Paper S126-2012

A SAS® Solution to Create a Weekly Format
Susan Bakken, Aimia, Plymouth, MN

ABSTRACT

As programmers, we are frequently asked to report by periods that do not necessarily correspond to weeks on the
calendar — for example, a client may want to see sales by week since the day a product was released. This paper
presents simple, easy-to-use, self-contained SAS code that utilizes date functions, macro variables, a DO/UNTIL
loop, and the FORMAT procedure to create formatted values for any weekly periods needed, based on dates
specified by the user. It also presents a second example of code that can be used with different start dates within the
same data set.

INTRODUCTION

No matter the industry, SAS programmers generally do a lot of programming with dates. SAS has an extremely
robust set of date formats and functions that can be used in many cases, but at times we need to be a bit clever to
set up groupings that don’t fit a standard week (or other period of time). The two SAS programs presented in this
paper can be used to bucket your dates as needed, in order to quantify into groupings based on a specific starting
date or dates.

CODE FOR A SINGLE STARTING POINT

This code can be used if there is a single starting point for all observations in your data set. For example, the number
of visits to a website after it went live. The only requirement to run the code is to let SAS know the start and end
dates of the period of interest by populating them into macro variables:

$SLET start='01May2012'd;
SLET end = date();

Now that the start and end dates of the period of interest have been set, we need to create a data set that will be
used by PROC FORMAT. The following DATA step figures out the start and end dates of each 7-day period between
the start and end dates set above. Note that the variables FMTNAME, START, END, and LABEL will all be used by
PROC FORMAT to set the parameters of your format.

DATA SET WEEKS;
RETAIN fmtname 'weeks';
start=&start;
end=start+6;
label="Week: "||PUT (start,mmddyyl0.)||" - "||PUT (end,mmddyyl0.);
OUTPUT;
DO UNTIL (end > &end);
start=start+7;
end=end+7;
label="Week: "||PUT (start,mmddyyl0.)||" - "||PUT (end, mmddyyl0.) ;
OUTPUT;
END;
KEEP fmtname start end label;
FORMAT start end mmddyylO.;
RUN;

|
ons Window Help
DM@ RREBE o X I3 IE
fMMmQ start] end] label
weeks 05/01/2012 05/07/2012 Week: 05/01/2012 - 05/07/2012
weeks 05/08/2012 05/14/2012 ‘week: 05/08/2012 - 05/14/2012
weeks 05/15/2012 05/21/2012 Week: 05/15/2012 - 05/21/2012
weeks 05/22/2012 05/28/2012 Week: 05/22/2012 - 05/28/2012
weeks 05/29/2012 06/04/2012 Week: 05/29/2012 - 06/04/2012
weeks 06/05/2012 06/11/2012 Week: 06/05/2012 - 06/11/2012
weeks 06/12/2012 06/18/2012 Week: 06/12/2012 - 06/18/2012
weeks 06/19/2012 06/25/2012 Week: 06/19/2012 - 06/25/2012
weeks 06/26/2012 07/02/2012 ‘Week: 06/26/2012 - 07/02/2012
weeks 07/03/2012 07/09/2012 Week: 07/03/2012 - 07/09/2012
weeks 07/10/2012 07/16/2012 Week: 07/10/2012 - 07/16/2012

WO~ O |& | W (N —

Py P
prgl P

Figure 1.
Screenshot of data set set_weeks

We can now use PROC FORMAT to create our date format:

PROC FORMAT CNTLIN=SET WEEKS;
RUN;

We now have a format that we can use to group our dates by the periods we need. The following code shows an
example of how the format can be used:

DATA test;

DO date=&start TO &end;
OUTPUT;

END;

KEEP date;

RUN;

PROC FREQ data=test;
TABLES date;
FORMAT date weeks.;
RUN;

The FREQ Procedure

Cumulat ive Cumulat ive

date Frequency Percent Frequency Percent
Week: 05/01/2012 - 0570772012 7 9.59 7 9.59
Week: 0570872012 - 05/14/2012 7 9.59 14 19.18
Heek: 0571572012 - 05/21/2012 7 9.59 21 28.77
Week: 05/22/2012 - 0572872012 7 9.59 28 38.36
Heek: 0572972012 - 0650452012 7 9.59 35 47.95
Heek: 06505/2012 - 0671152012 7 9.59 42 57.53
Week: 0651272012 - 061872012 7 9.59 49 67.12
Heek: 0651972012 - 06/25/2012 7 9.59 56 76.71
Week: 062652012 - 0770272012 7 9.59 63 86.30
Week: 0770372012 - 0770972012 7 9.59 70 95.89
Heek: 07/°10/2012 - 0F/1652012 3 4.11 73 100.00

Figure 2.
Screenshot of output

CODE FOR MULTIPLE STARTING POINTS

What if we have different starting dates for different key variables? In the following code, we want to identify sales by
week once after a member enrolls in a loyalty program. Since each member could have a different enroliment date,
we need to be able to calculate the sales by week for each individual based on when he/she enrolled.

The first step is to identify the period of interest, give it a name, and indicate how many periods we want to track:

SLET DaysInPeriod = 7;
$LET PeriodName = Week;
$LET TotalPeriods = 26;

The next step now uses those inputs to create a data set that will be used by PROC FORMAT. This time, instead of
using a date range for the format parameters, we will be setting a range for each period based on the number of days
from the starting period:

DATA DriveFormat;

LENGTH label $50;

RETAIN fmtname 'Period';

i=1;

start = 0;

end = &DaysInPeriod - 1;

label = compbl ("&PeriodName " | |put(i,best.));
OUTPUT;

DO 1 = 2 to &TotalPeriods;

start = end + 1;
end = start + &DaysInPeriod - 1;
label = compbl ("&PeriodName " | |put(i,best.));

OUTPUT;
END;
RUN;
label fmtharne i stark end

1 Wwieek 1 Period 1 0 g

2 Wieek 2 Period 2 7 13

3 Week 3 Period 3 14 20

4 Wieek 4 Period 4 21 27
Figure 4.

Screenshot of data set DriveFormat

We can use the FREQUENCY procedure to make sure the code above set the periods of interest correctly:

PROC FREQ DATA=DriveFormat;
TABLES start * end * label / LIST MISSING;

RUN;
The FREQ Procedure

Cunmulative Cumulative

start end label Frequency Percent Frequency Percent
0 6 Heek 1 1 3.85 1 3.85
7 13 Heek 2 1 3.85 2 7.69
14 29 Heek 3 1 3.85 3 11.54
21 27 Heek 4 1 3.85 4 15.38
28 34 Heek S 1 3.85 5 19.23
a5 41 Week 6 1 3.85 6 23.08
42 48 Heek 7 1 3.85 7 26.92
49 55 Week 8 1 3.85 8 30.77
56 62 Week 9 1 3.85 9 34.62
63 69 Heek 10 1 3.85 10 38.46
70 76 Heek 11 1 3.85 11 42.31
1L 83 Heek 12 1 3.85 12 46.15
a4 90 Heek 13 1 3.85 13 50.00
91 a7 Heek 14 1 3.85 14 53.85
98 104 Heek 15 1 3.85 15 57.69
105 111 Heek 16 1 3.85 16 61.54
112 118 Heek 17 1 3.85 17 65.38
119 125 Heek 18 1 3.85 18 69.23
126 132 Heek 19 1 3.85 19 73.08
133 139 Heek 20 1 3.85 20 76.92
140 146 Heek 21 1 3.85 21 80.77
147 153 Heek 22 1 3.85 22 84.62
154 160 Heek 23 1 3.85 23 88.46
161 167 Heek 24 1 3.85 24 92.31
168 174 Heek 25 1 3.85 25 96.15
175 181 Heek 26 1 3.85 26 100.00

Figure 5.
Screenshot of output

We can now use PROC FORMAT to create our date format:

PROC FORMAT CNTLIN=DriveFormat;
RUN;

Here is an example of using the format. The data set SampleData contains 3 fields: ID, Enroliment Date, and Sales
Date. The first thing we need to do is to calculate the number of days between each member’s enroliment date and
each sale. We will delete any records for sales that took place prior to enrollment, as we are only interested in
behavior post-enrolment

DATA CalculateDays;

SET SampleData;
days = SaleDate - EnrolLDate;
if days < 0 then delete;

if days > (&DaysInPeriod * &TotalPeriods) - 1 then delete;
period = PUT (days, period.);
RUN;
id | EnrollD ate | SaleDate | days | period |
1 1 02A10/2011 020201 0 week 1
2 1 0210207 022282011 18 ‘wieek 3
3 1 02A10/2011 03062011 24 ‘Week 4
4 1 02A10/2011 0382011 36 Week B
] 1 02A10/2011 045082011 a7 Week 9
B 1 02A10/2011 0482011 E7 wWeek 10
7 1 02402011 045272011 7B Week 11
a 1 02402011 05072011 86 ‘Week 13
9 1 02A10/2011 05/09/2011 28 Week 13
10 1 02A10/2011 05/2672011 105 wWeek 1B
11 1 0202071 080242011 112 ‘wieek 17
12 1 024102011 06A112011 121 Week 18
Figure 6.

Screenshot of data set CalculateDays

Now we use PROC FREQ to get the number of sales for each member in each period:

PROC FREQ DATA=CalculateDays noprint;
TABLES id * period / LIST MISSING OUT=fredgs;

RUN;
id period Fr?:quuuenr:cy PE[I'CI:T;tI o
Frequency
1 1 week 1 1 0518134715
2 1 week 10 1 0518134715
3 1 week 11 1 0518134715
4 1 week 13 2 1.03626943M
5 1 week 16 1 0518134715
G 1 week 17 1 0518134715
7 1 week 18 2 1.03626943M
a 1 week 20 1 0518134715
9 1 wheek 21 2 1.03626943mM
Figure 7.

Screenshot of data set FREQS

In this example, we want each weekly period available as a variable, so we will use the TRANSPOSE procedure to
create our weekly variables.

PROC TRANSPOSE DATA=fregs OUT=Transposed(DROP= name label);
BY id;

VAR count;

ID period;

UN

)

~.

id | week_1 \wWeek_10 week_11 | Wesk 13 [‘week_16
1 1 1

1

(]

w

.

L s

o

=1

@

9
1o |

)
ROR

@
[=RET=RE-=-RENEE- A0S, BTN
]

Figure 8.
Screenshot of data set Transposed

As shown in the example above, the weekly periods do not necessarily get created in the order we might want to
have them stored in our data set. The following section of code shows how to re-order your variables and to set any
missing weekly variables to zero:

DATA Ordered;

LENGTH id &PeriodName. 1 - &PeriodName. &TotalPeriods 8;
SET transposed;

ARRAY xvar{*} &PeriodName. 1 - &PeriodName. &TotalPeriods;
DO i = 1 TO dim(xvar);

IF xvar{i} = . THEN xvar{i} = 0;
END;
DROP 1i;
RUN;
id Week_1 Week_2 Week_3 Week_4 Week B Week B

1 1 1 0 1 1 1] 1

2 2 1] 1 1 1 2 1]

3 3 0 1 1] 2 1) 1)

4 4 1 3 2 1 1 1

5 5 1] 1 1 1] 1] 1]

E g 1 0 1 1] 1 1)

7 7 0 0 1 1 1 1

g g8 2 1 1 1 1] 1

3 9 3 1 1 1 1) 1)

10 10 1 1 2 1] 1] 1]
Figure 9.

Screenshot of data set Ordered

Now we can do anything we want to with our new variables:

PROC MEANS DATA=ordered SUM;
VAR &PeriodName. 1 - &PeriodName. &TotalPeriods;
UN

o

~.

The MEANS Procedure

Variable Sum
Heek_1 9.0000000
Heek_2 9.0000000
Heek_3 11.0000000
Heek_4 8.0000000
Heek_5 5.0000000
Heek_6 4.0000000
Heek_7 6.0000000
Heek_8 4.0000000
Heek_9 6.0000000
Heek_10 6.0000000
Heek_11 6.0000000
Heek_12 6.0000000
Heek_13 11.0000000
Heek_14 6.0000000
Heek_15 8.0000000
Heek_16 9.0000000
Heek_17 8.0000000
Heek_18 8.0000000
Heek_19 8.0000000
Heek_20 9.0000000
Heek_21 5.0000000
Heek_22 9.0000000
Week_23 7.0000000
Heek_24 7.0000000
Heek_25 9.0000000
Heek_26 9.0000000
Figure 10.

Screenshot of output

CAVEATS

The first code will group dates into formatted values that are each 7 days long, with the exception of the last
formatted value. If the time period specified is not evenly divisible by 7, the final formatted value will contain all fewer
than 7 days. This is important to remember to either clarify results or adjust time periods as necessary.

When using the second bit of code, be aware of any members in your dataset who may have a “master date” that is
not far enough in the past to allow for each period’s activity. For example, if you are looking for 8 weeks of sales
post-enrollment, and one of your members enrolled 4 weeks ago, that person will show no sales for weeks 5-8, when
in actuality weeks 4-8 have simply not happened yet for that individual. You may wish to account for this when
setting up your dataset or add logic to this code to remove everyone that does not yet have the full period available.

CONCLUSION

In conclusion, some basic SAS statements, functions, formats, and procedures can allow you to bucket information
into the date groupings you need. These pieces of code can be easily modified to adjust to many different unique
situations.

REFERENCE - FIRST CODE IN ITS ENTIRITY FOR EASY COPY/PASTE

Here is the entire first program for anyone who wants do copy, paste, and use!

**,-

** start date will be used as day 1 of week 1 - all weeks will be 7-day weeks xx;
** that start on the same day of the week as this date **;
**;
$LET start='01lMay2012'd;

SLET end = date();

**;

** create a dataset that will drive proc format - note, this will stop once it **;
** reaches a date greater than the end date specified *x;
**;
DATA SET WEEKS;

RETAIN fmtname 'weeks';

start=&start;

end=start+6;
label="Week: " ||PUT (start,mmddyyl0.)||" - "||PUT (end, mmddyyl0.);
OUTPUT;
DO UNTIL (end > &end);
start=start+7;
end=end+7;
label="Week: "||PUT (start,mmddyyl0.)||" - "||PUT (end,mmddyyl0.) ;
OUTPUT;
END;
KEEP fmtname start end label;
FORMAT start end mmddyylO.;
RUN;

**;

** use proc format to create the format to the work folder - the format's name **;
** is weeks. xx;
**;
PROC FORMAT CNTLIN=SET WEEKS;

RUN;

**;

** this section just a sample showing how the format can now be used **;
**;
DATA test;

DO date=é&start TO &end;

OUTPUT;

END;

KEEP date;
RUN;

PROC FREQ data=test;
TABLES date;
FORMAT date weeks.;
RUN;

**;

** end of program *%
**;

REFERENCE — SECOND CODE IN ITS ENTIRITY FOR EASY COPY/PASTE

Here is the entire first program for anyone who wants do copy, paste, modify, and use!

**;

** set macro variables **;
**;
SLET DaysInPeriod = 7;
SLET PeriodName = Week;
SLET TotalPeriods = 26;

**;

** this step creates the dataset that will drive PROC format xR,
**;
DATA DriveFormat;

LENGTH label $50;

RETAIN fmtname 'Period';

i=1;

start = 0;

end = &DaysInPeriod - 1;

label = compbl ("&PeriodName " | |put(i,best.));
OUTPUT;

DO i = 2 to &TotalPeriods;
start = end + 1;
end = start + &DaysInPeriod - 1;
label = compbl ("&PeriodName " | |put (i,best.));
OUTPUT;
END;
RUN;

KA A A AR A A A A A A A R AR AR A IR A A A AR A AR A A A AR A A AR A A A AR A A A A A A Ak Ak ko kK

** frequency to check our periods and make sure they calculated properly **
R R R R R R R R I R I R I R I R R R IR R IR R I R I R IR R I R I R I R R (R R R Ik I R IR IR R R R R I R I R I R R R I R I R IR R I R I R R R IR R R ik I R I R I R i S
PROC FREQ DATA=DriveFormat;

TABLES start * end * label / LIST MISSING;
RUN;

Ne Ne e

KA A A AR A A A A A A A R AR AR A I A A A A AR A AR A A A AR A I AR A A A A A A A A A A A Ak A Ak ko kK

** create the format **
dhhkhkhkhkhkhkhkhkhkhkhkhhkhhkhhkhhkhhhhkhhkhhhhkhhhhhhhhkhhkhhkhhkhhkhhkrhkhhkhhkhhkhhkrhkhhkhkhkhkhkhhkrkhkhkhkrhrhrhhhrkx
PROC FORMAT CNTLIN=DriveFormat;

RUN;

~e Ne N

**;

** the dataset SAMPLEDATA contains 3 fields - ID, enrollment date, sale date *x,
** — calculate the days between enrollment date and each sale date, and * %k,
ld remove any sales that took place before enrollment ko

**;

DATA CalculateDays;
SET SampleData;
days = SaleDate - EnrolLDate;
if days < 0 then delete;

if days > (&DaysInPeriod * &TotalPeriods) - 1 then delete;
period = PUT (days, period.);
RUN;

Ak hkhkkhk kA hkhk Ak hkhhhkrhkhkhkhhkh kA hhkhhhkhhkhkhkhhkhhk Ak hkhhhkrhkhkhkhhkhhkrhhkhkhhkrhkdkhkhhkhkhkrhkkrhhkrkkhkhkhxxkxk

** count the number of sales for each member, grouping by our formatted value **x;
**;
PROC FREQ DATA=CalculateDays noprint;

TABLES id * period / LIST MISSING OUT=freqgs;
RUN;

**;

** now we can use PROC transpose to have a separate variable for each period *x;
**;
PROC TRANSPOSE DATA=fregs OUT=Transposed(DROP= name label);

BY id;

VAR count;

ID period;
RUN;

**;

** this step shows how to use our macro variables to order the new variables **;
**;
DATA Ordered;

LENGTH id &PeriodName. 1 - &PeriodName. &TotalPeriods 8;

SET transposed;

ARRAY xvar{*} &PeriodName. 1 - &PeriodName. &TotalPeriods;

DO i = 1 TO dim(xvar);

IF xvar{i} = . THEN xvar{i} = 0;
END;

DROP 1i;
RUN;

**;

** now we can use all of our weekly variables however we want **;
**;
PROC MEANS DATA=ordered SUM;

VAR &PeriodName. 1 - &PeriodName. &TotalPeriods;

RUN;

**;

** end of program *xy
**;

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Susan Bakken

Enterprise: Aimia

Address: 1405 Xenium Lane

City, State ZIP: Plymouth, MN 55441
Work Phone: 763.445.3619

E-mail: susan.bakken@aimia.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

