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ABSTRACT  

Using PROC REG or PROC LOGISTIC to model data emanating from a complex sample survey may lead one to 
erroneous inferences.  Instead, the survey’s design features should be incorporated by employing one of the PROCs 
prefixed by SURVEY, such as PROC SURVEYREG or PROC SURVEYLOGISTIC.  After a brief discussion of the 
features constituting a “complex” survey, the syntax and output of these procedures is demonstrated.  Many of the 
theoretical and conceptual subtleties to modeling data from a finite population as opposed to the more familiar simple 
random sample setting are noted.  Examples are drawn from a real, publicly-available survey data set. 

BACKGROUND ON COMPLEX SURVEY DESIGN FEATURES 

Before launching into the details and examples of modeling complex survey data, this paper begins with a discussion 
of what constitutes “complex” survey data.  Specifically, four distinct features are discussed: finite population 
corrections, clustering, stratification, and unequal weights.  There is no loss of generality placing this material at the 
front of the paper, because the syntax to account for one or more of these features is identical across all SURVEY 
PROCs (e.g., PROC SURVEYREG or PROC SURVEYLOGISTIC). 

In most introductory statistics courses covering topics such as analysis of variance (ANOVA), regression, or general 
linear models, the implied data generating mechanism is simple random sampling with replacement, possibly from an 
infinite or hypothetical population.  Under that paradigm, we are allowed to assume that data (especially the outcome 
variable) are independently and identically distributed, or i.i.d for short.  In contrast, survey researchers tend to select 
samples without replacement from finite, or enumerable, populations, and simple random sampling is the exception 
rather than the rule.  Alternative sample designs can yield efficiencies in certain circumstances, but they are most 
commonly adopted out of necessity or to save on data collection costs. 

For sake of an example, assume a sample of n = 1,000 high schoolers is taken at random from some school’s 
population of N = 5,000 high schoolers, and the key variable of interest y is some measure of mathematical aptitude, 

perhaps from a standardized test.  We know the sample mean 
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population mean, or the average test score across all high schoolers.  If the sample is selected with replacement, 
meaning each of the 5,000 students in the population can be selected multiple times, the sample variance of this 

sample mean is
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.  If the sample is selected without replacement, however, the variance 

formula is modified to
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 .  In other words, by sampling without replacement the variance 

is reduced by a factor of the sampling rate—in this case, 20%.   

The term (1 – n/N) is called the finite population correction, or FPC, and it appears in nearly all estimator variance 
formulas, not just that of the sample mean.  Notice that as the sampling fraction approaches 1, the variance tends to 
0, which makes sense.  Another way of interpreting this is that, as the proportion of the population in the sample 
grows, uncertainty in a sample-based estimate decreases.  In the most extreme case of a census (n = N), the FPC is 
0 and there is no variance.  The sample-based estimate defaults to the given population quantity. 

To incorporate the FPC, one must use the TOTAL= or RATE= options in the PROC statement.  SAS determines the 
sample size, n, from the SURVEY PROC’s input data set, but relies on the user to specify the population size, N.  
Alternatively, users can specify the sampling rate, n/N, directly via the RATE= option.  If neither of these options 
appears, the SURVEY PROC simply ignores the FPC. 

The second feature is clustering, which occurs when the unit sampled is actually a cluster of population units.  For 
instance, let us assume the desired mathematics aptitude score can only be obtained from an in-person examination 
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which must be conducted on school grounds.  Instead of directly sampling students from a roster and contacting each 
separately, it may be more efficient to utilize the students’ homeroom, one of a comprehensive set of classroom 
locations in which all students begin the first hour of their school day. 

Suppose the population of N = 5,000 high schoolers can be partitioned into C = 200 homerooms (i.e., clusters) of 25 
students each.  An alternative method of sampling n = 1,000 students is to sample c = 40 homerooms and administer 
the aptitude test to all 25 students therein.  The clustering should be accounted for, however, by specifying this 
homeroom identifier variable in the CLUSTER statement of the respective SURVEY PROC. 

There is no mandate to sample all units within a cluster.  For instance, we could have achieved the n = 1,000 sample 
size by selecting c = 100 clusters (homerooms) in the first-stage, but selecting only 10 students at random from each 
homeroom in the second stage.  This is an example of a multi-stage sampling design in which the primary sampling 
units (PSUs) are homerooms and the secondary sampling units (SSUs) are students.  It is worth emphasizing, 
however, that only the PSU identifier should be specified in the CLUSTER statement.  When SAS sees two variables 
in the CLUSTER statement, it assumes the combination of the two defines a PSU, which can result in an unduly low 
variance estimate.  Specifying only the PSU corresponds to the ultimate cluster assumption (p. 67 of Heeringa et al., 
2010) that is frequently used to simplify variance calculations. 

The third distinctive feature of complex survey data is stratification, which arises when PSUs are allocated into one of 
a mutually exclusive and exhaustive set of groups, or strata (singular: stratum) and an independent sample is 
selected within each.  Whereas clustering typically decreases precision, in all but a few rare circumstances, 
stratification increases precision.  The reason is that the overall variance consists of stratum-specific variance 
estimates summed over all strata.  When strata are constructed homogeneously with respect to the principle outcome 
variable(s), there can be considerable precision gains relative to simple random sampling. 

Returning to our hypothetical mathematics aptitude example, a sensible stratification variable might be grade level.  If 
we grouped all homerooms into one of the H = 4 grade levels—ninth through twelfth—prior to independently selecting 

a (possibly variable) number of clusters within each, we should inform the SURVEY PROC of this grade level 
identifier via the STRATA statement. 

Parenthetically alluded to above was how sampling rates of clusters may vary across strata.  In general, when 
sampling rates vary across ultimately sampled units, analysts should account for this by assigning a unit-level weight 
equaling the inverse of that unit’s selection probability.  Weights are the fourth distinct feature of complex survey data.  
A weight can be interpreted as the number of population units a sample unit represents. For instance, if a sample 
unit’s selection probability was one-fourth, that unit would be assigned a weight of four.  That unit’s survey responses 
represent itself and three other comparable units in the population.  The numeric weight variable should be specified 
in the WEIGHT statement of the SURVEY PROC.  If no WEIGHT statement appears, weights are implicitly assigned 
as 1. 

A REAL-WORLD COMPLEX SURVEY: THE NATIONAL AMBULATORY MEDICAL CARE 
SURVEY (NAMCS) 

The fictitious mathematics aptitude survey was introduced to facilitate exposition of the particular complex survey 
features data analysts may encounter.  We now shift attention to a real-world complex survey, the National 
Ambulatory Medical Care Survey (NAMCS).  Sponsored by the National Center for Health Statistics (NCHS), a 
Federal Statistical Agency within the Centers for Disease Control and Prevention (CDC), NAMCS collects data on 
outpatient visits to non-emergency physician’s offices.  That is, the ultimate sample unit is a physician visit.  
Examples of variables measured by the survey include diagnoses made, chronic illnesses of the patient, time spent 
with the physician, and medications prescribed or renewed.  NCHS administers NAMCS on a yearly basis, and in 
addition to various tabulations and publications, NCHS releases data via a public-use microdata file.  Instructions on 
how to download the data can be found on their website: http://www.cdc.gov/nchs/ahcd.htm.  In this paper, we will 
demonstrate analyses using the 2009 NAMCS public-use data set. 

A wise first step to understand the design elements and complex features of a survey is to consult any user 
documentation materials available.  According to the documentation (available on-line at: 
ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NAMCS/doc09.pdf), NAMCS has three of the 
features discussed in the previous section: 

1. Stratification –strata are identified by distinct codes of the CSTRATM variable. 

2. Clustering – each PSU is identified (within a stratum) by distinct codes of CPSUM. 

3. Unequal Weighting – weights can be specified by the PATWT variable. 

The NAMCS public-use file contains hundreds of variables.  Aside from the key design variables mentioned above, 
Table 1 summarizes the manageable subset of these variables that will be used in this paper.  

http://www.cdc.gov/nchs/ahcd.htm
ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NAMCS/doc09.pdf
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Table 1. Summary of NAMCS 2009 Public-Use Data Set Variables Used in this Paper. 

Variable Name Description Coding Structure 

SEX Patient Gender 1 = Female 

2 = Male 

AGE Patient Age in Years Continuous 

RACER Patient Race 1 = White 

2 = Black 

3 = Other 

SOLO Indicator of Solo Physician Practice 1 = Yes 

2 = No 

MED Indicator of Medication Prescribed 0 = No 

1 = Yes 

TIMEMD Time Spent with Physician in Minutes Continuous, ranging from 0 to 240 

TOTCHRON Patient’s Total Number of Chronic 
Conditions 

Count ranging from 0 to 10 

MAJOR Primary Reason for Visit 1 = New problem (<3 mos. onset) 

2 = Chronic problem, routine 

3 = Chronic problem, flare up  

4 = Pre-/Post-surgery  

5 = Preventive care (e.g. routine prenatal, well-
baby, screening, insurance, general exams) 

 

LINEAR REGRESSION 

MODELING DATA COLLECTED FROM SIMPLE RANDOM SAMPLES 

The traditional simple linear regression model iii xy   10  states the expected value of continuous outcome 

variable y is a linear function of some predictor variable x.  The betas are referred to as the model’s parameters or 
coefficients.  β0 represents the intercept and β1 the slope or the expected change in y given a one-unit increase in x.  
The term εi represents a deviation or residual of the i

th
 unit’s outcome, the distance between the observed yi and its 

expected value (what lies on the regression line).  It is assumed the εi ’s are distributed i.i.d. with mean 0 and some 
constant variance σ

2
. 

The terms and assumptions just described apply to the (infinite) population.  Given a simple random sample of size n, 

we can calculate unbiased estimates of these parameters.  We typically use “hat” notation to distinguish them from 
their population counterparts.   For instance, the familiar least squares estimates can be calculated: 
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For multiple linear regression models, those with two or more predictor variables, matrix notation is handy for 
simplifying the algebra required to estimate parameters.  Of course, matrices can also be used for the simple linear 
regression case as well.  Let p denote the number of model parameters.  In the simple linear regression case, p = 2.  
The first step is to construct an (n x p) design matrix X consisting of a column of 1s for the intercept and a separate 

column for each distinct predictor variable in the model.  These can be either continuous or a sequence of (k -1) 0/1 
indicator or “dummy” variables for a categorical variable with k levels. 



4 

The second step is to construct an (n x 1) column vector Y containing the n values of the outcome variable y.  Below 
is a visualization of what X and Y would look like for the simple linear regression case: 
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The same estimates of 0̂  and 1̂  can be obtained by calculating β̂ = (X
T
X)

-1
X

T
Y, e.g., via PROC IML, where the 

superscript T signifies the matrix transpose and -1 the inverse of the given matrix.  In general, the matrix β̂  will be a 

(p x 1) vector of “beta hats.”  The mean squared error term of the model 2̂  can be obtained by squaring and 

summing the n entries of the (n x 1) residual matrix e = Y – X β̂ = Y – Ŷ and dividing the result by n – p.  The sum of 

the squared entries of e is called the residual sum of squares. 

Another useful matrix is the (p x p) model parameter covariance matrix, defined as )ˆcov(β = 2̂ (X
T
X)

-1
.  For the 

simple linear regression case, this matrix would look like 

 













)ˆvar()ˆ,ˆcov(

)ˆ,ˆcov()ˆvar(
)ˆcov(

110

100




β  

Entries along the diagonal are the estimated sample variances for the model parameters while off-diagonal entries 
are covariances between any two model parameters.  The p(p – 1)/2 distinct covariances are symmetric about the 
diagonal.  As will be shown later, this matrix can be used to test hypotheses about individual parameters or evaluate 
whether the model can be simplified by simultaneously eliminating more than one parameter. 

MODELING DATA COLLECTED FROM A COMPLEX SURVEY 

Shah, Holt, and Folsom (1977) discuss how complex survey data can violate many of the underlying assumptions in 
standard least squares regression.  In contrast to simple random sampling from an infinite population, survey data are 
typically collected to make generalizations about finite populations.  As such, model parameters have a subtly 
different interpretation.  Instead of a Greek beta (β), a finite population regression parameter is typically denoted with 
a Roman letter, e.g., B0 or B1.  Using sample weights, the finite population parameters can be estimated by 
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The two frameworks for conceptualizing model parameters can be unified through the idea of a superpopulation 
(Heeringa et al., 2010, p. 184), which stipulates that, although the N units in the survey population represent a finite 

set, the given regression model corresponds to some overarching superpopulation model.  Put another way, one 
might view the finite population as itself a sample from an infinite population, acknowledging there may be variability 

in a particular estimate B̂ between one realized finite population and another.  Heeringa et al. (2010) point out, 

however, that any such variability is negligible for large populations (i.e., large N), so B̂ effectively approximates the 
superpopulation parameter. 

The estimates wB0
ˆ and wB1

ˆ are weighted least squares estimates, subscripted with a w to distinguish them from their 

unweighted versions.  (Note, also, the distinction between
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approximate the corresponding finite population quantities.  For example, wB1
ˆ estimates B1, the slope coefficient that 
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would be computed had we conducted a full census of the population.  In a similar vein, recall the minimization 

function in ordinary least squares regression is the residual sum of squares  

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Weights are incorporated into the matrix notation by introducing an (n x n) diagonal matrix W in which the i
th

 unit’s 

weight appears along the diagonal while all off-diagonal entries are 0.  Specifically, the weighted least squares 

estimates can be calculated by B̂  = (X
T
WX)

-1
X

T
WY.  This is the same form of a weighted least squares estimator 

sometimes used to account for violations in the homogeneity of residuals assumption in simple random sampling—
see Weisberg (2005, pp. 96-97).  In that context, however, weights are assigned to be inversely proportional to the 
estimated residual variance. 

To obtain weighted least squares parameter estimates in SAS, use the WEIGHT statement within PROC 
SURVEYREG.  These estimates will match what is output from PROC REG with a WEIGHT statement, except if 
there is stratification and/or clustering involved, standard errors will still be incorrect—and likely biased downward, as 
will be shown shortly.  The standards errors from PROC SURVEYREG properly account for the complex survey 
features by (the default) Taylor series linearization (Fuller, 1975).  It is beyond the scope of this paper to delve too 

deeply into the theory behind Taylor series linearization to estimate the matrix )ˆcov(β , but suffice it to say the process 

is more involved than simply inserting the W matrix into the simple linear regression version of )ˆcov(β  = 2̂ (X
T
X)

-1
. 

Lohr (1999) offers a concise summarization of the on-going debate amongst survey researchers as to whether 
weights are truly needed when modeling survey data.  The model-based perspective, an alternative to the design-
based perspective adopted in this paper, argues that if the model is correctly specified, the weighted and unweighted 
regressions both approximate the true population parameters.  Thus, if one is confident the given model correctly 
describes the true state of affairs in the population, there is no need to use the weights, since arbitrarily variable 
weights can inflate variances (Kish, 1992).  Pfeffermann and Holmes (1985) note, however, that using the weights 
provides robustness against a misspecified model, such as one missing certain influential predictor variables, and 
Skinner et al. (1989) assert weights can protect against biases introduced by non-ignorable sample designs, when 
the sample inclusion indicator is strongly related to the outcome variable. 

FITTING A LINEAR REGRESSION MODEL USING DATA FROM NAMCS 

Suppose one wanted to model time spent with the physician (TIMEMD) as a function of whether any medication was 
prescribed or renewed (MED), patient gender (SEX), age (AGE), and race (RACER), the total number of chronic 
conditions afflicting the patient (TOTCHRON), primary reason for the visit (MAJOR), and whether the doctor is the 
lone physician in the practice (SOLO).  The following syntax fits this model naïvely ignoring the complex survey 
design features: 

proc surveyreg data=NAMCS_2009; 

  class MED SEX RACER SOLO MAJOR; 

  /* use CLASS statement to treat numeric variables as categorical */ 

  model TIMEMD = MED SEX RACER SOLO MAJOR  

                 AGE TOTCHRON  

                 / solution; /* SOLUTION option needed to output parameter 

estimates when CLASS statement is used */ 

run; 

 

                             1) Ignoring the Complex Survey Features 

 

                                Estimated Regression Coefficients 

 

                                                Standard 

                   Parameter      Estimate         Error    t Value    Pr > |t| 

 

                   Intercept    18.8493335    0.36534171      51.59      <.0001 
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                   MED 0         0.2983170    0.18240145       1.64      0.1020 

                   MED 1         0.0000000    0.00000000        .         . 

                   SEX 1         0.1469686    0.15252028       0.96      0.3353 

                   SEX 2         0.0000000    0.00000000        .         . 

                   RACER 1      -0.5620540    0.31655393      -1.78      0.0758 

                   RACER 2      -0.7721509    0.36956357      -2.09      0.0367 

                   RACER 3       0.0000000    0.00000000        .         . 

                   SOLO 1        2.8481878    0.17606163      16.18      <.0001 

                   SOLO 2        0.0000000    0.00000000        .         . 

                   MAJOR 1      -0.4957786    0.20935883      -2.37      0.0179 

                   MAJOR 2       0.1034439    0.22806649       0.45      0.6501 

                   MAJOR 3       2.3397329    0.33209039       7.05      <.0001 

                   MAJOR 4      -1.8119289    0.32919691      -5.50      <.0001 

                   MAJOR 5       0.0000000    0.00000000        .         . 

                   AGE           0.0056041    0.00362426       1.55      0.1221 

                   TOTCHRON      0.4224505    0.06633694       6.37      <.0001 

 

NOTE: The denominator degrees of freedom for the t tests is 28275. Matrix X'X is 

singular and a generalized inverse was used to solve the normal equations. 

 

PROC SURVEYREG without the STRATA, CLUSTER, or WEIGHT statement is akin to fitting the model using PROC 
REG.  One benefit of PROC SURVEYREG, however, is that a CLASS statement is allowed.  With PROC REG, the 
onus of creating dummy variables to represent categorical predictors lies with the analyst.  The CLASS statement 
performs this task on the fly for all variables listed.  The note regarding singularity of the X

T
X matrix is intended to 

inform the user that one of the dummy variables for each CLASS variable was dropped.  By default, the PROC drops 
the last category in the sort-ordered list.  This explains why, for example, the parameter estimate and standard error 
for MAJOR category 5 are both zero.  As commented in the syntax, the SOLUTION option should be specified when 
a CLASS statement appears; otherwise, the table of estimated regression coefficients will not be printed to the output 
window. 

Next, the same model is fit, only now accounting for NAMCS’ three complex survey features. 

proc surveyreg data=NAMCS_2009; 

  strata CSTRATM; 

  cluster CPSUM; 

  class MED SEX RACER SOLO MAJOR; 

  model TIMEMD = MED SEX RACER SOLO MAJOR  

                 AGE TOTCHRON / solution; 

weight PATWT; 

run; 

 

2) Accounting for the Complex Survey Features 

 

                                Estimated Regression Coefficients 

 

                                                Standard 

                   Parameter      Estimate         Error    t Value    Pr > |t| 

 

                   Intercept    18.7181878    0.79267944      23.61      <.0001 

                   MED 0        -0.2098052    0.35788673      -0.59      0.5580 

                   MED 1         0.0000000    0.00000000        .         . 

                   SEX 1        -0.0832461    0.23038481      -0.36      0.7180 

                   SEX 2         0.0000000    0.00000000        .         . 

                   RACER 1      -0.0793324    0.59702281      -0.13      0.8943 

                   RACER 2       0.1570886    0.73119135       0.21      0.8300 

                   RACER 3       0.0000000    0.00000000        .         . 

                   SOLO 1        1.4381012    0.64863855       2.22      0.0270 

                   SOLO 2        0.0000000    0.00000000        .         . 

                   MAJOR 1      -1.4257590    0.50914036      -2.80      0.0053 

                   MAJOR 2      -1.0238478    0.56655914      -1.81      0.0713 

                   MAJOR 3       1.3824545    0.77712045       1.78      0.0758 

                   MAJOR 4      -2.0803614    0.59004176      -3.53      0.0005 

                   MAJOR 5       0.0000000    0.00000000        .         . 

                   AGE           0.0188608    0.00917546       2.06      0.0403 
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                   TOTCHRON      0.4216447    0.13840225       3.05      0.0024 

 

NOTE: The denominator degrees of freedom for the t tests is 520. Matrix X'WX is 

singular and a generalized inverse was used to solve the normal equations. 

 

The two tables of regression parameters are quite different.  For one, the estimates have changed after incorporating 
the weights (PATWT).  Interestingly, AGE only becomes significant at the α = .05 level after accounting for the 

complex design.  The standard errors are also generally higher, likely attributable to both weighting and clustering.  
Users can examine this variance inflation by specifying DEFF after the slash in the MODEL statement.  DEFF is short 
for the design effect (Kish, 1965), defined as the ratio of the estimated variance under the complex design to the 
comparable variance under simple random sampling—equivalently, the ratio of standard errors squared.  A design 
effect of 1.12, for example, implies the complex survey design’s variance is 12% higher than what would have been 
achieved under simple random sampling. 

Also, notice how the note below the parameter estimates table states the degrees of freedom is now 520 as opposed 
to 28275 in the PROC SURVEYREG run ignoring the complex features.  This is because the degrees of freedom 
under a complex survey designs is actually the number of PSUs minus the number of strata, a count that is often 
drastically less than the number of observations minus 1 as in simple random sampling. 

The column labeled “t Value” provides the parameter estimate divided by its standard error, or

)ˆvar(

ˆ

B

B
.  This is 

being referenced against a random t variable with 520 degrees of freedom.  A small associated p-value suggests the 

parameter may not differ significantly from zero. 

Another useful section of output is the Tests of Model Effects, shown below for both models  

 

1) Ignoring the Complex Survey Features 

 

Tests of Model Effects 

 

Effect       Num DF    F Value    Pr > F 

 

Model            11      41.90    <.0001 

Intercept         1    9688.90    <.0001 

MED               1       2.67    0.1020 

SEX               1       0.93    0.3353 

RACER             2       2.20    0.1109 

SOLO              1     261.70    <.0001 

MAJOR             4      30.59    <.0001 

AGE               1       2.39    0.1221 

TOTCHRON          1      40.55    <.0001 

 

2) Accounting for the Complex Survey Features 

 

Tests of Model Effects 

 

Effect       Num DF    F Value    Pr > F 

 

Model            11       5.85    <.0001 

Intercept         1    1273.14    <.0001 

MED               1       0.34    0.5580 

SEX               1       0.13    0.7180 

RACER             2       0.12    0.8894 

SOLO              1       4.92    0.0270 

MAJOR             4       7.67    <.0001 

AGE               1       4.23    0.0403 

   TOTCHRON          1       9.28    0.0024 

 

NOTE: The denominator degrees of freedom for the t tests is 520. Matrix X'WX is 

singular and a generalized inverse was used to solve the normal equations. 
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The effect line labeled “Model” is the global F test for whether all parameters aside from the intercept are significantly 
different from zero, the same F test that would appear in “Model” row of an ANOVA table.  Based on the current 
model’s F test, there is little support of this null hypothesis.  For continuous or dichotomous predictors—those with 1 
numerator degree of freedom—the “F Value” column is just the squared “t Value” columns appearing in the 
parameter estimates table.  For polytomous variables appearing in the CLASS statement, however, the F Value 
column tests whether all applicable dummy variables parameters are significantly different from zero.  Overall, it 
appears race (RACER) has little explanatory power in the model of time spent with the physician, at least in the 
presence of the other predictor variables. 

SIMPLIFYING THE MODEL 

Recall that in simple random sampling one can construct the following F test to determine whether a set of 
parameters in a multiple linear regression model are not significantly different from zero, suggesting those terms can 
be eliminated from the model: 

2ˆfull

fullred

SRS

RSSRSS

F


Dropped Parameters of Number



  

where RSSred  is the residual sum of squares for the reduced model, the model without the candidates terms for 

elimination, and RSSfull  is that for the full model.  The term 2ˆfull denotes the mean squared error for the full model, or 

RSSfull  divided by the degrees of freedom for error.  Under the null hypothesis and normally distributed errors, this 

statistic has an F distribution with numerator degrees of freedom equaling the number of parameters dropped and 
denominator degrees of freedom equaling the degrees of freedom for error of the full model.   

For sake of an illustration, assume the full model is iiii xxy   22110  and we are considering reducing it to

iii xy   110  .  That is, we want to test H0: 02   versus HA: 02  .  An alternative form of the F test above is 

to fit the full model but calculate a contrast by forming C = 

















1

0

0

 and finding FSRS = (C
T
β̂ )

T
(C

T
)ˆcov(β C)

-1
(C β̂ )/rank(C), 

where rank(C) denotes the number of linearly independent columns in the matrix C.  The matrix algebra in this 
univariate case—rank(C) = 1—reduces to the parameter estimate squared divided by its variance, which is also just 

the squared univariate t Value appearing in the Estimated Regression Coefficients table.  To assess significance, the 
F statistic should be referenced against a random F variable with numerator degrees of freedom rank(C) and 

denominator degrees of freedom that associated with the mean squared error of the model. 

Though perhaps uninteresting in the univariate scenario, the C matrix can be expanded with additional columns to 

test multiple parameter hypotheses simultaneously.  The F statistic has the same form, only the numerator degrees of 

freedom increases to reflect the number of linearly independent columns in C.  For instance, to test H0: 0,0 21    

versus HA: 0,0 21   , one would assign C =  

















10

01

00

 and compare to a random F variable with the same 

denominator degrees of freedom, only now with numerator degrees of freedom equal to 2.  Customized contrasts 
such as these can be calculated within PROC SURVEYREG by using the CONTRAST statement. 

Further scrutiny of the Tests for Model Effects table in the output accounting for the complex design reveals three of 
the predictor variables—MED, SEX, and RACER—all appear insignificant in the current model.  A logical follow-up 
question might be whether all three variables could be dropped.  The syntax below demonstrates how one can utilize 
the CONTRAST statement to test this hypothesis.  Commas separate each column of the C matrix.  There is no need 

to specify contrast coefficients for all 12 rows (intercept + 11 distinct parameters), since any variable name which 
does not appear has an implied contrast coefficient of 0(s).  The last coefficient for each CLASS variable corresponds 
to the dropped dummy variable, so it may seem unnecessary to provide a value.  For some reason, however, the 
CONTRAST statement in PROC SURVEYREG requires the excluded dummy variable (or dummy variable whose 
parameter estimate was set to 0) be given a coefficient of -1 to work properly. 

 

proc surveyreg data=NAMCS_2009; 

  strata CSTRATM; 

  cluster CPSUM; 

  class MED SEX RACER SOLO MAJOR; 
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  model TIMEMD = MED SEX RACER SOLO MAJOR  

                 AGE TOTCHRON / solution; 

contrast 'Test of Reduced Model' MED 1 -1, SEX 1 -1, RACER 1 0 -1, RACER 0 1 -1 ;  

weight PATWT; 

run; 

 

                      Analysis of Contrasts 

 

       Contrast                 Num DF    F Value    Pr > F 

 

       Test of Reduced Model         4       0.15    0.9614 

 

 NOTE: The denominator degrees of freedom for the F tests is 520. 

 

The CONTRAST statement generates a new output element entitled “Analysis of Contrasts.”  As with the univariate 
tests, a low p-value suggests the terms are influential in explaining TIMEMD.  In this case (p = 0.9614), it appears 
little explanatory power would be lost by dropping all terms related to MED, SEX, and RACER. 

Technically speaking, when the model is fit using complex survey data, the F tests reported in the Analysis of 
Contrast and Tests of Model Effects tables may not strictly adhere to the same F distribution as in simple random 

sampling.  Korn and Graubard (1990) suggest a modified test statistic
 

DF

qDF
FF SRSADJ

1
*


 , where DF is the 

degrees of freedom calculated under the complex design (# PSUs – # strata).  ADJF is then referenced against a 

random F variable with q and (DF – q + 1) degrees of freedom, where q is the number of parameters dropped.  This 
alternative is not yet available in PROC SURVEYREG, but it is not difficult to compute by hand.  Using figures from 

Analysis of Contrasts portion of the output, the adjustment factor would be 
 

1
520

517

520

14520



, so we can quickly 

gather SRSADJ FF  .  Still, the adjustment may be more sizeable when fewer degrees of freedom are available. 

LOGISTIC REGRESSION 

MODELING DATA COLLECTED FROM SIMPLE RANDOM SAMPLES 

Fitting a logistic regression model is typically the preferred approach when the outcome variable of interest is 
binomial, such as a yes/no question or an indicator of the presence/absence of some characteristic.  We can describe 
this outcome in general terminology as either an event or non-event.  It may seem reasonable to feed a 0/1 variable 
as the outcome to a PROC that fits a linear regression model based on one or more predictor variables, such that the 
expected outcome is the expected probability of whatever event was coded 1.  Unfortunately, there are a few 
problems with this approach.  For one, the expected outcome (probability) may fall outside the bounds of [0, 1], which 
would be a nuisance for interpretation.  Also problematic is that the model violates the assumption of normally 
distributed residuals.  Regardless of the predicted outcome, the actual outcome can be only one of two values 
(unless the residual happens to be zero), which limits the number of distinct residuals to two as well. 

The logistic regression model involves a transformation aimed at alleviating these problems.  Instead of modeling the 
predicted probability of some event based on linear combination of predictor variable(s), parameters are linear in 
terms of the logit, or log-odds of the i

th
 unit experiencing the event.  Recall the odds are defined as the ratio of two 

probabilities, the probability of experiencing the event and the probability of not experiencing the event. 

For the single-variable setting, the logit function is defined as i
i

i
i x

xevent

xevent
xevent 10

)|Pr(1

)|Pr(
log)|(  















logit .  

Notice how there is no residual term εi.  Consequently, there are no assumptions regarding their distribution as there 
are in linear regression.  It should be emphasized, however, that there still is the assumption that observations 
sampled are i.i.d, therefore naturally reflecting the population structure.  

Although we are not modeling them directly, the i
th
 unit’s predicted probability given its value of x can be extracted by 

solving the logit equation for )|Pr( ixevent , which is just 
 
 

 
 i

i

i

i

x

x

xevent

xevent

10

10

exp1

exp

)|(logitexp1

)|(logitexp











, where exp() 

denotes exponentiation of whatever falls within the parentheses.  A nice feature of the logit transformation is that the 
predicted probability always falls within (0,1), even while model parameters can range from (-∞,∞). 
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The logit transformation carries with it a different interpretation of model parameters.  For instance, in the single-
variable model above, β1 no longer represents the expected change in the outcome variable itself, but rather the 
expected change in the logit or log-odds given a one-unit change in x.  Exponentiating this parameter returns an odds 

ratio, which is somewhat easier to handle. 

To illustrate, suppose x is a 0/1 variable where 1 denotes males and 0 females and the outcome variable is whether 
the individual has had a heart attack.  If β1 = 0.50, the odds ratio of a heart attack for men versus women is exp(0.50) 
= 1.65.  The colloquial interpretation is that men are 65% more likely to have experienced a heart attack.  In truth, 
such an interpretation is more apt for the relative risk statistic, the ratio of the two predicted probabilities (see Section 
2.3.4 of Agresti, 1996). The tendency to treat the odds ratio as if it were the relative risk may be an artifact of 
historical logistic regression analysis in the realm of rare epidemiological events, where much of the literature on the 
technique developed.  In the case of a small probability of some event, the two statistics approximate each other.  
Note that if β1 = 0, exp(0) = 1, which is to say odds ratio is 1 and, thus, the two groups’ predicted probabilities of 
experiencing the event are the same. 

From a sample of size n, the true β’s can be estimated and, as before, are topped with hats to signify they are 
sample-based estimates.  As opposed to minimizing the residual sum of squares, however, the logistic regression 
parameters are estimated via an iterative procedure based on the method of maximum likelihood.  For each of the p 
distinct columns of the design matrix, the associated maximum likelihood parameter estimates are the solution to






n

i

ipi

n

i

ipi xyx
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̂ , where 
 
 ippi

ippi
i

xx

xx

)1()1(110

)1()1(110

ˆ...ˆˆexp1

ˆ...ˆˆexp
ˆ













  is the (estimated) predicted probability of the 

event occurring for unit i.  While these are typically termed score equations in logistic regression, the comparable 

equations in least squares regression, 




n

i

ipi

n

i

ipi yxyx
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ˆ , are more often termed normal equations.  A sensible 

byproduct of these criteria is that, for categorical variables, the sum of predicted probabilities matches the count of 
each level’s successes. 

As will be demonstrated shortly, the (p x p) matrix )ˆcov(β is still central to testing hypotheses of individual parameters 

or assessing whether multiple parameters are not significantly different from zero; however, this matrix is not 
estimated the same way as with linear regression.  We still require the (n x n) design matrix X, but after conducting 
the iterative process to find the maximum likelihood parameter estimates, one must construct an (n x n) matrix V with 

diagonal entries equal to )ˆ1(ˆ ii   and 0s on the off-diagonals.  Then, )ˆcov(β = (X
T
VX)

-1
. 

MODELING DATA COLLECTED FROM A COMPLEX SURVEY 

Similar arguments and conceptual subtleties apply to logistic regression parameters estimated from a model using 
complex survey data drawn from a finite population—for an accessible discussion, see Section 6.4 of Hosmer and 
Lemeshow (2000).  When weights are involved, pseudo-maximum likelihood estimates are obtained by iteratively 

adjusting the estimated parameters until each of the p modified score equations 

















n

i

ipii

n

i

ipii xwyxw
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̂  holds.  

As with weighted least squares estimation in the finite population context, the resulting parameters can be thought of 
as the model parameters that would be estimated had we conducted a full census of the population.  Running PROC 
LOGISTIC with a WEIGHT statement will give the exact same pseud-maximum likelihood estimates as PROC 
SURVEYLOGISTIC with a WEIGHT statement.  As warned earlier, however, if stratification and/or clustering is 
present in the complex survey data set, standard errors will be only be correct in the SURVEYLOGISTIC output. 

Binder (1983) developed the theory of Taylor series linearization to estimate )ˆcov(β accounting for the complex 

design.  Further discussion of this was deemed a bit too theoretical for the current paper, but interested readers 
seeking more detail can refer to that article. 

FITTING A LOGISTIC REGRESSION MODEL USING DATA FROM NAMCS 

Suppose the event we are interested in predicting is whether a medication was prescribed or renewed (MED).  We 
might anticipate this outcome being a function of time spent with the physician (TIMEMD), patient gender (SEX), age 
(AGE), and race (RACER), the total number of chronic conditions afflicting the patient (TOTCHRON), and primary 
reason for the visit (MAJOR).  The syntax below fits the naïve model, ignoring all complex survey features. 

 

proc surveylogistic data=NAMCS_2009; 

  class SEX RACER MAJOR / param=ref; 
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  model MED(event='1') = SEX RACER MAJOR /* categorical predictors, must appear in 

CLASS statement */ 

                         AGE TOTCHRON TIMEMD /* continuous predictors */ ; 

run; 

 

By default, SAS treats the first value in the sorted list of outcome variable values as the event.  This is inappropriate 
in the present case since MED is coded 0 when a prescription is not issued or renewed.  The EVENT=’ ’ option can 
be specified in parentheses after the outcome variable in the MODEL statement to explicitly declare the event of 
interest. 

All three categorical variables appear in the CLASS statement.  The option PARAM=REF overrides the default effect 
parameterization with the reference group parameterization, which treats categorical variables much the same as is 
done automatically when the CLASS statement is used in PROC SURVEYREG.  The indicator variable 
corresponding to the last level in the sorted list of distinct levels is dropped. To assign a specific reference category, 
specify REF=’’ in parentheses after the variable is listed in the CLASS statement.  (The PARAM=REF option after the 
slash is still required.) 

It is wise practice to purposefully assign the reference category since all other parameters created from the given 
class variable are interpreted as the change in the log-odds ratio between that category and the reference category 
(the omitted group).  Earlier, it was mentioned that exponentiating the parameter of a 0/1 indicator variable returns the 
odds ratio between the group coded 1 and the group coded 0.  In this case, it represents the odds ratio between the 
given category and the reference group.  The option EXPB can be placed after the slash in the MODEL statement to 
append these values to the table of parameter estimates.  However, for all variables not involved in an interaction, the 
Odds Ratios portion of the output (not shown) essentially displays this information. 

 

               1) Ignoring the Complex Survey Features 

 

              Analysis of Maximum Likelihood Estimates 

 

                                 Standard          Wald 

Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 

 

Intercept       1      0.4688      0.0741       39.9988        <.0001 

SEX       1     1      0.0764      0.0286        7.1504        0.0075 

RACER     1     1      0.0123      0.0638        0.0373        0.8468 

RACER     2     1    0.000131      0.0746        0.0000        0.9986 

MAJOR     1     1      0.3395      0.0389       76.3087        <.0001 

MAJOR     2     1      0.5754      0.0422      185.8831        <.0001 

MAJOR     3     1      0.4815      0.0595       65.5123        <.0001 

MAJOR     4     1     -0.4343      0.0551       62.1484        <.0001 

AGE             1    -0.00067    0.000672        0.9823        0.3216 

TOTCHRON        1      0.3524      0.0153      530.6116        <.0001 

TIMEMD          1    -0.00256     0.00113        5.1710        0.0230 

 

One difference between the Analysis of Maximum Likelihood Estimates in the PROC SURVEYLOGISTIC output and 
the comparable summarization given in PROC SURVEYREG is that Wald chi-square statistics are given to evaluate 
whether the parameter is significantly different from 0.  These are calculated by squaring the estimate and dividing by 

the corresponding diagonal entry in the )ˆcov(β matrix—equivalently, squaring the quotient of the estimate and its 

standard error.  Since these are essentially single-parameter contrasts, it should come as no surprise the p-values 

are based on a reference chi-square distribution with 1 degree of freedom. 

To fit the same model properly accounting for the stratification, clustering, and unequal weights, the PROC 
SURVEYLOGISTIC code above can be fleshed out with the following STRATA, CLUSTER, and WEIGHT statements 

proc surveylogistic data=NAMCS_2009; 

  strata CSTRATM; 

  cluster CPSUM; 

  class SEX RACER MAJOR / param=ref; 

  model MED(event='1') = SEX RACER MAJOR 

                         AGE TOTCHRON TIMEMD ; 

weight PATWT; 

run; 
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            2) Accounting for the Complex Survey Features 

  

             Analysis of Maximum Likelihood Estimates 

 

                                 Standard          Wald 

Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq 

 

Intercept       1      0.2409      0.1821        1.7498        0.1859 

SEX       1     1      0.0786      0.0439        3.2032        0.0735 

RACER     1     1      0.2027      0.1683        1.4503        0.2285 

RACER     2     1      0.1201      0.1901        0.3993        0.5275 

MAJOR     1     1      0.3508      0.0839       17.4813        <.0001 

MAJOR     2     1      0.5717      0.0893       41.0013        <.0001 

MAJOR     3     1      0.4157      0.1273       10.6680        0.0011 

MAJOR     4     1     -0.6651      0.1665       15.9558        <.0001 

AGE             1    0.000351     0.00157        0.0500        0.8231 

TOTCHRON        1      0.3546      0.0467       57.6121        <.0001 

TIMEMD          1    0.000935     0.00262        0.1274        0.7211 

 

One can observe how incorporating the weights substantively alters many of the estimates.  For instance, the 
TIMEMD parameter changed sign and is no longer significant.  Standard errors are also notably higher, as would be 
expected. 

SIMPLIFYING THE MODEL 

In the simple random sampling setting, one can construct a likelihood ratio test (p. 37 of Hosmer and Lemeshow, 
2000) to determine whether a logistic regression model can be reduced by eliminating one of more terms.  
Specifically, -2(Lred – Lfull) can be compared to a reference chi-square distribution with q degrees of freedom, where 
Lred is the log-likelihood of the reduced model, Lfull is the log-likelihood of the full model, and q is the number of 
parameters up for elimination.  As Hosmer and Lemeshow (2000, p. 217) later note, however, this test no longer 
applies when the model is fit using complex survey data, because the likelihoods for the full and reduced models are 
actually pseudo-likelihoods.  Instead, a general Wald chi-square contrast can be formulated. 

Suppose we wanted to test whether race, sex, age, and time spent with the physician could simultaneously be 
dropped from the model.  The syntax below performs this test, drawing upon the same concepts of using the 
CONTRAST statement that were demonstrated in testing reduced linear regression models. 

proc surveylogistic data=NAMCS_2009; 

  strata CSTRATM; 

  cluster CPSUM; 

  class SEX RACER MAJOR / param=ref; 

  model MED(event='1') = SEX RACER MAJOR 

                         AGE TOTCHRON TIMEMD ; 

weight PATWT; 

contrast 'Test of Reduced Model' SEX 1, RACER 1 0, RACER 0 1, AGE 1, TIMEMD 1;  

run; 

 

                  Contrast Test Results 

 

                                       Wald 

Contrast                   DF    Chi-Square    Pr > ChiSq 

 

Test of Reduced Model       5        6.1011        0.2965 

 

One difference between this CONTRAST statement and that in PROC SURVEYREG is the user is not required to 
specify the -1 contrast coefficient for the reference category.  If one does, PROC SURVEYLOGISTIC sends a note to 
the log stating that the coefficient was ignored.  The other distinction is that the contrast result takes the form of a 
Wald chi-square test statistic.  There are 5 degrees of freedom associated with the contrast since the matrix C has 5 

linearly independent columns.  Though it does not print by default, SAS will output this matrix if the option E is 
specified after the slash in the CONTRAST statement. 

The Korn and Graubard (1990) recommended correction applies to the Wald chi-square contrast test statistic just as 
it did for the F test illustrated in PROC SURVEYREG.  The key difference between the two, however, is that the F 
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statistic is a chi-square statistic divided through by its degrees of freedom q (= rank(C)).  Thus, to apply the correction 

proposed by Korn and Graubard (1990), one would compute 
 

qDF

qDF
WF SRSADJ

*

1
*


 .  To assess significance, 

this result is still compared to a reference F distribution with q numerator degrees of freedom and denominator 
degrees of freedom DF.  As with PROC SURVEYREG, this modified version is not yet available in PROC 
SURVEYLOGISTIC.  With q = 5 and DF = 520, the adjusted Wald test statistic would be 

 
22.1

5*520

15520
*1011.6 


ADJW  (p = .30).  Both the uncorrected and correct test statistics suggest the terms 

associated with sex, race, age, and time spent with the physician can be dropped from the model. 

MODELING DOMAINS (OR SUBSETS) OF A COMPLEX SURVEY DATASET 

The models illustrated thus far have been fit using the entire survey data set.  There are surely occasions where the 
analyst wants to restrict the model to a domain, or subset, of the data.  For example, one may wish to restrict the 

model of TIMEMD to a particular characteristic(s) of the patient (e.g., patients diagnosed with osteoporosis), the visit 
(e.g., whether any imaging tests were performed), or even the doctor’s practice (e.g., whether solo or group practice).  
There are scores of indicator variables in the public-use file which can be used to narrow down the analysis. 

Simply filtering the original data set for the domain of interest, either in a separate DATA step or on the fly using a 
WHERE statement, may result in erroneous inferences.  The proper technique is to specify the domain indicator 
variable(s) in a DOMAIN statement.  There are two reasons for this.  For one, supplying the full data set informs SAS 
of the complete survey design.  It is possible certain strata and/or PSUs will be filtered out because no cases therein 
meet the domain criteria.  This would impact the degrees of freedom.  Second, subsetting the data is only appropriate 
when the sample size is fixed from one hypothetical sample to another.  For instance, if the sample were stratified by 
a particular variable, such that a fixed number of sample units was selected within each, it may be plausible to subset 
on a particular stratum or groups of strata.  This will likely not be the case, in general, so it is recommended to utilize 
the DOMAIN statement to ensure proper inferences. 

EXAMPLE OF DOMAIN ANALYSIS IN PROC SURVEYREG 

Further inspection of the NAMCS 2009 data set reveals that the 0/1variable PHYS is an indicator of whether a 
physician was actually seen during the visit.  For visits where PHYS=0, TIMEMD=0.  A physician was seen (PHYS=1) 
in over 97% of the visits in the data set, so focusing only on these cases likely produces a model strikingly similar to 
the model of time spent with the physician fit previously.  Nonetheless, for purposes of demonstration, the syntax 
below re-fits the original model placing the variable PHYS in the DOMAIN statement. 

proc surveyreg data=NAMCS_2009; 

  strata CSTRATM; 

  cluster CPSUM; 

  class MED SEX RACER SOLO MAJOR; 

  model TIMEMD = MED SEX RACER SOLO MAJOR  

                 AGE TOTCHRON / solution; 

weight PATWT; 

domain PHYS; 

run; 

 

                       The SURVEYREG Procedure 

 

                                PHYS=1 

 

            Domain Regression Analysis for Variable TIMEMD 

 

 

                        Tests of Model Effects 

 

               Effect       Num DF    F Value    Pr > F 

 

               Model            11       6.11    <.0001 

               Intercept         1    1324.10    <.0001 

               MED               1       0.01    0.9108 

               SEX               1       0.01    0.9155 

               RACER             2       0.09    0.9127 

               SOLO              1       6.31    0.0123 
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               MAJOR             4       8.34    <.0001 

               AGE               1       2.66    0.1034 

               TOTCHRON          1       8.78    0.0032 

 

   NOTE: The denominator degrees of freedom for the F tests is 520. 

 

 

                  Estimated Regression Coefficients 

 

                                  Standard 

     Parameter      Estimate         Error    t Value    Pr > |t| 

 

     Intercept    19.0869070    0.81209027      23.50      <.0001 

     MED 0        -0.0415137    0.37051957      -0.11      0.9108 

     MED 1         0.0000000    0.00000000        .         . 

     SEX 1        -0.0252196    0.23762720      -0.11      0.9155 

     SEX 2         0.0000000    0.00000000        .         . 

     RACER 1       0.2284892    0.62592120       0.37      0.7152 

     RACER 2       0.3224702    0.76768898       0.42      0.6746 

     RACER 3       0.0000000    0.00000000        .         . 

     SOLO 1        1.7042633    0.67863716       2.51      0.0123 

     SOLO 2        0.0000000    0.00000000        .         . 

     MAJOR 1      -1.6787516    0.51404332      -3.27      0.0012 

     MAJOR 2      -0.9468646    0.53707368      -1.76      0.0785 

     MAJOR 3       1.0984575    0.75090877       1.46      0.1441 

     MAJOR 4      -2.3032250    0.59317997      -3.88      0.0001 

     MAJOR 5       0.0000000    0.00000000        .         . 

     AGE           0.0152782    0.00936571       1.63      0.1034 

     TOTCHRON      0.4110722    0.13874679       2.96      0.0032 

 

When the DOMAIN statement is used, a model is fit for the entire data set as well as each distinct level of the 
DOMAIN statement variable.  In our case, the only relevant output is that pertaining to the domain where PHYS=1, so 
the output presented herein is abridged accordingly.  Multiple variables can be specified in the DOMAIN statement, 
but they will be treated separately, in turn.  If the domain of interest is identified by the combination of two or more 
variables, separate them by an asterisk (or create a new dichotomous domain indicator in a separate DATA step to 
limit the extraneous output). 

It is a worthwhile aside to consider what occurs behind the scenes during domain analysis, because there may be 
situations where the DOMAIN statement is unavailable, such as was the case for certain SURVEY PROCs in earlier 
versions of SAS.  In essence, SAS creates a domain-specific weight equaling either (1) the original weight for 
observations in the domain, or (2) 0 for observations outside the domain.  It may seem feasible to create this weight 
by hand and re-run PROC SURVEYREG with this variable in the WEIGHT statement.  This will not work, however, 
because the SURVEY PROC immediately excludes any observations where the variable identified in the WEIGHT 
statement is 0—exactly what we are trying to avoid.  The go-around is to assign a miniscule weight to all non-domain 
cases that is strictly greater than zero, such as .000000000001. 

The syntax below demonstrates this technique.  Note how the PROC SURVEYREG output matches what was 
generated for that domain (PHYS=1) when the DOMAIN statement was used. 

data NAMCS_2009; 

  set NAMCS_2009; 

PATWT2=PATWT*(PHYS=1)+.000000000001; 

run; 

proc surveyreg data=NAMCS_2009; 

  strata CSTRATM; 

  cluster CPSUM; 

  class MED SEX RACER SOLO MAJOR; 

  model TIMEMD = MED SEX RACER SOLO MAJOR  

                 AGE TOTCHRON / solution; 

weight PATWT2; 

run; 

 

                      Tests of Model Effects 
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             Effect       Num DF    F Value    Pr > F 

 

             Model            11       6.11    <.0001 

             Intercept         1    1324.10    <.0001 

             MED               1       0.01    0.9108 

             SEX               1       0.01    0.9155 

             RACER             2       0.09    0.9127 

             SOLO              1       6.31    0.0123 

             MAJOR             4       8.34    <.0001 

             AGE               1       2.66    0.1034 

             TOTCHRON          1       8.78    0.0032 

 

  

                Estimated Regression Coefficients 

 

                                Standard 

   Parameter      Estimate         Error    t Value    Pr > |t| 

 

   Intercept    19.0869070    0.81209027      23.50      <.0001 

   MED 0        -0.0415137    0.37051957      -0.11      0.9108 

   MED 1         0.0000000    0.00000000        .         . 

   SEX 1        -0.0252196    0.23762720      -0.11      0.9155 

   SEX 2         0.0000000    0.00000000        .         . 

   RACER 1       0.2284892    0.62592120       0.37      0.7152 

   RACER 2       0.3224702    0.76768898       0.42      0.6746 

   RACER 3       0.0000000    0.00000000        .         . 

   SOLO 1        1.7042633    0.67863716       2.51      0.0123 

   SOLO 2        0.0000000    0.00000000        .         . 

   MAJOR 1      -1.6787516    0.51404332      -3.27      0.0012 

   MAJOR 2      -0.9468646    0.53707368      -1.76      0.0785 

   MAJOR 3       1.0984575    0.75090877       1.46      0.1441 

   MAJOR 4      -2.3032250    0.59317997      -3.88      0.0001 

   MAJOR 5       0.0000000    0.00000000        .         . 

   AGE           0.0152782    0.00936571       1.63      0.1034 

   TOTCHRON      0.4110722    0.13874679       2.96      0.0032 

 

These concepts translate to logistic regression models, as the DOMAIN statement is also available in PROC 
SURVEYLOGISTIC.  For brevity, no additional example of domain analysis will be demonstrated, but the syntax is 
identical to that in PROC SURVEYREG. 

CONCLUSION 

This paper introduced the four idiosyncratic features of complex surveys and how they interact with the traditional 
treatment and assumptions of linear and logistic regression models.  The core principle to be taken away is that, 
when modeling data emanating from a complex survey design, one of the SURVEY PROCs should be used.  
Although PROC SURVEYREG and PROC SURVEYLOGISTIC were the two demonstrated in this paper, another 
available procedure is PROC SURVEYPHREG, which has the capability of fitting Cox proportional hazards 
regression models.  These models are one of a class of models applicable to survival analysis, when the outcome of 
interest is the elapsed time before a certain event occurs.  For further discussion, see Mukhopadhyay (2010) or 
Berglund (2011). 

Currently, there are no model selection algorithms built into PROC SURVEYREG or PROC SURVEYLOGISTIC, such 
as forward, backward, or stepwise selection.  This paper demonstrated, however, that the model parameter 
covariance matrix can be utilized to conduct customized hypothesis tests regarding one or more parameters.  It was 
briefly noted the default procedure in SAS to estimate these matrices is Taylor series linearization (Fuller, 1975; 
Binder, 1983).  Though they were not discussed in this paper, replication-based methods offer an alternative avenue 
for estimation.  For an overview, see Rust (1985).  For examples of the SAS syntax necessary to implement some of 
these techniques, which became available in version 9.2, see Mukhopadhyay et al. (2008). 

Extensions of the logistic regression model are available in PROC SURVEYLOGISTIC just as they are in PROC 
LOGISTIC—namely, the cumulative logit and generalized logit models.  When the outcome variable consists of more 
than two categories, SAS defaults to fitting a cumulative logit model, whereby there are multiple intercepts but a 
common slope assumed between any two categories of the outcome.  In general, this is only applicable to an ordinal 
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variable.  When the outcome is nominal, the LINK=GLOGIT option after the slash in the MODEL statement should be 
specified to fit a generalized logit model, under which separate slope terms appear.  This model consists of 2 x p 
terms, each representing the change in the logit between given outcome and some reference outcome. 
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