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ABSTRACT 

The distribution of corporate sales, like many types of financial data, tends to be serially correlated, with revenue in 
one time period related to revenue in the past.  This allows sales revenue to be described by an ARIMA time series 
model.  These models use autoregressive and moving average components that relate current observations to prior 
observations, and also contain seasonal components that utilize the similarity of values to those obtained at the same 
time point in prior years.  Special indicator variables can account singular events such as holiday weeks, major 
market campaigns or price increases. 

The ARIMA procedure in SAS/ETS
®
 allows for the identification and estimation of these time series models, with 

many diagnostics available for describing the serial correlation and for selecting an appropriate model.  In addition, 
values can then be forecast for subsequent time periods, along with their corresponding confidence intervals.  These 
intervals can then be compared to actual observed values to determine if the values obtained are within an expected 
range, or instead suggest that an outside factor is at work that may shift the distribution of revenue.  The process is 
suited for statisticians with a working knowledge of time series data, or by those interested in accounting for serial 
correlation in standard regression models. 

This process will be illustrated by modeling weekly business to business corporate revenue experienced by the 
Deluxe Corporation’s Small Business division.  The forecasts derived from these models could aid business decisions 
that rely on revenue by providing a context for actual revenue when compared with expectations.   

INTRODUCTION 

One of the main tasks of a statistician is to adjudicate whether data trends are simply random variability or instead 
are evidence of something real.  Non-statisticians, when presented with random noise, will nevertheless assess some 
sort of causation and attribute what happened to outside factors.  It takes statistical judgment to exercise the restraint 
required to avoid conclusions of causation. 

In the corporate world, it is difficult to find a better example of this than corporate earnings.  Earnings are the 
collective result of employees work product and of management’s decisions, so just about any change from the status 
quo will be seen as the result of this, that outcomes would have been different had the inputs been changed.  But 
earnings, like other statistical processes, can simply be random.  It is thus beneficial to find a criterion to distinguish 
what could be random from what can be shown to be significant. 

While assessing significance is the goal of any statistical model, earnings or revenue have certain properties that lend 
themselves well to a time series model.  The observations are serially correlated, since a company that did well last 
quarter can be expected to perform similarly in this quarter.  (This also means that standard regression models are 
inadequate since their resulting error terms show varying degrees of correlation with other errors ).  Observations are 
also seasonal, with sales and other revenue corresponding to times of the year or month.  They can also show a 
linear or quadratic trend or be influenced by exogenous variables that shift the data. 

All of these properties make earnings or revenue a good candidate for modeling using the ARIMA procedure in SAS.  
There are a number of econometrics and time series procedures in SAS/ETS® software, but the structure of PROC 
ARIMA lends itself well to compartmentalizing the process of developing a time series model.  Specifically, the 
procedure uses three major components: 

 An IDENTIFY statement, which describes the serial correlation of the data along with any relations to 
external factors, and uses diagnostics to suggest an appropriate model. 

 An ESTIMATE statement, which estimates the parameters of the model selected and tests for significance 
and goodness of fit. 

 A FORECAST statement, which uses the model selected to predict subsequent observations and their 
corresponding confidence intervals. 



2 

 

The confidence intervals from these forecasts are of special significance with respect to corporate revenue.  Using 
these, one can determine whether subsequent results are within an expected range.  While results within this range 
are analogous to a lack of significance and thus do not prove no change occurred, results outside of expected ranges 
provide strong evidence that some change in the company affected revenue.  That is, they can be used as a metric to 
show a yet to be determined cause of a difference in revenue. 

 

APPLYING PROC ARIMA TO SMALL BUSINESS REVENUE FOR THE DELUXE 

CORPORATION 

OBSERVING THE DATA 

This process of modeling corporate revenue can be illustrated by using sales data obtained from the Deluxe 
Corporation.  Deluxe sells business products such as checks, forms, and other supplies to small businesses around 
the United States and Canada.  The landscape for selling these products frequently changes, leading management to 
wonder if changes in revenue are the result of an unknown factor or is simply business as usual.   

The data obtained was U.S. sales revenue by week from 2006 through early 2012 over all product lines and all 
Deluxe corporate brands.  Actual sales numbers were blinded by using a scale factor to express all revenue as a 
number between $0.00 and $1.00.  The first step in the modeling process is to use PROC SGPLOT to graph the 
data.  By using the SCATTER and SERIES statements in this procedure, one can produce a sequential graph that 
connects markers at each time point. 

proc sgplot data=forecast.overall_week_normalized; 

  scatter x=Week y=weekrev; 

  series x=Week y=weekrev; 

run; 

The output for this statement can be seen in Figure 1. 

 

Figure 1.  Output of PROC SGPLOT—Corporate Weekly Revenue from 2006 to 2012 

A few properties are quickly apparent from this plot.  There is a slight linear trend that indicates that revenue may  
have started to decrease around the time of the 2008 economic recession.  Apart from this, each year taken in 
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isolation appears to show a U shape, with revenues high in January as business stock up on supplies, decrease 
towards the middle of the year, and then pick back up toward the end of the year as holiday related sales occur.  
There are also spikes in the data where revenue is much lower than normal.  These generally correspond to holiday 
weeks where four day work weeks result in fewer orders. 

THE IDENTIFY STATEMENT 

The first step, then, in PROC ARIMA, is to use the IDENTIFY statement to determine candidate models that 
incorporate these trends.  These trends are all accounted for using the CROSSCORR= option: 

proc arima data=forecast.overall_week_normalized plots=all; 

   identify var=weekrev crosscorr=(time holiday 

         Mon1 Mon2 Mon3 

      Mon4 Mon5 Mon6 

      Mon7 Mon8 Mon9 

      Mon10 Mon11 ) 

       nlag=12 esacf stationarity=(adf=(0 1 2 3 4 5)); 

       run; 

The variables used in the CROSSCORR=option are  

 time, denoting a linear longitudinal effect of time.  This variable is represented in the 

forecast.overall_week_normalized dataset as a counter from 1 to 322, or equivalently the number 

of weeks since January 1, 2006. 

 holiday, an indicator variable corresponding to whether the week was one of six holiday weeks (New 

Year’s Day, Memorial Day, Independence Day, Labor Day, Thanksgiving or Christmas). 
 Eleven indicator variables, Mon1 to Mon11, denoting whether the week began during the months of 

January through November.  These variables model the annual seasonality of the data.   A variable for the 
month of December is omitted to avoid collinearity but is included as part of the model’s intercept when all of 
the other indicator variables equal zero.  Variables must be listed explicitly since PROC ARIMA does not 
recognize shorthand notation such as MON1 – MON11. 

With respect to the seasonal variables, many seasonal models use trigonometric functions such as sin(2  t/S) + 

cos(2  t/S), where t is the time being modeled and S is the period of the model being fit.  (Had it been used for this 
model, S would have equaled 52 since there are 52 weeks in a year).  These regressors would be included, and 
significance tested, as a sine/cosine pair.  Other models have used the classic Box-Jenkins approach of modeling Zt= 
Yt – Yt-S, as the dependent variable, again where S is the period of the model.  (Applying this approach would have 
resulted in replacing var=weekrev with var=weekrev(52)to denote the seasonality of the dependent variable.  

The time cross-correlation variable could also be removed by using var=weekrev(1 52)to substitute the 

differences of successive observations for a linear trend variable).  However, for Deluxe’s revenue data, better results 
were obtained using the monthly indicator variables. 

Three other options are used in the IDENTIFY statement. The NLAG= option determines how far out to plot the 
autocorrelation function.  A lag m of a time series observation is the observation that is m time periods removed from 
it.  In this case since NLAG=12, observations are compared for autocorrelation to all observations within 12 weeks.  
The ESACF option uses the Extended Sample Autocorrelation Function to suggest autoregressive moving average 
(ARMA) models for the residuals after the cross-correlation factors are accounted for.  The STATIONARITY= option 
requests the augmented Dickey-Fuller unit root tests for a specified series of lags.  This tests for whether the resulting 
series is stationary after accounting for the other factors in the model. 

Since this PROC ARIMA step uses the PLOTS=ALL option, a number of plots are supplied in the resulting output.  
(ODS GRAPHICS must be turned on in order to view these plots.) One of these is the ―Trend and Correlation 
Analysis‖ found in Figure 2 that provides a four plot summary of the overall graph along with the autocorrelation 
(ACF), partial autocorrelation (PACF), and inverse autocorrelation (IACF) functions.  
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Figure 2.  Trend and Correlation Analysis Provided by the IDENTIFY Statement 

 
The overall graph largely replicates the previous output from PROC SGPLOT.  The autocorrelation functions reveal a 
slowly dying ACF as well as a PACF with three and possibly four significant early lags.  This suggests that an ARMA 
model of order 3 could potentially fit. 

The ESACF option provides the output in Table 1 to the right.  This output is used to 
suggest the candidate ARIMA (p,d,q) models.  The top row suggests that a p+d equal 
to 3 and a q equal to 3 may provide the best fit.  The d term in an ARIMA model, if 
greater than zero, results in a model where the differences of subsequent observations 
are modeled rather than their actual values.  However, if a linear trend of time is 
included in the model, as is the case here, then the linear term serves the purpose of 
differencing the observations.   Thus differencing is unnecessary and d = 0.  This then 
suggests that an ARMA (3,3) model may provide the best fit.   
         

          Table 1. ESACF Output 

The STATIONARITY=(adf=(0 1 2 3 4 5)) option provides the following table (Table 2)  to test for stationarity as a 
function of lags 0 through 5: 

Augmented Dickey-Fuller Unit Root Tests 
 

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F 

Zero Mean 0 -3.56 0.1943 -1.37 0.1593     

  1 -1.64 0.3750 -0.99 0.2884     

  2 -1.03 0.4674 -0.80 0.3710     

  3 -0.69 0.5290 -0.68 0.4220     

  4 -0.52 0.5663 -0.62 0.4491     

  5 -0.56 0.5578 -0.62 0.4476     

Single Mean 0 -108.51 0.0001 -8.06 <.0001 32.46 0.0010 

  1 -57.73 0.0016 -5.38 <.0001 14.46 0.0010 

  2 -38.46 0.0016 -4.25 0.0007 9.05 0.0010 

  3 -25.32 0.0029 -3.43 0.0111 5.88 0.0143 

  4 -17.48 0.0203 -2.85 0.0528 4.09 0.0818 

  5 -21.28 0.0078 -3.06 0.0312 4.70 0.0472 

Trend 0 -160.64 0.0001 -10.31 <.0001 53.12 0.0010 

  1 -99.24 0.0007 -6.98 <.0001 24.40 0.0010 

  2 -72.52 0.0007 -5.64 <.0001 15.89 0.0010 

  3 -49.74 0.0007 -4.55 0.0015 10.36 0.0010 

  4 -34.54 0.0025 -3.74 0.0211 7.03 0.0297 

  5 -47.00 0.0007 -4.13 0.0063 8.55 0.0010 

Table 2. Augmented Dickey-Fuller Tests Provided by the  

STATIONARITY= option 

ARMA(p+d,q) 
Tentative 

Order Selection 
Tests 

ESACF 

p+d q 

3 3 

5 4 

2 5 
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In the Dickey-Fuller unit root test, the null hypothesis for each lag is that the characteristic function of the 
autoregressive model for that lag has a single root on the unit circle, meaning that the process is not stationary.  
When a model is not stationary its residuals do not have a fixed mean or variance over time and should not be fit with 
an ARMA model.  The alternative hypothesis is that the process is stationary. 

Here virtually all of the p-values for the single mean test and the trend test have a p-value below 0.05.  This suggests 
that the null can be rejected at all lags and that the process is stationary. 

THE ESTIMATE STATEMENT 

With this ARMA(3,3) model suggested, an ESTIMATE statement fits the model and performs diagnostic tests. 

     estimate input=(time holiday Mon1 Mon2 Mon3 

      Mon4 Mon5 Mon6 

      Mon7 Mon8 Mon9 

      Mon10 Mon11 ) 

       p=3 q=3 plot ml; 

     run; 

Since the ARIMA procedure is interactive, the ESTIMATE statement can follow the previous RUN statement without 
re-invoking the procedure.  This resulting parameter estimates are given below in Table 3: 

Maximum Likelihood Estimation 

 
Parameter Estimate Standard Error t Value Approx 

Pr > |t| 
Lag Variable Shift 

MU 0.649 0.0326 19.89 <.0001 0 weekrev 0 

MA1,1 1.014 0.0681 14.91 <.0001 1 weekrev 0 

MA1,2 -1.223 0.0452 -27.06 <.0001 2 weekrev 0 

MA1,3 0.663 0.0692 9.59 <.0001 3 weekrev 0 

AR1,1 1.236 0.0363 34.08 <.0001 1 weekrev 0 

AR1,2 -1.223 0.0356 -34.37 <.0001 2 weekrev 0 

AR1,3 0.914 0.0321 28.46 <.0001 3 weekrev 0 

NUM1 -0.00047 0.000161 -2.93 0.0034 0 Time 0 

NUM2 -0.141 0.00702 -20.15 <.0001 0 holiday 0 

NUM3 -0.0129 0.0130 -0.99 0.3230 0 Mon1 0 

NUM4 -0.0556 0.0153 -3.66 0.0003 0 Mon2 0 

NUM5 -0.0426 0.0176 -2.42 0.0154 0 Mon3 0 

NUM6 -0.0563 0.0185 -3.05 0.0023 0 Mon4 0 

NUM7 -0.0483 0.0190 -2.55 0.0109 0 Mon5 0 

NUM8 -0.0349 0.0191 -1.83 0.0672 0 Mon6 0 

NUM9 -0.0334 0.0192 -1.77 0.0771 0 Mon7 0 

NUM10 -0.0517 0.0184 -2.81 0.0049 0 Mon8 0 

NUM11 -0.0124 0.0176 -0.70 0.4820 0 Mon9 0 

NUM12 -0.00178 0.0155 -0.11 0.9085 0 Mon10 0 

NUM13 0.0620 0.0127 4.88 <.0001 0 Mon11 0 

Table 3. Parameter Estimates from the ESTIMATE Statement  
 

After an intercept term , the table starts with three moving average (MA) and three autoregressive (AR) parameters.  
All p-values for these parameters are significant, suggesting that their inclusion in the model is justified.  The 
parameter estimate for time is negative with a p-value of 0.0034, confirming a linear decrease in overall sales.  
(Despite a possible curve in the revenue graph given above, an estimate of the quadratic effect for time was not 
significant and was not included in the model.)  The estimate for holiday is highly significant, indicating that the model 
needs to account for these four day weeks represented by the variable.  Without that term in the model, sales 
estimates for weeks following a holiday, being serially correlated, would be closer to the holiday week estimate even 
though the holiday condition no longer applies. 
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The indicator variables MON1 through MON11 are not uniformly significant.  However, many of them are significant, 
and a model using monthly indicator variables as seasonal factors needs to either include all of the terms, or include 
none of them.  Since the variability attributed to all eleven variables, as a group, is significant using the Chi-Square 
test on 11 degrees of freedom, the terms are justifiably included in the model.  The first ten parameters, for MON1 
through MON10 are negative, due to the fact that the excluded MON12 variable corresponds to December, when 
sales are much higher than in the first ten months. Since these months are being compared to December their 
coefficients will therefore be negative.  The MON11 parameter is actually positive; indicating that holiday related 
revenue is actually higher in November than in December. 

The components of the ARMA (3,3) model are given above but can be summarized in tables 4 and 5.  The B**(n) 
notation used below is called the backshift notation, where B**(n) * y = yt-n.   

Autoregressive Factors 

Factor 1:  1 - 1.236 B**(1) + 1.223 B**(2) - 0.914 B**(3) 

 

Moving Average Factors 

Factor 1:  1 - 1.015 B**(1) + 1.223 B**(2) - 0.663 B**(3) 

 

Tables 4 and 5. Autoregressive and Moving Average  

Coefficients 

 

The residual correlation diagnostics for the model are given below in Figure 3: 

 

Figure 3.  Residual Correlation Diagnostic Plots Provided by the ESTIMATE Statement 

The first three charts show the autocorrelation functions for the residuals from the model, after accounting for outside 
variables and for the ARMA model.  All of the lags past lag zero show spikes contained within the shaded error bars, 
suggesting no further autocorrelation to be explained.  The final chart graphs white noise probability as a function of 
lag.  In a pure white noise process, no observation is correlated with any other observation in the process, that is, all 
observations are independent.  This plot graphs the p-values of the null hypothesis for each lag that the 
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autocorrelations of lag m are not zero.   The y-axis of this graph decreases from 1 to 0 as the graph ascends, 
indicating that values plotted above a corresponding p-value line have a low p-value and provide evidence of 
autocorrelation.  In this case, the p-value for lag 7, the first lag to the right of the shaded region, is above the line for 
0.05, providing a questionable lack of autocorrelation.  However, if the only autocorrelation possibility is at lag 7 the 
concern is minimal and no other lags appear to be alarming.  The model appears to be adequate for describing 
weekly sales revenue. 

THE FORECAST STATEMENT 

Once the model is fit, forecasts for future weeks can be obtained.  These are provided from the FORECAST 
statement. 

  forecast lead=20 id=Week interval=week out=Work.arma33; 

  run; 

The LEAD= option specifies how long to carry out the forecasts, 20 weeks.  The ID= option provides the date variable 
in the input data set, Week, that identifies the time periods associated with the observations.  The INTERVAL= option 

specifies that the observations are weekly.  The OUT= option sends the forecasts, as well as standard errors and 
95% confidence intervals to the output data set Work.arma33. 

Graphs provided by the FORECAST statement are given below in Figure 4: 

 

Figure 4.  Forecasts and Confidence Intervals Provided by the FORECAST Statement 

The dashed vertical line in the forecast plot corresponds to March 2012, where the model ends and the forecasts 
begin.  The model forecasts a slight decrease in sales in the upcoming weeks as December and January fall into the 
past, with slight upticks being seen due to variability in the monthly indicator variables.  Two sharp decreasing spikes 
can be seen that correspond to the 2012 Memorial Day and Independence Day holidays. 
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COMPARING FORECASTS WITH FUTURE REVENUE 

The above forecasts are accompanied by the shaded zone representing the confidence intervals.  Actual earnings, 
once obtained can be placed into the graphs to determine whether the values were within an expected error range.  
Once this is done, it becomes apparent that forecast error bars cover sales revenue within a wide range.  To illustrate 
this, the 2012 results of the output Work.arma33 dataset from the FORECAST statement executed above were 

merged with their corresponding estimates and actual values from 2011 to provide Table 6. 

Week in 
2012 

Actual 
Weekly 

Revenue FORECAST STD L95 U95 RESIDUAL 

Estimated 
Value from 

2011 
Actual Value 

from 2011 

1/2/2012 0.423 0.418 0.040 0.340 0.497 0.004 0.341 0.357 

1/9/2012 0.488 0.550 0.040 0.472 0.629 -0.062 0.484 0.530 

1/16/2012 0.577 0.517 0.040 0.438 0.595 0.061 0.490 0.491 

1/23/2012 0.511 0.538 0.040 0.460 0.617 -0.028 0.489 0.459 

1/30/2012 0.551 0.537 0.040 0.458 0.615 0.014 0.487 0.483 

2/6/2012 0.584 0.495 0.040 0.417 0.574 0.088 0.450 0.433 

2/13/2012 0.525 0.514 0.040 0.435 0.592 0.011 0.439 0.468 

2/20/2012 0.503 0.518 0.040 0.439 0.597 -0.015 0.449 0.453 

2/27/2012 0.484 0.513 0.040 0.435 0.592 -0.029 0.457 0.440 

3/4/2012   0.508 0.040 0.430 0.587   0.464 0.475 

3/11/2012   0.502 0.042 0.419 0.585   0.462 0.468 

3/18/2012   0.506 0.044 0.419 0.593   0.466 0.464 

3/25/2012   0.506 0.046 0.417 0.595   0.471 0.482 

4/1/2012   0.481 0.047 0.390 0.573   0.457 0.487 

4/8/2012   0.476 0.048 0.382 0.570   0.462 0.454 

4/15/2012   0.480 0.049 0.383 0.577   0.460 0.456 

4/22/2012   0.480 0.050 0.382 0.578   0.462 0.438 

4/29/2012   0.472 0.051 0.372 0.571   0.457 0.495 

5/6/2012   0.471 0.052 0.371 0.572   0.467 0.465 

5/13/2012   0.476 0.052 0.373 0.578   0.467 0.470 

5/20/2012   0.476 0.053 0.372 0.579   0.469 0.489 

5/27/2012   0.331 0.053 0.227 0.435   0.351 0.393 

6/3/2012   0.475 0.054 0.370 0.581   0.473 0.488 

6/10/2012   0.479 0.054 0.373 0.586   0.502 0.490 

6/17/2012   0.479 0.055 0.372 0.586   0.496 0.472 

6/24/2012   0.472 0.055 0.365 0.579   0.483 0.466 

Table 6. Estimates and Forecasted Revenue Values for 2012 

Values provided are actual and forecasted revenue, along with standard errors, lower and upper 95% confidence 
intervals for the forecasted values, and model residuals.  The table provides actual revenue until March 2012, when 
the modeling concludes and modeled values are replaced by the forecasts.  One can tell from the table that for March 
and April 2012 the forecasted values are generally higher than the estimates or actual values from 2011.  This is 
likely due to the model adjusting to revenue coming in better than expected in January and February 2012, and the 
resulting serial correlation with future values.  Conversely, forecasted values for June are lower than the 2011 
estimates, due to higher than expected May 2011 revenue that the model does not see repeating for 2012. 
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By isolating one row of the table, one can determine what size of increase would be needed to exceed the 
expectations determined by the model.  This is illustrated by comparing the model estimate from early May 2011 
against the forecast for early May 6, 2012 in Table 7. 

 

  Comparison of Sales Revenue 

May 9, 2011 vs. May 6, 2012 
  

Date Estimate/Forecast Actual Observed Value 
Lower Forecast 95% 
Confidence Interval 

Upper Forecast 
95% Confidence 

Interval 

09May11 0.467 0.465 
  

06May12 0.471  0.371 0.572 

  

Increase of the upper 
95% limit over the 2011 

estimate 
22.5% 

Table 7. Comparison of Forecasts with Actual Sales Revenue 

The upper confidence limit from the May 2012 estimate is 23% higher than the estimated model value from the year 
before, mostly due to the variability of the forecast.  This means that a real sales revenue increase, even as high as 
15% to 20%, would be well within expectations even though it may surprise corporate management.  Providing an 
ARIMA model for previously observed revenue can assist in keeping a perspective in judgment should revenue 
increases or decreases occur. 

It should be noted, however, that while observed values outside of their 95% confidence intervals provide evidence of 
a real change, the cause of the change is still unclear.  Since the model contains only trend, seasonal, and holiday 
factors, it makes no claims about the influence of factors unrelated to time.  Corporate management can hypothesize 
about causes such as management initiatives, price increases, or changes in the economic climate, but the model 
itself only informs as to when the change occurred.  Outliers are inherently difficult to explain. 

Estimates such as the ones provided above can also help guide business decisions.  Revenue expectations can 
allow companies to allocate resources efficiently and to fine-tune budgets.  Once the seasonality of this revenue is 
modeled, marketing campaigns can be coordinated around high revenue periods, or conversely could be scheduled 
to address expected lows. 

Another potential application of the ARIMA models and forecasts involves assessing the effect of isolated events 
such as natural disasters, economic events, or national elections.  The ARIMA procedure allows for indicator 
variables to assess a one-time impact which confines a revenue change to a brief period, or to act as a trigger for a 
ramping or decaying temporary effect.  The use of these variables is known as transfer function modeling, but even if 
this modeling is not performed, the existing estimates and confidence intervals for the original model can provide a 
context to determine whether these events provided an anomalous impact on revenue. 

CONCLUSION 

Many times series and estimation tools exist within SAS, with many effective ways of analyzing a particular time 
series.  PROC ARIMA, however, is especially useful due to its transparency in providing a division of labor of the 
three main components of Box-Jenkins modeling methodology—identification, estimation, and forecasting.   It also 
provides a straightforward method of introducing cross-correlation variables that attribute exogenous sources of 
variability into a model. In particular, these variables can be linear trend, holiday indicator, or seasonal variables that 
provide an alternative to standard methods of accounting for seasonality. 

When this approach is applied to corporate revenue, a good fit can be obtained due to this seasonality of revenue.  
The modeling provides estimates and confidence intervals for forecasts, allowing future observations to be seen in a 
context reflecting the uncertainty of these estimates.  Observations that exceed their confidence intervals can be 
taken as strong evidence that a real change has occurred to the revenue environment.  



10 

 

REFERENCES 

 SAS Institute, Inc. (2004)  SAS/ETS® 9.1 User’s Guide. Cary, NC: SAS Institute Inc. 

 Dickey, David A. and Woodfield, Terry. (2011)  Forecasting Using SAS® Software: A Programming 

Approach: Course Notes. Cary, NC: SAS Institute Inc.  

 SAS Institute, Inc. (1996)  Forecasting Examples for Business and Economics using SAS®. Cary, NC: SAS 

Institute Inc. 

 Brocklebank, John C. and Dickey, David A. (2003)  SAS® for Forecasting Time Series, Second Edition. 

Cary, NC: SAS Institute Inc. 

 Box, George E.P., Jenkins, Gwilym M., and Reinsel, Gregory C. (2008)  Time Series Analysis: Forecasting 

and Control, Fourth Edition. Hoboken, NJ: John Wiley & Sons, Inc. 

ACKNOWLEDGMENTS  

The authors would like to acknowledge Mark Antiel and the Deluxe Research and Decision Science team for the 
paper concept and may helpful suggestions.  

CONTACT INFORMATION  

Your comments and questions are valued and encouraged. Contact the authors at: 

Brian Van Dorn     Saveth Ho 
Deluxe Corporation    Deluxe Corporation 
3680 Victoria Street North    3680 Victoria Street North 
Shoreview MN 55126    Shoreview, MN 55126 
(651) 787-1283 (Work)    (651) 490-8087 (Work) 
brian.vandorn@deluxe.com   saveth.ho@deluxe.com 

 

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries.  ® indicates USA registration.   

Other brand and product names are registered trademarks or trademarks of their respective companies 


