
1

Paper S1-15

Copy and Paste Almost Anything

Arthur S. Tabachneck, myQNA, Inc., Thornhill, Ontario (Canada)
Randy Herbison, Westat, Rockville, MD

John King, Ouachita Clinical Data Services, Inc., Mount Ida, AR
Richard A. DeVenezia, Independent Consultant, Remsen, NY

Nate Derby, Stakana Analytics, Seattle, WA
Ben Powell, Genworth Financial, London, England

ABSTRACT

Every day, data appear on computer screens in the form of spreadsheets, wiki pages, HTML, PDF, Word documents
or any of the methods that are used to display data forms and tables. And, with any of those formats you can
typically highlight and copy only the data you desire to your computer's clipboard. However, because there currently
isn't a PROC IMPORT dbms=clipbrd option, how can you paste such data into a SAS® dataset? The present paper
provides code that we believe can be used to accomplish most such tasks and, at the same time, provides examples
of features that we think should be available in PROC IMPORT for all DBMS options.

BACKGROUND

The present paper began as an effort to see if datastep techniques could be used to create a non ad hoc PROC
IMPORT-like program that one might be able to use for importing data from their system's clipboard. Like many of
the current authors’ papers, the question was raised on either SAS-L or the SAS Discussion Forums. And, like many
of the questions raised on such forums, the question can either be answered with code designed for a specific
purpose or, as in the present case, more generalizable code can be offered.

SAS has provided the clipbrd access method since at least Version 6, but it appears to only be accessible via either
datastep code or SAS/AF, does not include most of the options provided with other methods, and has an inherent
limitation in that tabs are converted into a series of spaces. However, the method still appears to be capable of
allowing one to create datastep code that accomplishes many of the same tasks that PROC IMPORT provides for
other access methods.

PROC IMPORT accomplishes a number of background tasks that many of us might take for granted. For example,
variable names are either automatically assigned or extracted from the input data, are modified to ensure that they
represent valid SAS variable names and, additionally, are stored as variable labels. Data formats and informats,
similarly, are selected and assigned based on the patterns that are found to exist in the input data. And, as needed
to import a particular type of data that PROC IMPORT was designed to facilitate, various options are available for
users to indicate their specific requirements.

PURPOSE

The purpose of the present effort was to create code that, without modification, could be used to import data from a
system's clipboard. Like PROC IMPORT, which provides users with different options based on the types of files they
are trying to import, the code presented in this paper was designed to let users paste four different types of data
tables and specify their desired options for each. Two of those types appear to be identical on one's monitor, namely
with variable names across the top row of the table, followed by any number of rows which contain values for each
variable.

An example of such a table is shown in Figure 1 on the following page. If one were to create a SAS dataset based on
the last two rows of that table, they might create a file labeled "tenure ", with eight variables, namely one for "Type"
and one for each of the seven categories for which percentages are displayed.

However, before one can import such a table, they must copy it using a browser or software that maintains the
horizontal tabs which separate the table's columns. Google Chrome appears to do this quite reliably for non-pdf files,
Internet Explorer requires one to click on file->edit with Microsoft Word before being able to do it successfully, and
version 6 of Adobe Acrobat Reader with a free downloadable add-on appears to work quite well for pdf files.

2

Source: http://en.wikipedia.org/wiki/Household_income_in_the_United_States

Figure 1
A type of table commonly found on the web

For example, when the file shown in Figure 1 is highlighted and copied using one of those methods, and then pasted
into a text editor (like notepad), it might appear in a text editor as shown in Figure 2.

Figure 2
The way such a file really looks after being copied to a system's clipboard

Specifically, as shown in Figure 2, the clipboard will contain a tab-delimited file with variable names shown in the first
record, and the data shown in the records that follow the variable names.

Now, if you were asked to create the SAS dataset shown in Figure 3, where would you begin (other than asking some
very nice, careful person to re-enter all of the data)?

Figure 3
The SAS file you really want

http://en.wikipedia.org/wiki/Household_income_in_the_United_States

3

In this particular situation, if one were to paste the table in a text editor (like Notepad), and save it with a .txt
extension, PROC IMPORT could have correctly done all of the desired tasks except for renaming the first variable
name. Conversely, if one were to paste the table into, and save the file as, an Excel spreadsheet, PROC IMPORT
would necessarily import all seven rows and the variable formatting would be lost.

With the code provided in the present paper the file you can be imported directly from your system’s clipboard, only
import the desired rows, and be able to change the first variable’s name without having to write and run any additional
datasteps.

A table that looks quite similar, but which PROC IMPORT can't correctly import even with the help of a text editor, is
one like that found at http://www.thelawyer.com/directory/uk-200-table-top-100/ and shown, below, in Figure 4. If you
were to use your mouse to highlight the table, you would notice that all 101 rows get highlighted for each column
separately. If you were to then paste the contents of the clipboard into a text editor (like Notepad), you would
discover a single column, 404 row table. However, this type of table can also be imported directly using the code
provided in the present paper. Additionally, if you wanted to change the two right most variable names to "Revenue"
and "PEP", and convert the data to represent the actual units of measurement instead of simply indicating those units
in the variable names, both tasks could easily be accomplished with the code provided in the current paper.

Figure 4
A table that copies as a long single column

A third type of table one might encounter is one that needs to be transposed in order to result in a meaningful SAS
dataset. An example of such a table would be one where the variable names are provided in the first column and the
data for each variable provided in the remaining columns. To import such a table using PROC IMPORT, one would
have to save the file in one or another format, import it, transpose the file using the information in the first column as
an ID, and then include a datastep to create new variables that reflect the actual data (e.g., numeric rather than
character) and apply the desired formats. Again, using the code provided in the present paper, accomplishing such a
task can be done quite easily.

A fourth type of data one often encounters is the form, or structured printout, as shown in Figure 5 on the following
page. Such files not only pose all of the complexities of the other three types, but can also contain such complexities
as multiple fields per row, multiple and possibly even variable numbers of rows per field, and boundary locations
and/or keystrings. The example shown in Figure 5 is a rather simple example of such a form, namely the result of a
library search for books that have been written by Stephen King.

http://www.thelawyer.com/directory/uk-200-table-top-100/

4

If one were to copy and paste the table in a text editor, they would likely see a file that has seven rows per record,
with the first row containing an irrelevant search result number, followed a row that only contains the book's title, a
row that contains the author (always preceded with the string "by "), a row showing the language the book is written in
(always preceded with the string "Language: "), a row showing book's publisher (always preceded with the string
"Publisher: ") and, finally, a row containing the string "View all editions and formats" which signifies the last record for
a given book.

Figure 5
An example of a form or structured printout

The code provided in the present paper can be used to "paste" all four types of tables, as long as a table's structure
can be defined using the code’s logic and macro variables. The code includes comments which explain how to
specify a number of macro variables that were included to provide mechanisms for accomplishing options which we
thought users might appreciate when importing such tables. The present paper describes each of those options, as
well as provides suggestions for some freeware that users might find helpful in their efforts to copy and paste data
tables from various sources.

THINGS WE'D LIKE TO SEE IN PROC IMPORT

In designing the code for this project we attempted include much of the functionality that PROC IMPORT currently
provides for other methods (without, of course, reverse engineering the procedure). However, we discovered some
additional functionality that was needed to correctly import the three types of data tables described earlier and noted
that some of PROC IMPORT's current options were only included for certain file types. Once we discovered that the
original intent of the project turned out to be much easier to accomplish than we had anticipated, we decided to
expand the project to investigate additional useful options we would want to include above and beyond those
currently offered with PROC IMPORT.

The following options and capabilities are all built into the code provided in the present paper. We could and
probably will submit these as SASWare ballot items, but no one would vote for them unless they understood the
potential benefits. Our rationale for each is described below.

Including the clipbrd as a valid dbms. While the code offered in this paper provides that capability, it would

definitely be preferable to have a routine that was supported, documented, improved with newer versions, and
written more efficiently than we could attain using only datastep techniques.

5

The ability to refer to variables according to their position. This was essential to allow one to name

variables that had blank names in a given data table, but it also turned out to be quite useful in adding such
things as prefixes, suffixes, formats, informats and measurement units.

The ability to name and rename variables. This was critical when a data table had an unnamed variable, and

could always be accomplished in an additional datastep, but we found it to be quite useful as the variable names
provided by the original authors were often not the ones we would have chosen.

The ability to add variable name prefixes and suffixes. We discovered a number of cases where the

meaning of a variable name was only implied given the context of the web page from which we were obtaining
the data. For example, the page might only specify something like 2009, 2010 and 2011 as the variable names
for variables 3 thru 5, but really represented actual_2009_revenue, actual_2010_revenue, and
actual_2011_revenue.

The ability to specify a map that could be used to parse a structured document. The SAS Institute could

probably come up with a better way of defining the map than that which we built into the current code, but such a
map is essential in order to import such data.

The ability to add variable labels. Why not?

The ability to capture variables whose names are defined across more than one row, as well as to
specify that merged cells should be applied to more than one variable. Currently, PROC IMPORT doesn't

do either.

The ability to specify the row at which the data actually begin. PROC IMPORT currently only allows this

capability with one file type, but it is applicable to all types of files.

The ability to indicate that data must be transposed. While SAS datasets can always be transposed after

they are created, the task is often non-trivial, may require multiple steps and, most often, also requires additional
datasteps in order to ensure that the correct variable names, data types, formats and informats have been
applied.

The ability to specify which rows should be considered when determining lengths, formats and
informats. The current PROC IMPORT GuessingRows' settings vary across file types and are not even

available for some data types. More importantly, none of the current options allow one to specify a particular
range of data rows that should be used. For example, if the user decides that row six best describes all of the
data, they have no direct way to indicate that fact.

The ability to specify variable formats and informats. Sometimes we simply don't want the system to guess,

as we know which formats and informats we want applied.

The ability to change any variable's unit of measurement. This option currently isn't available, but we found

it to be quite useful.

The ability to assign missing values for specific data. PROC IMPORT currently doesn't provide a way for

users to tell the system that certain values, for certain variables, should be considered as missing. Instead, they
either have to be dealt with in a subsequent datastep or reflected in numerous undesired log notes.

The ability to indicate whether any specific data should be upcased. Again, why not?

The ability to indicate that certain columns should be dropped. Again, why not?

TRUTH IN ADVERTISING

The code presented in this paper is not intended to be a substitute for PROC IMPORT, may not work on all systems
or with all software, should not be used if such use violates any copyright or terms of agreement, is not production
quality, and IS ONLY PROVIDED AS IS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. The authors shall not be liable whatsoever for any damages
arising out of the use of this documentation or code, including any direct, indirect, or consequential damages. In
addition, the authors will provide no support for the materials contained herein.

6

A number of websites explicitly state that they do not condone extracting data from their pages using the types of
methods described in this paper, and some things on the web have similar prohibitions and/or conditions regardless
of the methods that might be used to extract the data. Of course, many sites do not have such prohibitions and some
only limit the amounts of data that may be extracted. For example, worldcat.org's terms of agreement explicitly
prohibits the use of bots, spiders, or other automated information-gathering devices or programming routines to
"mine" or harvest material amounts of Data. It is the user's responsibility to ensure that harvesting data from any site
is a permissible activity.

THE CODE

The code described in this paper, and presented in Appendix I, can be downloaded at:
http://www.sascommunity.org/wiki/Copy_and_Paste_Almost_Anything

COMBINING THE CODE WITH OTHER METHODS

While this project’s goals were accomplished with the aforementioned code, the code can easily be combined with
other methods (such as DDE) to automate parts of the process. As an example, the following code could be run
before the code in order to open a specific worksheet within a given Excel workbook, highlight the desired columns,
and copy those columns to your system’s clipboard:

filename ddecmds dde "excel|system";

options noxwait noxsync;

/* Note: The following line may have to be changed to reflect the actual

 location of your copy of Excel */

x '"C:\Program Files\Microsoft Office\Office11\EXCEL.exe"';

data _null_;

 z=sleep(3); run;

data _null_;

 file DDEcmds;

 put '[open("c:\YourWorkbookName.xls")]';

 x=sleep(3);

 run;

data _null_;

 file DDEcmds;

 put '[workbook.activate("Sheet1")]';

 put '[select("C1:C6")]';

 put '[copy()]';

run;

data _null_;

 file DDEcmds;

 put '[error(false)]';

 put '[quit()]';

run;

Since the above code could be used to automatically highlight and copy a group of cells in a specific workbook, it
could be substituted for the first step required to use the code described in this paper, namely the action of
highlighting and copying a table to one’s clipboard.

DISCLAIMER

The contents of this paper are the work of the authors and do not necessarily represent the opinions, practices or
recommendations of their respective organizations.

http://www.sascommunity.org/wiki/Copy_and_Paste_Almost_Anything

7

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Arthur Tabachneck, Ph.D. John King
myQNA, Inc. Ouachita Clinical Data Services, Inc.
Thornhill, ON Canada Mount Ida, AR
E-mail: atabachneck@gmail.com E-mail: ouachitaclinicaldataservices@gmail.com

Randy Herbison Richard A. DeVenezia
Senior Systems Analyst Independent Consultant
Westat 9949 East Steuben Road
1650 Research Boulevard Remsen, NY13438
Rockville, MD 20850 http://www.devenezia.com/contact.php
E-mail: RandyHerbison@westat.com

Ben Powell Nate Derby
Genworth Financial Stakana Analytics
London, England 815 First Avenue, Suite 287
E-mail: ben.powell@genworth.com Seattle, WA 98104-1404
 E-mail: nderby@stakana.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

8

APPENDIX I

/*******************************I m p o r t a n t******************************

Name: paste.sas

Authors: Arthur Tabachneck, John King, Ben Powell, Nate Derby,

 Richard DeVenezia and Randy Herbison

Date: July 23, 2011

Modified: July 24, 2012

Warnings and Disclaimer: This code is NOT a substitute of PROC IMPORT, may not

 work on all systems, should NOT be used if such use

 violates any copyright or terms of agreement, is NOT

 production quality and is only provided "as is"

 without warranty of any kind, either express or

 implied, including, but not limited to, the implied

 warranties of merchantability, fitness for a

 particular purpose, or non-infringement. The authors

 shall not be liable whatsoever for any damages arising

 out of the use of this documentation or code,

 including any direct, indirect, or consequential

 damages. In addition, the authors will provide no

 support for the materials contained herein.

******************************D i s c l a i m e r*****************************/

options NOQUOTELENMAX;

options datestyle=mdy;

filename clippy clipbrd;

filename revised temp;

%let transpose=NO; *leave as %let transpose=NO;

 *UNLESS table must be transposed. In such cases set this

 macro variable to: %let transpose=YES;

%let columns=; *leave as %let columns=;

 *UNLESS table must be transposed or is in long form with only

 one column and each cell represented on a separate row. In such

 cases specify the number of columns the data represent (not the

 number of columns that were copied) e.g., %let columns=4;

%let rows=; *leave as %let rows=;

 *UNLESS table must be transposed or is in long form with only one

 column and each cell represented on a separate row. In such cases

 specify the number of rows the data represent (not the number of

 rows that were copied), including the rows for both variable names

 and data. e.g., %let rows=12;

%let data_form=; *leave as %let data_form=;

 *UNLESS the data represent a form rather than a table, in which

 case this macro variable must be set to YES and the

 form_varnames dataset must be created to match the form;

%let hrows=1; *indicates that variable names are found on first &hrows. rows.

 A value of 0 indicates that there are no variable names. This

 macro variable must be set to 1 for data from data forms;

%let spaces=" "; *number of consecutive spaces that should be translated

 to represent a horizontal tab;

%let first_data_row=2; *indicates the row on which the data begin. This macro

 variable must be set to 2 for data from data forms;

%let var_renames=; *specify variables to be named or renamed. A ~ must be used

 to separate variable number and variable name, and either a

 space or different line to specify multiple entries. E.g.,

 to specify that variable 1 should be named "Country" and

 variable 3 should be named "revenue", you would specify:

9

 %let var_renames=1~Country

 3~revenue;

 *to indicate that no variables are to be renamed leave the

 line as: %let var_renames=;

%let var_labels=; *specify any variable labels that you want. A ~ must be used

 to separate a variable number and its label, and multiple

 entries may be on separate line or be separated by spaces.

 If a label includes embedded spaces, use a ^ to represent

 each space. E.g., to specify that variable 2 should be

 labeled "Street Address and that variable 3 should be

 labeled "Home Phone", you would specify:

 %let var_labels=2~Street^Address

 3~Home^Phone;

 *to indicate that you don't want to assign any variable

 labels leave the line as: %let var_labels=;

%let var_share=; *specify any variables for which a prefix should be taken from

 another variable's value.

 For example, if the clipboard contains a table where the

 string "Revenue" is on the first row but spans across two

 merged cells, it is likely that the value will only actually

 exist in the left most cell.

 Thus, given the following table headers:

 Revenue Expenses

 2010 2011 2010 2011

 to cause them to be read as: Revenue_2010, Revenue_2011,

 Expenses_2010 and Expenses_2011 you would specify:

 %let var_share=3~2

 5~4;

 *to indicate that you don't have any such variable

 name sharing needs, simply leave the line as:

 %let var_share=;

%let var_prefix=; *Indicate any string you want added to the left of any

 variable name. A ~ must be used between variable number(s)

 and prefixes, and you can include multiple prefixes on

 either separate lines or separate them with spaces. If you

 want the same prefix used for a range of variables, specify

 the range as #-#. E.g., if variables 2 and 3 are named 1996

 and 1997, and you want them to be named Price_1996 and

 Price_1997 you would specify: %let var_prefix=2-3~Price_;

 *Any variable that starts with a number, and isn't assigned a

 prefix, will automatically be assigned a prefix of "_". To

 indicate that no prefixes are to be assigned leave the line

 as: %let var_prefix=;

%let var_suffix=; *Indicate any string you want added to the right of any

 variable name. A ~ must be used between variable number(s)

 and suffixes, and you can include multiple suffixes on

 either separate lines or separate them with spaces. If you

 want the same suffix used for a range of variables, specify

 the range as #-#. E.g., if variables 2 and 3 are named 1996

 and 1997, and you want them to be named _1996_cost and

 _1997_cost, you would specify: %let var_suffix=2-3~_Cost;

 *To indicate that no suffixes are to be assigned leave the

 line as: %let var_suffix=;

10

%let var_drop=; *leave the line as %let var_drop=; *unless* you want to exclude

 any variables. Specify any variables that you want dropped

 from the table. A ~ must be used to separate variable

 number(s) and the string "YES", and either a space or separate

 line to indicate additional entries. If you want a range of

 variables to be dropped, specify the range as #-#. E.g., if

 variable 3 and variables 5 thru 7 are to be dropped, specify:

 %let var_drop=3~YES

 5-7~YES;

%let var_upcase=; *leave the line as %let var_upcase=; *unless* you want to

 upcase any variables. Specify any variables that you want

 upcased. A ~ must be used to separate variable number(s)

 and the string "YES", and either a space or separate line to

 indicate more than one entry. If you want to upcase a range

 of variables specify the range as #-#. E.g., if variable 3

 and variables 5 thru 7 are to be upcased, specify:

 %let var_upcase=3~YES

 5-7~YES;

%let var_missing=; *specify any values that you want to be considered as

 missing for any variable. A ~ must be used to separate

 variable number(s) and sets of missing values, and either a

 space or separate line to represent additional entries. If

 a missing value includes any embedded spaces, use a ^ to

 represent each desired space.

 To specify sets of values, separate each value with an `.

 E.g., to specify that "n/a" and "n.a." should be considered

 missing values for variables 2 thru 4, and the number 9

 considered as missing for variable 5, you would specify:

 %let var_missing=2-4~n/a`n.a.

 5~9;

 *if don't have any values that you want considered as

 missing, simply leave the line as: %let var_missing=;

%let var_formats=; *specify any formats that you want applied. A ~ must be

 used to separate variable number(s) and formats, and either

 a space or separate line to represent additional entries.

 If you want the same format used for a range of variables,

 specify the range as #-#. E.g., if you want the format

 date9. applied for variable 1 and best12. applied for

 variables 2 thru 4, you would specify:

 %let var_formats=1~date9.

 2-4~best12.;

 *to indicate that you aren't assigning any formats, leave

 the line as: %let var_formats=;

%let var_informats=; *specify any informats that you want applied. A ~ must be

 used to separate variable number(s) and informats, and

 either a space or separate line to represent additional

 entries. If you want the same informat used for a range

 of variables, specify the range as #-#. E.g., if you

 want the informat anydtdte22. to be used for variable 1

 and best12. to be used for variables 2 thru 4, you would

 specify:

 %let var_informats=1~anydtdte22.

 2-4~best12.;

 *to indicate that you don't have any informats to assign

 leave the line as: %let var_informats=;

%let var_units=; *specify any number that you want data to be multiplied by. A

 ~ must be used to separate variable number(s) and units, and

 either a space or separate line to represent additional

11

 entries. If you want the same values to be used for a range

 of variables, specify the range as #-#.

 E.g., if you want variable 3 to be multiplied by 0.01 and

 variables 4 thru 7 multiplied by 1,000, you would specify:

 %let var_units=3~.01

 4-7~1000;

 *to indicate that you don't have any units to assign leave the

 line as: %let var_units=;

%let guessingrows=; *specify the range of rows that you want the code to

 consider in determining formats and informats. Formats and

 Informats will only be guessed if you do not specify them

 in the var_formats and var_informats macro variables.

 E.g., if you only want the third row used to guess the

 formats and informats, you would specify:

 %let guessingrows=3-3;

 *to indicate that all rows are to be evaluated, leave the

 line as: %let guessingrows=;

%let outfile=want;

%macro flipfile;

 %if &columns. gt 0 and &rows. gt 0 %then %do;

 %if &transpose. eq YES %then %do;

 data temp;

 infile clippy;

 length temp $32767;

 input;

 infile=tranwrd(_infile_, &spaces., '09'x);

 j=_n_;

 do i=1 to &rows.;

 temp=strip(scan(_infile_,i,,"HM"));

 output;

 end;

 run;

 %end;

 %else %do;

 data temp;

 infile clippy;

 length temp $32767;

 input;

 temp=_infile_;

 if _n_ eq 1 then do;

 i=0;

 j=1;

 end;

 i+1;

 output;

 if i eq &rows.+&hrows. then do;

 j+1;

 i=0;

 end;

 run;

 %end;

 proc sort data=temp;

 by i j;

 run;

 data _null_;

 length holdrec $32767;

 retain holdrec;

 file clippy;

12

 set temp;

 if mod(_n_,&columns.) eq 1 then holdrec=strip(temp);

 else holdrec=cat(strip(holdrec),"09"x,strip(temp));

 if mod(_n_,&columns.) eq 0 then put holdrec;

 run;

 proc delete data=work.temp;

 run;

 %end;

 %if &data_form. eq YES %then %do;

 proc sql noprint;

 select varname into :var_names

 separated by "~"

 from form_varnames

 ;

 quit;

 %let var_cnt=&sqlobs.;

 data _null_;

 infile clippy;

 file revised lrecl=32767;

 length holdrec $32767;

 length temp $32767;

 array varids(&var_cnt.) $32.;

 array findhead(&var_cnt.);

 array varpreskip(&var_cnt.);

 array varpostskip(&var_cnt.);

 retain varids findhead varpreskip varpostskip

 newrec holdrec;

 input;

 infile=tranwrd(_infile_, &spaces., ' ');

 if _n_ eq 1 then do;

 /****** obtain and rewrite variable names ******/

 do j=1 to &var_cnt.*5-4 by 5;

 i=input(scan("&var_names.",j,"~"),best12.);

 varids(i)=strip(scan("&var_names.",j+1,"~"));

 if i eq 1 then holdrec=

 strip(scan("&var_names.",j+1,"~"));

 else holdrec=cat(strip(holdrec),"09"x,

 strip(scan("&var_names.",j+1,"~")));

 findhead(i)=scan("&var_names.",j+2,"~");

 varpreskip(i)=input(scan("&var_names.",j+3,"~"),3.);

 varpostskip(i)=scan("&var_names.",j+4,"~");

 if i eq &var_cnt. then put holdrec;

 end;

 end;

 /****** read and rewrite data ******/

 var_counter+1;

 do i=1 to varpreskip(var_counter);

 input;

 infile=tranwrd(_infile_, &spaces., ' ');

 end;

 if findhead(var_counter) then do;

 y=index(_infile_,strip(varids(var_counter)));

 z=y+length(strip(varids(var_counter)));

 end;

 else z=1;

 temp=strip(substr(_infile_,z));

 if var_counter eq 1 then holdrec=temp;

 else holdrec=catx("09"x,holdrec,temp);

 do i=1 to varpostskip(var_counter);

 input;

 infile=tranwrd(_infile_, &spaces., ' ');

 end;

 if var_counter eq &var_cnt. then do;

 put holdrec;

13

 var_counter=0;

 end;

 run;

 data _null_;

 file clippy;

 infile revised lrecl=32767;

 input;

 put _infile_;

 run;

 %end;

%mend flipfile;

%macro expandr (type,string);

 i=1;

 hold_rec="";

 do while (scan("&string.",i," ") ne "");

 if scan(scan(scan("&string.",i," "),1,"~")

 ,2,"-") ne "" then do;

 start=scan(scan(scan("&string.",i," "),

 1,"~"),1,"-");

 end=scan(scan(scan("&string.",i," "),

 1,"~"),2,"-");

 end;

 else do;

 start=scan(scan("&string.",i," "),1,"~");

 end=scan(scan("&string.",i," "),1,"~");

 end;

 do j=start to end;

 hold_rec=catx(" ",hold_rec,

 cat(strip(j)||"~"||

 strip(scan(scan("&string.",i," "),2,

 "~"))));

 end;

 i+1;

 end;

 call symput(&type.,strip(hold_rec));

%mend expandr;

%macro filarray (type,string);

 if scan("&string.",i," ") ne "" then

 &type(scan(scan("&string.",i," "),1,"~"))=

 scan(scan("&string.",i," "),2,"~");

%mend filarray;

*Note: the following datastep only needs to be modified if the data represent a

 form rather than a table. If the data represent a form then the following

 datastep must be modified, as described below, to indicate how the data should

 be read.

 If your data represent a table, then do not modify the following datastep;

 data form_varnames;

 informat varname $50.;

 input varname &;

/* Note: **

 varname consists of 5 fields separated by a ~. The fields, from left to

 right, represent: the variable number, the variable name (or, if the

 variable is preceded by a field header, the exact field header), whether the

 variable name is the header that will precede variable values, the

 the number of lines that must be skipped before the data will be found and,

 for the last variable, the number of lines that must be skipped before the

 next record is found.

**/

 cards;

1~Title~0~1~0

14

2~by~1~0~0

3~Type~0~0~0

4~Language:~1~0~0

5~Publisher:~1~0~1

;

%flipfile

data _null_;

 length hold_rec $32767;

 infile clippy;

 input;

 infile=tranwrd(_infile_, &spaces., '09'x);

 var_count=countc(_infile_,,"H")+1;

 call symput('var_count',strip(put(var_count,8.)));

 %expandr("var_formats",&var_formats.);

 %expandr("var_informats",&var_informats.);

 %expandr("var_missing",&var_missing.);

 %expandr("var_units",&var_units.);

 %expandr("var_prefix",&var_prefix.);

 %expandr("var_suffix",&var_suffix.);

 %expandr("var_upcase",&var_upcase.);

 %expandr("var_drop",&var_drop.);

 %expandr("var_labels",&var_labels.);

 %expandr("var_share",&var_share.);

 stop;

run;

data _null_;

 file revised lrecl=32767;

 infile clippy end=eof;

 array headers(%sysfunc(max(&hrows.,1))) $32767.;

 array varnames(&var_count.) $32.;

 array formats(&var_count.) $32.;

 array informats(&var_count.) $32.;

 array renames(&var_count.) $32.;

 array prefix(&var_count.) $32.;

 array suffix(&var_count.) $32.;

 array labels(&var_count.) $32.;

 array miss(&var_count.) $255.;

 array upcases(&var_count.) $3.;

 array drops(&var_count.) $3.;

 array units(&var_count.) $32.;

 array share(&var_count.) $32.;

 array varlens(&var_count.);

 array vartypes(&var_count.);

 length hold_rec temp ivartype fvartype var_units

 var_names var_labels var_drop $32767;

 length missval $255;

 retain headers renames varnames vartypes varlens

 formats informats units prefix suffix labels

 miss upcases drops share grows_start grows_end;

 input;

 infile=tranwrd(_infile_, &spaces., '09'x);

 if _n_ le &hrows. then headers(_n_)=tranwrd(tranwrd(tranwrd(

 infile, '%', 'percent'),'-','_to_'),'-','_to_');

 if _n_ eq &hrows. or (_n_ eq 1 and &hrows eq 0) then do;

 grows_start=scan("&guessingrows.",1,'-');

 if missing(grows_start) then grows_start=&first_data_row.;

 grows_end=scan("&guessingrows.",2,'-');

 if missing(grows_end) then grows_end=999999;

 var_drop="";

 do i=1 to &var_count.;

 %filarray(renames,&var_renames.);

 %filarray(prefix,&var_prefix.);

 %filarray(suffix,&var_suffix.);

 %filarray(units,&var_units.);

 %filarray(formats,&var_formats.);

15

 %filarray(informats,&var_informats.);

 %filarray(upcases,&var_upcase.);

 %filarray(drops,&var_drop.);

 %filarray(labels,&var_labels.);

 %filarray(miss,&var_missing.);

 %filarray(share,&var_share.);

 if &hrows. eq 0 then varnames(i)=cat("Col"||strip(i));

 else do;

 /****** obtain and assign variable names ******/

 varnames(i)="";

 do j=1 to &hrows.;

 if j eq 1 and share(i) ne "" then do;

 if strip(scan(headers(j),share(i),,"HM")) ne "" then

 varnames(i)=strip(scan(headers(j),share(i),,"HM"));

 end;

 else do;

 if strip(scan(headers(j),i,,"HM")) ne "" then do;

 if strip(varnames(i)) ne "" then varnames(i)=

 strip(varnames(i))||"_"||strip(scan(headers(j),i,,"HM"));

 else varnames(i)=strip(scan(headers(j),i,,"HM"));

 end;

 end;

 if j eq &hrows. and varnames(i) eq "" then

 varnames(i)=cat("Col"||strip(i));

 end;

 end;

 if renames(i) ne "" then varnames(i)=renames(i);

 if prefix(i) ne "" then varnames(i)=

 strip(prefix(i))||strip(varnames(i));

 if suffix(i) ne "" then varnames(i)=

 strip(varnames(i))||strip(suffix(i));

 if strip(labels(i)) eq "" then

 labels(i)=strip(varnames(i));

 else labels(i)=tranwrd(strip(labels(i)), '^', ' ');

 varnames(i)=tranwrd(strip(varnames(i)),'%', 'percent');

 varnames(i)=tranwrd(strip(varnames(i)),'-','_to_');

 varnames(i)=tranwrd(strip(varnames(i)),'-','_to_');

 varnames(i)=tranwrd(strip(varnames(i)),'#', 'number');

 varnames(i)=tranwrd(strip(varnames(i)), ' ', '_');

 varnames(i)=compress(varnames(i),,'kn');

 if anydigit(substr(varnames(i),1,1)) then

 varnames(i)=cat("_",strip(varnames(i)));

 var_names=catx(" ",var_names,strip(varnames(i)));

 var_labels=cat(strip(var_labels)||"label "||

 strip(varnames(i))||"="||quote(strip(labels(i)))||";");

 if units(i) ne "" then var_units=

 catx(" ",var_units,strip(varnames(i))||"="||

 strip(varnames(i))||"*"||strip(units(i))||";");

 if drops(i) eq "YES" then var_drop=

 catx(" ",var_drop,strip(varnames(i)));

 end;

 if var_drop ne "" then var_drop="(drop="||strip(var_drop)||")";

 call symput('varnames',var_names);

 call symput('varlabls',var_labels);

 call symput('varunits',var_units);

 call symput('vardrop',var_drop);

 end;

 if _n_ ge &first_data_row. then do;

 if countc(_infile_,,"H")+1 eq &var_count. then do;

 /****** determine formats and informats ******/

 do i=1 to &var_count.;

 temp=strip(scan(_infile_,i,,"HM"));

 if upcase(upcases(i)) eq "YES" then temp=

 upcase(temp);

 if strip(temp) ne "" then do;

 if miss(i) ne "" then do;

 k=1;

16

 do while (scan(miss(i),k,"` ") ne "");

 missval=tranwrd(strip(scan(miss(i),k,"` ")),'^',' ');

 temp=tranwrd(strip(temp),strip(missval), '');

 k+1;

 end;

 end;

 if grows_start LE _n_ and grows_end GE _n_ then do;

 call missing(vartype);

 in_test = input(temp, ?? best12.);

 if not missing(in_test) then vartype=0;

 else do;

 in_test = input(temp, ?? anydtdte21.);

 if not missing(in_test) then vartype=2;

 else do;

 if index(temp,"$") then in_test = input(temp, ?? dollar21.);

 if not missing(in_test) then vartype=4;

 else do;

 if index(temp,",") then in_test = input(temp, ?? comma21.);

 if not missing(in_test) then vartype=5;

 else do;

 if index(temp,"%") then in_test=input(temp, ?? percent21.);

 if not missing(in_test) then vartype=3;

 else vartype=1;

 end;

 end;

 end;

 end;

 if missing(vartypes(i)) then vartypes(i)=vartype;

 else if vartype ne vartypes(i) then vartypes(i)=1;

 if missing(varlens(i)) or length(temp)

 gt varlens(i) then varlens(i)=length(temp);

 end;

 end;

 if i eq 1 then hold_rec=strip(temp);

 else hold_rec=cat(strip(hold_rec),"09"x,strip(temp));

 end;

 put hold_rec;

 end;

 /****** assign formats and informats ******/

 if eof then do;

 ivartype="";

 fvartype="";

 do i=1 to &var_count.;

 if vartypes(i)=1 then do;

 itempvar=cat("$",strip(put(varlens(i),3.)),".");

 ftempvar=itempvar;

 end;

 else if vartypes(i)=2 then do;

 itempvar="anydtdte.";

 ftempvar="date9.";

 end;

 else if vartypes(i)=3 then do;

 itempvar="percent.";

 ftempvar="percent8.2";

 end;

 else if vartypes(i)=4 then do;

 itempvar="dollar.";

 ftempvar=cat("dollar",strip(put(varlens(i),3.)),".");

 end;

 else if vartypes(i)=5 then do;

 itempvar="comma.";

 ftempvar=cat("comma",strip(put(varlens(i),3.)),".");

 end;

 else do;

 itempvar="best12.";

 ftempvar="best12.";

17

 end;

 if strip(informats(i)) ne "" then itempvar=strip(informats(i));

 if strip(formats(i)) ne "" then ftempvar=strip(formats(i));

 ivartype=catx(" ",ivartype,"informat",varnames(i),itempvar,";");

 fvartype=catx(" ",fvartype,"format",varnames(i),ftempvar,";");

 end;

 call symput('informt',ivartype);

 call symput('formt',fvartype);

 end;

 end;

run;

options QUOTELENMAX;

data &outfile. &vardrop.;

 infile revised lrecl=32767 dsd delimiter="09"x;

 &informt.;

 &formt.;

 &varlabls.;

 input &varnames.;

 &varunits.;

run;

proc delete data=work.form_varnames;

run;

filename clippy clear;

filename revised clear;

