

1

Paper S1-18-2012

Understanding SAS Index
Pramod.R,

Target Corporation, Minneapolis, Minnesota

ABSTRACT

Ever imagined how it would be if the dictionary was not alphabetically arranged? Ever imagined how it would be to
search a book in a library if it was not ordered by the topics? Ever tried searching a person’s house in a locality
without knowing the street number? All these are the examples of real life indexes which we have used/ come across.

SAS allows us to index the datasets which will help us retrieve and manipulate the data easily. Typical usage of
Indexes would be while joining two tables based on one or more key variables, querying a dataset based on a filter
and doing some of the by-group processing.

In this paper, I have tried to introduce the concept of Indexing in SAS and have also tried to explain the basic working
model of an index (b-tree) with a simple example. This paper also covers the basic syntax, and various methods to
create and manipulate indexes in SAS. In the end, I’ve tried to show the advantages of using the index through
simple examples and compared the performance of the codes before using the index versus those after using the
indexes.

INTRODUCTION

An index is a performance-tuning tool within SAS software. It allows observations with specific values to be accessed
quickly from a data file. Instead of reading through a variable file to find a particular value of a variable or variables,
an Index identifies the exact location of these observations. An Index is an inverted tree structure that stores values
of key variables in ascending order.

Using a SAS Index can affect the query performance drastically. It could enhance the performance to a great extent
or it could even degrade the performance, depending on where and how we use them. Hence it is imperative that one
should not only evaluate the necessity to Index, but also choose right variable(s) to Index. For this, we would first
need to understand how an index works.

WORKING OF A SIMPLE B-TREE INDEX

There are various types of Indexing algorithms available. The simplest one would be a Binary Tree Index (B-Tree
Index). Below, I’ve illustrated the working of a simple B-Tree Index with the help of an example.

Assume that there is a table containing 100 Student IDs and their age from which you would need to fetch the age of
the Student whose ID is 77. The table is in a sorted order by the ID variable as shown below. To fetch the ID and Age
of the Student having the ID=77, we would write a simple SQL query as shown below.

Figure 1. Table and
the query

2

When we run the query on the above table, when it is not indexed, the processing would occur sequentially. That
means, the SAS would perform 77 Iterations before it hits the right number.

It could be 77 in this scenario, versus a couple of Billion in some other dataset. It is almost impractical to have the
compiler make so many iterations every time you query.

If you Index your dataset (B-Tree in this dataset), the performance is enhanced immensely because the compiler
would not perform so many iterations. When it is indexed and queried, the compiler would compare if the key variable
(77) is less than or greater than 50 (half of the total observations). In our case it is greater; hence it discards the
values 1 to 50. Now it further divides and compares if the value 77 is greater than or less than or greater than 75
(because the midpoint from 50 to hundred is 75). Since its greater, it discards the values from 75 to hundred as well,
and further compares the key variable with the midpoint from 50 to 75.. and so on and so forth. In this example, the
result is retrieved in the 5th Iteration.

Figure 2. Sequential processing

Figure 3. B-Tree

3

The basic goal of having a SAS index is to be able to efficiently extract a small subset of observations from a large
SAS data set. In doing so, the amount of computer resources (CPU time, I/O’s, Elapsed time, etc.) expended should
be less than that of having the SAS read the entire data set sequentially.

For the above example, if the original dataset just had 5 observations (IDs 1, 2, 3, 4, 5) and if we were to search for
the ID 2, then the time taken to calculate the midpoint in each of the iteration and compare them with the keyed value
every time would definitely be more than that of sequentially searching for the observation with the ID 2.

SAS INDEXES

SAS employs more complex mechanisms in creating Indexes. It actually creates a separate index file (having the
extension .sas7bndx) which would have the information of the indexed variable. SAS Indexes can be created in
various mechanisms as described below:

 Index option in a data step

DATA SAS-data-file-name (INDEX=
(index-specification-1</UNIQUE><...index-specification-n</UNIQUE>>));

Where

 SAS-data-file-name is a valid SAS data set name
 index-specification for a simple index is the name of the key variable
 index-specification for a composite index is (index-name=(variable-1...variable-n))
 the UNIQUE option specifies that values for the key variable must be unique for each observation.

 Proc sql

PROC SQL;
 CREATE <UNIQUE> INDEX index-name
 ON table-name(column-name-1<...,column-name-n>);
 DROP INDEX index-name FROM table-name ;
QUIT;

where

 index-name is the same as column-name-1 if the index is based on the values of one column only
 index-name is not the same as any column-name if the index is based on multiple columns
 table-name is the name of the data set to which index-name is associated.

 Proc datasets

PROC DATASETS LIBRARY=libref <NOLIST>;
 MODIFY SAS-data-set-name;
 INDEX DELETE index-name;
 INDEX CREATE index-specification;
QUIT;

where

 points to the SAS library that contains SAS-data-set-name
 libref the NOLIST option suppresses the printing of the directory of SAS files in the SAS log and as ODS

output
 index-name is the name of an existing index to be deleted
 index-specification for a simple index is the name of the key variable
 index-specification for a composite index is index-name=(variable-1...variable-n).

4

EVALUATING THE CREATION OF THE INDEX AND THE VARIABLE TO INDEX

It is important to consider various factors before we decide to Index. I’m dividing these into two sub parts: Dataset
Consideration and the Variable consideration.

Dataset Consideration:

The size of the data that is being retrieved versus the actual size of the dataset is one important consideration. If the
size of the data that is being retrieved is small as compared to the total number of observations, then the
performance would definitely be boosted. Smaller the number of retrieved rows from the original dataset, better the
performance. However, if the number of retrieved data observations is almost equal to the actual dataset, the
performance takes a terrible hit, due to the overload of CPU and I/O processing. The below table (taken from the
Complete Guide to SAS Indexes book) gives us a good picture on the dataset consideration:

Subset Size Indexing Action

1% - 15% An index will definitely improve program performance.

16% - 20% An index will probably improve program performance.

21% - 33% An index might improve or it might worsen program performance.

34% - 100% An index will not improve program performance.

Alongside with this, it is also essential to have the size of the original dataset in mind. But the concept of size is
always relative and hence cannot always be determined and defined.

Variable considerations:

It is always recommended to have the variable with the high cardinality Indexed, which means that these variables
should have a huge number of distinct rows in the dataset. For example, it is a good idea to Index on the Employee
ID (whose cardinality is equal to the number of employees in the company) rather than indexing on the gender of the
employee (which would just be 2).

Also the index would perform better if the indexed variable is already sorted before it is indexed.

Below, I shall include a couple of examples to demonstrate each of the above mentioned scenarios and concepts and
show the remarkable difference in performances while using an Index versus an non indexed data.

Example 1: Simple Index

Below is a program that creates a sample dataset having 300M observations:

DATA TESTDATA;
Y=1;
DO I=1 TO 300000000;
 X=I+1;
 Y=Y+X;
 Z=Y+4;
 IF MOD(I,4)=1 THEN TXT='A';
 IF MOD(I,4)=2 THEN TXT='B';
 IF MOD(I,4)=3 THEN TXT='C';
 IF MOD(I,4)=0 THEN TXT='D'; OUTPUT;
END;
RUN;

5

Upon running the a simple proc sql on the un-indexed dataset to pull 3 observations from the 300M observations, it
takes me about 9 mins (under some I/O, memory conditions)

16 PROC SQL;
17 CREATE TABLE NOINDEX AS
18 SELECT *
19 FROM WORK.TESTDATA
20 WHERE X IN (792302,36273,2361838);
NOTE: Table WORK.NOINDEX created, with 3 rows and 5 columns.

21 quit;
NOTE: PROCEDURE SQL used (Total process time):
 real time 9:01.41
 cpu time 15.96 seconds

However, upon indexing the dataset using the below code, the processing time has reduced about less than half a
second (under the same I/O conditions)

PROC DATASETS LIBRARY=WORK ;
 MODIFY TESTDATA;
 INDEX CREATE X;
QUIT;

16 PROC SQL;
17 CREATE TABLE INDEX AS
18 SELECT *
19 FROM WORK.TESTDATA
20 WHERE X IN (792302,36273,2361838);
NOTE: Table WORK.INDEX created, with 3 rows and 5 columns.

21 QUIT;
NOTE: PROCEDURE SQL used (Total process time):
 real time 0.49 seconds
 cpu time 0.01 seconds

Example 2: Indexing on a variable that does not have high cardinality

Here I run a query to fetch a particular txt value. Below is the result that we get on a non indexed dataset while trying
to fetch results for a single value of txt.

16 PROC SQL;
17 CREATE TABLE NOINDEX2 AS
18 SELECT *
19 FROM WORK.TESTDATA
20 WHERE TXT = 'A';
NOTE: Table WORK.NOINDEX2 created, with 75000000 rows and 5 columns.

21 QUIT;
NOTE: PROCEDURE SQL used (Total process time):
 real time 2:50.39
 cpu time 30.07 seconds

6

Upon indexing the above dataset on txt (which has a very low cardinality of 4), and running the same query upon that,
we can see that the time taken has not changed much. Also the subset of the dataset that is being pulled is about
25%. Hence the chance of the Index helping the query performance is very low.

15 PROC SQL;
16 CREATE TABLE INDEX2 AS
17 SELECT *
18 FROM WORK.TESTDATA
19 WHERE TXT = 'A';
NOTE: Table WORK.INDEX2 created, with 75000000 rows and 5 columns.

20 QUIT;
NOTE: PROCEDURE SQL used (Total process time):
 real time 2:21.53
 cpu time 29.53 seconds

CONCLUSION

Indexing could prove out to be a great tool in SAS especially when there is a need of quick processing of data, or
when we need to have the data given out in real time (Stored processes for example). However, one should also
evaluate the data very well and then index the data because a badly constructed index can result in degradation of
the performance. It is also advisable to keep trying the right combination of the indexing variables by understanding
the frequency of usage of the variable and the structure of the data, in an incremental fashion until we get the optimal
solution.

REFERENCES

RAITHEL, MICHAEL A. 2006. THE COMPLETE GUIDE TO SAS® INDEXES. CARY, NC: SAS INSTITUTE INC

ACKNOWLEDGMENTS

The Author wishes to thank Jeelani Basha, Shalini MR and Jeyvinth Rayan for willing to proofread my papers and
providing valuable comments and suggestions. I would like to thank Jared Moore for all his help, right from getting
information regarding the conference till helping me print this paper. Last and most importantly, I would like to thank
my wife Bhargavi, who has been a constant motivator and support.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Pramod R
Enterprise: Target Corporation Pvt. Ltd
Address: Apt No. 2405, 1117, Marquette Avenue
City, State ZIP: Minneapolis, Minnesota, 55403
Work Phone: 612-272-1958
E-mail: getpramod.r@gmail.com
Web: www.pramod-r.blogspot.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

