug=1); 

eta4 =      0 + 0*d0*(drug=1); 

 
produces the results found when comparing worst to better conditions as computed above with adjacent logits 
(d0=.809, exp(d0)=2.247). 
 

 
 



11 
 

References 
 
Ananth, Cande V and David G Kleinbaum, (1997) GRegression Models for Ordinal Responses: A Review of Methods 
and Applications, International Journal of Epidemiology, Volume 26, No. 6, pp. 1323-1333. 
 
Agresti, Alan. (1984) Analysis of Ordinal Categorical Data, John Wiley & Sons, New York, NY. 
 
Agresti, Alan. (2010) Analysis of Ordinal Categorical Data, Second Ed., John Wiley & Sons, New York, NY. 
 
Allison, Paul D. (2012) Logistic Regression Using SAS@: Theory and Application, Second Edition. Cary, NC: SAS 

Institute Inc. 
 
Kuss, Oliver, On the estimation of the stereotype regression model, Computational Statistics & Data Analysis 50 
(2006) 1877 – 1890 
 
Stokes, Maura E., Charles S. Davis, and Gary G. Koch. (2000) Categorical Data Analysis Using the SAS@ System, 
Second Edition, Cary, NC: SAS Institute Inc. 
 
Stokes, Maura E., Charles S. Davis, and Gary G. Koch. (2012) Categorical Data Analysis Using the SAS@ System, 
Third Edition, Cary, NC: SAS Institute Inc. 
 
 
Your comments and questions are valued and encouraged.  Contact the author at: 
 
Robin High  
Statistical Coordinator 
College of Public Health 
Department of Biostatistics 
University of Nebraska Medical Center 
984375 Nebraska Medical Center 
Omaha, NE 68198-4375 
Phone: (402) 559-2929 
email: rhigh@unmc.edu 
 
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are 
trademarks of their respective companies. 
 
 


