
The BEST. Message in the SASLOG

Andrew T. Kuligowski

1

ABSTRACT

Your SAS routine has completed. It is apparently a success – no bad return codes, no ERROR or WARNING
messages in the SASLOG, and a nice thick report filled with what appear to be valid results. Then, you notice
something at the end of the SASLOG that warns you that, somewhere in your output, one or more numbers are
NOT being printed with the formats you requested.

NOTE: At least one W.D format was too small for the number to be

 printed. The decimal may be shifted by the "BEST" format.

This presentation will review an ad hoc routine that can be used to quickly identify numbers that are too large for
your selected format –more quickly and effectively than attempting to eyeball a massive report!

THE PROBLEM

Most users of the SAS system have encountered the following message:

NOTE: At least one W.D format was too small for the number to be

 printed. The decimal may be shifted by the "BEST" format.

You can refer to the manuals to learn the use and benefits of the BEST.w format, which is the default for

numeric variables. However, most users of the SAS System prefer to embellish their output by using the
various output formats available to them. The message listed above informs you that SAS encountered a minor
problem with their routine, and is overriding its original instructions in order to complete its task without error.
The message implies, however, that you do not understand your data as well as you might. In order to eliminate
this message, you will want to isolate the values that are too large for their format, and modify the formats on
your PUT statements, so that you no longer have this condition.

In many cases, the offending data is blatantly obvious on the SAS routine's output. A quick visual scan of the
report will identify the number or numbers whose formats have been adjusted for printing. You can simply
correct those formats and re-execute your SAS routine, without having to perform an extensive analysis or
needing to write and execute assorted ad-hoc routines. In other situations, the problematic output is not as easy
to spot. For example, the report could be very large, with most of the values within it conforming to the expected
format. Or, it might be in a .CSV format, which is harder for the typical human to scan over than columnar
reports. In these cases, you can use some basic tools that the SAS system provides to probe your data.

629 DATA FORMAT42;

630 INFILE CARDS;

631 INPUT @ 1 ACTUAL $CHAR5.

632 @ 1 FMT4_2 5.;

633 FILE LOG ;

634 PUT @ 1 ACTUAL= $CHAR5.

635 @ 15 FMT4_2= 4.2 ;

636 CARDS;

ACTUAL=7.499 FMT4_2=7.50

ACTUAL=14.49 FMT4_2=14.5

ACTUAL=768.1 FMT4_2=768

ACTUAL=1997 FMT4_2=1997

ACTUAL=4858. FMT4_2=4858

ACTUAL=54632 FMT4_2=55E3

NOTE: The data set WORK.FORMAT42 has 6 observations and 2 variables.

NOTE: At least one W.D format was too small for the number to be printed. The

 decimal may be shifted by the "BEST" format.

NOTE: The DATA statement used 0.55 seconds.

Table "A" : Sample Data Illustrating "BEST." Format Override

2

Let us illustrate this situation with a very simple example – let’s say that you will input a series of numbers using
a numeric 5. format, and attempt to output them with a numeric 4.2 format. [Table "A" displays the routine used
to read and write the values. It also contains a table showing the actual value input by the program matched
against the value output via the BEST. format.]

THE ANALYSIS

You need to use a basic assumption to validate the numbers in this example : a 4.2 format should produce a
single-digit number, followed by a decimal point and two decimal places. Therefore, the decimal place should
always be in the same position -- the second from the left -- when the number is printed. The PUT function can
be used to store the number to a character variable using this selected format. (It is suggested that you use the
Zw.d format, which zero-pads the number to the left if necessary. This will ensure that the assumption of aligned
decimals will be valid in examples when the number in question is expected to be greater than 9.) Once the
formatted value is stored electronically, you can use the INDEX function to determine if the decimal place is in
the expected position. [Table "B" contains the validation ad-hoc, along with a tabular listing of its results.]

644 DATA _NULL_ ;

645 SET FORMAT42;

646 C_FMT4_2 = PUT(FMT4_2, Z4.2);

647 WHERE_PT = INDEX(C_FMT4_2, '.');

648 FILE LOG ;

649 PUT @ 1 ACTUAL $CHAR5.

650 @ 7 C_FMT4_2 $CHAR4.

651 @ 12 WHERE_PT 1.;

652 RUN ;

7.499 7.50 2

14.49 14.5 3

768.1 0768 4

 1997 1997 0

4858. 4858 0

54632 55E3 0

NOTE: At least one W.D format was too small for the number to be printed. The

 decimal may be shifted by the "BEST" format.

NOTE: The DATA statement used 0.28 seconds.

Table "B" : Validation Ad-Hoc (and Results) #1

The combined use of the PUT and INDEX functions can also be used to isolate data that exceed the anticipated
precision when your values do not contain decimal places. When a whole number exceeds the expected
precision, the BEST. format override will use scientific notation. You can use the INDEX function to locate the
first occurrence of "E" in your number, as formatted by the PUT function. A value of 0 indicates that "E" is not
present; this is the expected condition. However, a non-zero value can be interpreted to mean that SAS
converted our number to scientific notation.

This discussion of which values of the INDEX function are and are not valid under certain circumstances can get
confusing. You may find it easier to convert them into text, to clearly differentiate valid from invalid values.
[Table "C” contains a complete example of this validation technique, illustrating the search for both invalid
decimal places and scientific notation, and the conversion of numeric responses into text values.]

3

673 DATA _NULL_ ;

674 SET FORMAT42;

675 C_FMT4_2 = PUT(FMT4_2, Z4.2);

676 WHERE_PT = INDEX(C_FMT4_2, '.');

677 WHERE_E = INDEX(C_FMT4_2, 'E');

678 IF WHERE_PT ^= 2 THEN

679 ERRNOTE1 = 'DECIMAL';

680 IF WHERE_E ^= 0 THEN

681 ERRNOTE2 = 'EXPONENTIAL';

682 FILE LOG ;

683 PUT @ 1 ACTUAL $CHAR5.

684 @ 7 C_FMT4_2 $CHAR4.

685 @ 13 ERRNOTE1 $CHAR10.

686 @ 24 ERRNOTE2 $CHAR12.;

687 RUN ;

7.499 7.50

14.49 14.5 DECIMAL

768.1 0768 DECIMAL

 1997 1997 DECIMAL

4858. 4858 DECIMAL

54632 55E3 DECIMAL EXPONENTIAL

NOTE: At least one W.D format was too small for the number to be printed. The

 decimal may be shifted by the "BEST" format.

NOTE: The DATA statement used 0.28 seconds.

Table "C" : Validation Ad-Hoc (and Results) #2

THE SOLUTION

In this example, you can see that the largest value being read in contains 5 significant digits to the left of the
decimal place. You can also see that the most precise value contains 3 decimal places. There are several
possible solutions to our problem. If you want to print all values that you have read in, you can change the code
to output the value using a Z9.3 format, or you can change the code to output the value using a Z8.2 format if
you only need two decimal places. On the other hand, if you want to flag large numbers as erroneous values,
you can put in validation code that watches for and traps numbers >=10, only printing values that can be
properly printed in the requested 4.2 format.

ADDITIONAL CONDITION(S) DISCOVERED SINCE ORIGINAL PUBLICATION

This presentation was originally written on a purely theoretical basis; that is, not to solve an immediate business
problem but as an academic exercise to satisfy the author’s curiosity. Since then, this situation has come up on
occasion during the course of a typical business day – or worse, evening / weekend. This “academic exercise”
has justified the effort to create it many times over. During one of those real-world opportunities to use this ad
hoc, an additional condition was discovered that triggered this error message, as show in Table “D”:

5786 DATA _NULL_;

5787 X = 1000;

5788 PUTLOG X= 2.;

5789 RUN;

X=**

NOTE: At least one W.D format was too small for the number to be printed. The

 decimal may be shifted by the "BEST" format.

Table "D" : SAS Displays Asterisks

4

The asterisk is SAS’s symbol of surrender; that there is no way to print any reasonable representation of the
requested number. In the example shown in Table “D” above, 1000 could be represented in Exponential
Notation if the requested length was 3 digits, but there are no valid formats known to SAS which would allow it
to represent the number in only 2 characters. Therefore, SAS prints 2 asterisks instead.

It is recommended that an additional check – for asterisks – be added to any code that is written as a result of
this presentation.

The author welcomes any further examples that readers might encounter during their own experiences; contact
information can be found at the end of this paper.

CONCLUSION

This paper addressed one message that is commonly found in a SASLOG. It discussed the use of an ad hoc
routine to explore WHY that message occurred, and covered how to modify a routine to prevent the recurrence
of that message. It is hoped that the mechanisms discussed in this paper might be used by the readers in their
daily jobs. However, this paper is a failure -- at least in part -- if the process stops there. It is hoped, even more
strongly, that the concepts of developing and using ad hoc routines to fully understand ones data are the true
lessons that the reader retains from this paper.

BIBLIOGRAPHY
REFERENCES / FOR FURTHER INFORMATION

Burlew, Michele M. (2001). Debugging SAS Programs – A Handbook of Tools and Techniques. Cary, NC:
SAS Institute, Inc.

Kuligowski, Andrew T. (2002), "Pruning the SASLOG – Digging into the Roots of NOTEs, WARNINGs, and
ERRORs". Proceedings of the New Mexico SAS Users Day Conference of the SouthCentral SAS Users Group.
USA.

SAS Institute, Inc. (1990), SAS Language: Reference, Version 6, First Edition. Cary, NC: SAS Institute, Inc.

SAS Institute, Inc. (1994), SAS Software: Abridged Reference, Version 6, First Edition. Cary, NC: SAS
Institute, Inc.

SAS is a registered trademark or trademark of SAS Institute, Inc. in the USA and other countries.

 indicates USA registration.

The author can be contacted via e-mail at:

KuligowskiConference@gmail.com

mailto:KuligowskiConference@gmail.com

