Paper S1-07
Sometimes One Needs an Option with Unusual Dates

Arthur S. Tabachneck, Ph.D., myQNA, Inc., Thornhill, Ontario Canada
Matthew Kastin, I-Behavior, Inc., Louisville, Colorado
Xia Ke Shan, Chinese Financial Electrical Company, Beijing, China

ABSTRACT

Do you have date range analytical needs that you haven’t been able to solve with the SAS® interval and holiday
functions? You have if those needs involved analyzing a date range that didn’t start at the beginning, end or middle of
a given month, involved holidays other than the US and Canadian holidays that are incorporated in the holiday
function, or if you had to analyze data related to virtually any annual sporting event. This paper shows how the
intervalds option, introduced in SAS 9.2 phase 2, can be used to meet such needs and includes code for addressing
fiscal years in Great Britain, Chinese, Hebrew and Islamic holidays, and for analyzing the various rounds of the NCAA
March Madness basketball tournament.

THE PROBLEM

So, what do you do if you have to produce reports or conduct analyses based on data from a fiscal year that begins
on April 6™ and runs through April 5™ of the following year, or if you need to compare the year-to-year performance of
advertisements that are disseminated during the annual US college basketball March Madness tournament? Or,
similarly, how could you program SAS to automatically send the various expected/appreciated Chinese, Hebrew
and/or Islamic holiday email greetings, do year-to-year comparisons of business data that are related to such dates or
date ranges, or if you wanted to populate another tool (like Google calendar) with such holidays and events?

THE SOLUTION

As of version 9.2 phase 2, SAS includes a system option, INTERVALDS, that provides a way for you to formalize any
calendar in a dataset, identify the dataset in an option, and then use the various SAS interval functions to identify,
report on and/or analyze any dataset based on the holidays, events or seasons that you have specified in the interval
datasets. The present paper describes some potentially useful applications of that not very well known SAS system
option, including code for creating calendar related datasets that capture British fiscal years, Chinese, Hebrew and
Islamic calendars and holidays, and the various rounds of the NCAA March Madness basketball tournament

One could create formats to accomplish some of the above mentioned tasks but, if you only use formats, you can’t
take advantage of the various SAS interval functions, like INTCINDEX, INTCK, INTCYCLE, INTFIT, INTFMT,
INTGET, INTINDEX, INTNX, INTSEAS, and INTTEST. The interval functions, many of which were new in version
9.3, allow one to obtain such things as a cycle index, the number of interval boundaries between two dates, the
interval at the next higher seasonal cycle, a time interval that is aligned between two dates, a recommended
format, an interval based on three values, a season index, the length of a seasonal cycle and whether an interval is
valid and, in the case of the INTNX function, increment a date, time, or datetime value by a given time interval.

Our proposed solutions allow the use of those functions and don'’t require any special math or astrological skills ..
just run the code that is provided in this paper.

THE INTERVALDS OPTION

The INTERVALDS (or interval dataset) option is a SAS system option that provides you with a way to specify one or
more interval name and value pairs, where the names can be any valid SAS name and the values are the names of
SAS datasets which contain the definitions of holidays or time periods. The specified intervals, we believe, can be
used as arguments to any of the SAS interval functions. We should note that time did not permit our testing of all of
the functions and the current (9.3) system documentation only states that the option supports the INTCK and INTNX
functions. However, important to our use in the present paper, the documentation includes examples which use the
INTINDEX function.

The INTERVALDS option is invoked by running the following statement:

options intervalds (iNamel=datasetlName <iNameN=datasetNname>) ;

1

where the interval name(s) (i.e., iNamel to iNameN) can be any valid SAS name and the datasets specified are SAS
datasets that contain at least a date, datetime or numeric formatted variable called BEGIN, and may include END and
a SEASON variables.

ADDRESSING NON-STANDARD FISCAL YEARS
Assume you had the following SAS dataset containing various dates:

data have;
format dates date9.;
input dates date9.;
cards;

14jan2011

S5apr2011

6apr2011

5jul2011

6jul2011

l4aug2011

’

and that you needed to identify the fiscal year, month and quarter that each date represents, for fiscal years that
begin on April 6™ and end on April 5". Creating datasets that describe the start of such fiscal years, and the seasons
(e.g., months, quarters or years) that the dates represent, is a trivial task that could easily be accomplished by even
beginning SAS programmers. Only two fields are needed, namely BEGIN and SEASON, where BEGIN indicates the
first day of each fiscal year, month or quarter, and SEASON reflects the fiscal year, quarter or month that the dates
represent. The following datastep creates month, quarter and year datasets for all years between 1900 and 2100.
The begin variable represents the actual dates, and the season variable reflects the months, quarters and fiscal
years, respectively:

data fyds fqgds fmds;
do begin= '06APR1900'd to '05APR2100'd;
if day(begin) egq 6 then do;
season=max (month (begin) -3, (month (begin)<4) * (month (begin) +9)) ;
end=intnx ('month', begin, 1, 'same')-1;
output fmds;
if month (begin) eq 4 then do;
season=year (begin) ;

end=intnx ('year', begin, 1, 'same')-1;
output fyds;
end;

if month(begin) in (4,7,10,1) then do;
season=max (round (month (begin) /4,1), (month (begin)<4) *4) ;
end=intnx ('month', begin, 3, 'same')-1;
output fqgds;
end;
end;
end;
format begin end date.;
run;

Note that the range we specified exceeds the desired set of intervals by one day. Insuring that the datasets include
at least one cycle beyond the possible intervals of interest appears to be necessary in order for some of the interval
functions to work as expected. To identify the fiscal year, quarter and month that each date represents, one only has
to set the INTERVALDS option to reflect the desired names and datasets that delineate the needed intervals, and
then use the INTINDEX function to return the desired data:

options intervalds=(FiscalMonth=FMDS FiscalQuarter=FQDS FiscalYear=FYDS);
data need;

set have;

fiscal year =INTINDEX('FiscalYear', dates);

fiscal gtr =INTINDEX('FiscalQuarter',6 dates);

fiscal month=INTINDEX('FiscalMonth', dates);
run;

which would result in obtaining the following file:

I VIEWTABLE: Work.Need

dates fiscal_year fiscal_qtr fiscal_month
1 14JAN2011 2010 4 10
2 05aPR2011 2010 4 12
3 0eAPR2011 2011 1 1
4 0sJuL2011 2011 1 3
5 0eJUL2011 201 2 4
B 14AUG2011 2011 2 5

Figure 1 — Result of applying intervalds datasets

CREATING INTERVAL DATASETS FOR THE CHINESE, HEBREW AND ISLAMIC
CALENDARS, AND THE NCAA MARCH MADNESS TOURNAMENT

Creating intervalds datasets for the other calendars addressed in this paper turned out to be a little more challenging.
In addition to being familiar with each calendar’s rules, and the various related religious holidays that occur
throughout each year, the code also required the use of PROC FCMP to develop specialized math functions and a
new function that expands the holiday function to include any desired holidays, the hash method to create various
lookup tables, and the use of PROC FORMAT and its cntlin option to create various formats. Similarly, for the
Chinese and March Madness calendars, the code had to include routines that downloaded essential information from
the Hong Kong Observatory and Wikipedia, respectively. The code for creating the various interval datasets
described in this paper are shown in Appendix I.

As an added bonus, code is included that can be implemented to automatically send email holiday greetings which
can include ASCII art. The specific example included in the code sends Hanukkah email greetings on each of the
holiday’s eight days, including an ASCII art menorah that will have the correct number of candles lit.

FUTURE CHANGES TO THE CODE

While we did our best to only include carefully written and tested code, the code will likely have to be updated to
correct for errors or web site changes that we or others might discover. As such, we created a page for the paper on
sasCommunity.org. The page includes copies of the four sets of code that are described in this paper, and we will
update the files on that page as necessary. Similarly, if you write code that creates additional interval datasets, and
are willing to share your efforts, please feel free to add your code to that page. The page can be found at:
http://www.sascommunity.org/wiki/Sometimes One_Needs_an_Option_with_Unusual Dates.

CONCLUSION

The original purpose of the present paper was to describe the relatively new SAS intervalds system option, and to
provide examples of how the option could be used to aid the analysis of non-standard interval calendar related data.
That task, in itself, turned out to be almost too trivial, and could have been accomplished in just a few paragraphs.
However, in writing those paragraphs, we realized that a major obstacle for implementing the option for most non-
standard interval calendar related data was the task of creating the necessary interval datasets. As a result, we
expanded the paper to include the development of four such datasets and, hopefully, provided sufficient concepts to
enable others to generalize the code to meet their own specific needs.

DISCLAIMER

The contents of this paper are the work of the authors and do not necessarily represent the opinions, practices or
recommendations of the authors’ organizations.

http://www.sascommunity.org/wiki/Sometimes_One_Needs_an_Option_with_Unusual_Dates

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Arthur Tabachneck, Ph.D., President
myQNA, Inc.

80 Willowbrook Road

Thornhill, ON L3T 5K9 Canada
E-mail: atabachneck@gmail.com

Matthew Kastin

i-behavior, Inc.

2051 Dogwood Street, Suite 220
Louisville, CO 80027

E-mail: matthew.kastin@gmail.com

Xia Ke Shan

Chinese Financial Electrical Company
Beijing, China

E-mail: xiakeshan@yahoo.com.cn

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

APPENDIX |

[*CODE FOR CREATING INTERVAL DATASETS FOR THE HEBREW AND ISLAMIC CALENDARS*/

~
*
*

Hebrew and Islamic Calendars

*
* This program creates functions that were needed to convert SAS dates to and from
* Hebrew and Islamic dates, interval datasets for each calendar, an expanded HOLDIAY
* function that adds Jewish and Islamic holidays to the SAS Holiday function, and
* code to send Hanukkah email greetings that include an ascii graphic menorah.
*
* If ascii art is desired for other email use, a nice collection is available at:
* http://www.ascii-art.de/ascii/index.shtml
*
* AUTHORS: Matthew Kastin and Arthur Tabachneck
* DATE: February 14, 2012

*/

proc fcmp outlib=work.func.dates;
function hebrew leap(year); /*Check whether Hebrew year is a leap year*/

return (mod (((year*7)+1),19)<7);
endsub;
function hebrew year months (year); /*Get number of months in Hebrew year*/
return (ifn (hebrew leap(year),13,12));

endsub;
function hebrew delay 1 (year); /*Year cannot start on Sunday, Wednesday or Friday*/

months=floor (((235*year)-234)/19);
parts=12084+(13753*months) ;
day= (months*29)+floor (parts/25920) ;
if mod((3* (day+1l)),7)<3 then day+l;
return (day) ;

endsub;

function hebrew delay 2 (year); /*Check for delay due to adjacent year length*/
last=hebrew delay 1 (year-1);
present=hebrew delay 1 (year);
next=hebrew delay 1 (year+l);
a=ifn (next-present=356,2,ifn (present-last=382,1,0));
return(a);
endsub;

function hebrew year days(year); /*Get number of days in given Hebrew year*/
a=hebrew to jd(year+l,7,1)-hebrew to jd(year,7,1);
return(a) ;

endsub;

function hebrew month days (year,month); /*Get number of days in given Hebrew month*/
if month in (2,4,6,10,13) then return(29);
else if month=12 and not (hebrew leap(year)) then return(29);
else if month=8 and (mod(hebrew year days(year),10)<>5) then return(29);
else if month=9 and mod(hebrew year days(year),10)=3 then return(29);
else return(30);
endsub;

function hebrew to jd(year,month,day); /*Convert Hebrew date to Julian date*/

hebrew epoch=347995.5;
months=hebrew year months (year) ;
jd=hebrew epocht+hebrew delay 1 (year)+ hebrew delay 2 (year)-+day+l;
if month<7 then do;

do mon=7 to months;

jd+hebrew month days (year,mon) ;
end;
do mon=1 to month-1;

jd+hebrew month days (year,mon) ;

end;

end;

else do mon=7 to month-1;
jd+hebrew month days (year,mon) ;

end;

return (jd);

endsub;

function hebrew to sd(year,month,day); /*Convert Hebrew date to SAS date*/
return (hebrew to jd(year,month,day)-2436934.5);
endsub;

function jd _to_hebrew(jd) $10; /*Convert Julian date to Hebrew date*/
_jd=floor (jd)+0.5;
count=floor (((jd-347995.5)*98496)/35975351) ;
year=count-1;
do while(jd>=hebrew to jd(count,7,1));
count+1; year+1l;
end;
first=ifn(jd<hebrew to jd(year,1,1),7,1);
month=first-1;
do while(jd>hebrew to jd(year,first,1));

first+1; month+1;
end;
day=(jd-hebrew to jd(year,month,1))+1;
return (catx('-',o0f year month day));
endsub;

function sd _to _hebrew(sd) $10; /*Convert a SAS date to a Hebrew date*/
return(jd to hebrew(sd+2436934.5));
endsub;

function islamic_leap(year); /*Check whether Islamic year is a leap year*/
return (mod ((year*11)+14,30)<11);
endsub;

function islamic_to_ jd(year,month,day); /*Convert Islamic date to Julian date*/
return ((day+ceil (29.5*% (month-1))+ (year-1) *354+
floor ((3+(ll*year))/30)+1948439.5)-1);
endsub;

function islamic_to sd(year,month,day); /*Convert Islamic date to SAS date*/
return(islamic_to jd(year,month,day)-2436934.5);
endsub;

function jd to_islamic(jd) $10; /*Convert Julian date to Islamic date*/
_jd=floor (jd)+0.5;
year=floor (((30*(jd-1948439.5))+10646)/10631);
month=min (12,ceil ((_jd-(29+islamic to_ jd(year,1,1)))/29.5)+1);
day=(_ jd-islamic_to jd(year,month,1))+1;
return (catx('-',of year month day));
endsub;

function sd to_islamic(sd) $10; /*Convert SAS date to Islamic date*/
return(jd to islamic (sd+2436934.5));
endsub;

function holiday x(h $,y); /*Expands Holiday function*/
select (upcase (h));
when ('ROSH HASHANA') return (hebrew to sd(y+3761,7,1));
when ('YOM KIPPUR') return (hebrew to sd(y+3761,7,10));
when ('SUKKOT') return (hebrew to sd(y+3761,7,15));
when ('SHMINI ATZERET') return (hebrew to sd(y+3761,7,22));
when ('SIMCHAT TORAH', 'SIMHATH TORAH', 'SIMKHES TOREH'")
return (hebrew to sd(y+3761,7,23));
when ('HANUKKAH', '"CHANUKAH', 'CHANUKKAH', "CHANUKA"')

6

return (hebrew to sd(y+3761,9,25));

when ('TU BISHVAT') return (hebrew to sd(y+3760,11,15));

when ('PURIM') return(ifn(hebrew leap(y+3760),
hebrew to sd(y+3760,13,14),hebrew to sd(y+3760,12,14)));

when ('PESACH', 'PASSOVER', 'PESAH', 'PESAKH', 'PEYSEKH', 'PAYSOKH")
return (hebrew to sd(y+3760,1,15));

when ('SEFIRAH',"SEFIRAT HA'OMER") return (hebrew to sd(y+3760,1,16));

when ('YOM HASHOAH', "HOLOCAUST REMEMBRANCE DAY')
return (hebrew to sd(y+3760,1,27));

when ('YOM HAZIKARON', 'ISRAEL MEMORIAL DAY') return(hebrew to sd(y+3760,2,4));

when ("YOM HA'ATZMAUT", 'YOM HAATZMAUT', 'YOM HA ATZMAUT',
'ISRAEL INDEPENDENCE DAY') return(hebrewitoisd(y+3760,2,5));

when ("LAG BA'OMER","LAG LA'OMER", 'LAG BAOMER', 'LAG LAOMER'")
return (hebrew to sd(y+3760,2,18));

when ('YOM YERUSHALAYIM', 'JERUSALEM DAY') return(hebrewitoisd(y+3760,2,28));

when ('SHAVUOT', 'SHAVUOS', "SHABHU'OTH") return(hebrew_to_sd(y+3760,3,6));

when ("TISHA B'AV",'TISHA BAV','TISHA B AV') return(hebrewitoisd(y+3760,5,9));

when ("TU B'AV",'TU BAV','TU B AV') return(hebrew to sd(y+3760,5,15));

when ('ISLAMIC NEW YEAR', 'HIJRI NEW YEAR', 'RAS AS-SANAH AL-HIJRIYAH')
return(islamic to sd(y-579,1,1));

when ('DAY OF ASHURA', 'ASHURA', 'ASHOURA') return(islamic to sd(y-579,1,10));

when ('MAWLID', '"MAWLIDU N-NABIYYI', '"MAWLID AN-NARI', 'MEVLID', 'MEVLIT', '"MULUD'")
return(islamic to sd(y-579,3,12));

when ('LAYLAT AL-MIRAJ', 'LAILAT AL MIRAJ', 'SHAB-E-MIRAJ', "MIRAC KANDILI')
return(islamic to sd(y-579,7,27));

when ("MID-SHA'BAN", "MID-SHABAN', '"MID-SHA BAN', 'LAYLATUL BARAAH', 'SHAB-E-BARAT',
"LAYLATUL BARA'AH", 'LAYLATUL BARA AH') return(islamic_to_sd(y—579,8,15));

when ('RAMADAN', 'RAMAZAN') return(islamic to sd(y-579,9,1));

when ('LAYLAT AL-QADR',"LAILATUL QADR'", 'LAILATUL QADR', 'SHAB-E-QADR')
return(islamic to sd(y-579,9,27));

when ('EID-UL-FITR','EID AL-FITR', 'ID-UL-FITR','ID AL-FITR','EID','IDU I-FITR'")
return(islamic to sd(y-579,9,ifn(islamic_leap(y-579),30,29)));

when ('EID AL-ADHA',"EID AL-ADHA'",'FESTIVAL OF SACRIFICE', 'GREATER EID')
return(islamic_to sd(y-579,12,10));

when ('BOXING', 'BOXING DAY') return (holiday ('BOXING',vy)):

when 'CANADA', "CANADA DAY') return(holiday ('CANADA',vy));

when ('CANADAOBSERVED') return(holiday ('CANADAOBSERVED',vy)) ;
when 'CHRISTMAS') return (holiday ('CHRISTMAS',vy));

when ('COLUMBUS', 'COLUMBUS DAY') return (holiday ('COLUMBUS',vy)):;
when ('EASTER') return(holiday ('EASTER',vV));

(
(
(
(
(
when ('FATHERS', 'FATHERS DAY') return(holiday ('FATHERS',y));
(
(
(
(
(

when ('HALLOWEEN') return (holiday ('HALLOWEEN',vy));

when 'LABOR') return(holiday ('LABOR',vV));

when ('MLK', '"MARTIN LUTHER KING') return (holiday ('MLK',vy)):
when 'MEMORIAL', '"MEMORIAL DAY') return (holiday ('MEMORIAL',vy));
when ('MOTHERS', '"MOTHERS DAY') return (holiday ('MOTHERS',vy));

when ('NEWYEAR', '"NEW YEAR', "NEW YEARS', 'NEW YEARS DAY')
return (holiday ('"NEWYEAR',vy));
when ('THANKSGIVING', 'THANSGIVING DAY') return(holiday ('THANKSGIVING',y));
when ('THANKSGIVINGCANADA') return(holiday ('THANKSGIVINGCANADA',v));
when ('USINDEPENDENCE', 'INDEPENDENCE DAY', 'JULY 4TH')
return (holiday ('USINDEPENDENCE',vy)) ;
when ('USPRESIDENTS', 'PRESIDENTS DAY'return (holiday ('USPRESIDENTS',vy))
when ('VALENTINES', 'VALENTINES DAY') return(holiday ('VALENTINES',v));
when ('VETERANS', 'VETERANS DAY', 'REMEMBRANCE', 'REMEMBERANCE', 'REMEMBRANCE DAY',
'REMEMBERANCE DAY') return(holiday ('VETERANS',v));
when ('VETERANSUSG') return (holiday ('VETERANSUSG',vy));
when ('VETERANSUSPS') return(holiday ('VETERANSUSPS',v));
when ('VICTORIA', 'VICTORIA DAY') return (holiday ('VICTORIA',vy));
otherwise return(.);
end;
endsub;
run;

options cmplib=work. func;

proc format; /*Create format to map holidays and their length*/

7

value $jhol2days

'ROSH HASHANA' =2 'YOM KIPPUR' =1 ' SUKKOT' =6
'SHMINI ATZERET' =1 'SIMCHAT TORAH' =1 'HANUKKAH' =8
'TU BISHVAT' = 'PURIM' =1 'PESACH' =8
'SEFIRAH' =49 'YOM HASHOAH' =1 'ISRAEL INDEPENDENCE DAY' =
'LAG BAOMER' =1 'YOM YERUSHALAYIM' = 'SHAVUOT' =2
"TISHA B'AV" =1 "TU B'AV" =1 other =0;
run;

/* Create dataset and format. JHOLS contains holiday dates and the format provides */
/* the correspondence between interval numbers and holiday names */

data s2jhol (drop=end) jhols;
declare hash hol();
hol.definekey ('begin');
hol.definedata('holiday"', 'season');
hol.definedone () ;

array h[16] $30 ('ROSH HASHANA' 'YOM KIPPUR' ' SUKKOT'
'SHMINI ATZERET' 'SIMCHAT TORAH' 'HANUKKAH'
'TU BISHVAT' 'PURIM' 'PESACH'
'YOM HASHOAH' 'ISRAEL INDEPENDENCE DAY' 'LAG BAOMER'
'YOM YERUSHALAYIM' 'SHAVUOT' "TISHA B'AV" "TU B'AV");

do year=2000 to 2100;
season=0;
do i=1 to dim¢(h);
holiday=h[i];
begin=holiday x(h[i], year);
season+1;
hol.add();
if year=2000 then output s2jhol;
end;
end;

do begin='01JAN2000'd to '31DEC2100'd;
holiday="'";
end=begin;
rc=hol.find () ;
if (rc = 0) then do;
end=begin+put (holiday, $jhol2days.)-1;
output jhols;
end;
else do;
season=0; output jhols;
end;
end;

keep begin end season holiday;
format begin end datell.;
run;

data s2jhol;

retain fmtname 's2jhol' type 'n';

set s2jhol (drop=begin rename=(season=start holiday=label)) ;
run;

proc format cntlin=s2jhol; run;

/*Set intervalds option to identify Jewish holidays using the jhols dataset*/
options intervalds=(JewishHolidays=jhols) ;

$macro sendit (to,subj, from, test=NO) ;
/*This macro sends emails on Jewish holidays including ASCII art for Hanukkah*/
$if &test. eqg YES %then $let today=%sysevalf ("12DEC2012"d);
%else Slet today=%sysfunc (today());
%if %$sysfunc(intindex (JewishHolidays, &today.)) S%$then %do;

8

options EMAILSYS=SMTP
EMAILID="your email address"
EMAILPW="your email password"
EMAILHOST="your email smtp address"
EMATLAUTHPROTOCOL=LOGIN
EMAILPORT=587; /* Note: EMAILPORT may have to set to 25 */
filename mymail email lrecl=256 TYPE='TEXT/HTML';
data null ;
file mymail to=("&to.") subject="&subj.";
array candles[17] $40. (17*' "');
put "
";
put "";
x=intindex ('JewishHolidays', &today.);
msg=cat ('Hope you have a Happy ', propcase(strip(put(x,s2jhol.))),"'!");
put msg "

";
if put(x,s2jhol.) eg 'HANUKKAH' then do;
ncandles=2* (&today.-intnx ('JewishHolidays', &today.,0))+1;
if ncandles gt 7 then ncandles+2;
candles[9]=")";
msg=catx (' ',of %quote(candles:));
put "";
put msg "
";
do i=1 to ncandles by 2;
candles[i]=")";
if 1 eqg 7 then i=9;

end;

put "";
msg=catx (' ',of %quote(candlesl-candles8));
put msg;

put "";
put %Squote (candles(9));
put "";

msg=catx (' ',of %quote(candleslO-candlesl?));
put msg "
";

do i=1 to 17 by 2; candles[i]="|"; end;
msg=catx (' ',of %quote(candles:));

put "";
put msg "
";
do i=2 to 16 by 2; candles[i]="_"; end;
msg=catx (' ',of %quote(candles:));
put msg "
";
do i=1 to 17;

if i eqg 8 then i=11;

candles[i]=" "';

end;
msg=catx (' ',of %quote(candles:));
put msg "
";

end;

put "
";
put "&from";
put '</style></body></html>";
run;
%end;
$mend;

/* Example usage */
%sendit (EmailAddress, Happy Holidays, YourName, test=YES) /* If only testing */
%$sendit (EmailAddress,Happy Holidays, YourName) /* Actual use */

/*or, to send a number of emails*/
data null ;
informat email $30.;
input email &;
call execute('%sendit('||strip(email) ||',Happy Holidays, YourName) ') ;
cards;
art297@rogers.com

’

[*CODE FOR CREATING INTERVAL DATASETS FOR THE CHINESE AGRICULTURAL CALENDAR*/

/** This code creates interval datasets for using interval functions for dates from
* the Chinese Agricultural calendar. The code uses a lunar calendar from the Hong
* Kong Obervatory and creates datasets for years, months, and most Chinese festivals
*
*AUTHORS: Xia Ke Shan and Arthur Tabachneck
*DATE: February 13, 2012
*/

proc delete data=dates;
run;

/*The following macro downloads pages from the Hong Kong Observatory which contain all
lunar dates between January 1st, 1901 and December 31st, 2100 */
$macro getcdates;
sdo 1=1901 %to 2100;
filename lunar http
"http://www.hko.gov.hk/gts/time/calendar/text/T&i.e.txt";

data temp;
format Gregorian date yymmddlO.;
infile lunar dlm=' ' firstobs=3 truncover expandtabs ;
input Gregorian date : ?? yymmddl2. lunar date & $40.
day of week : $20. solar term & $40.;
if not missing(Gregorian date) then output;
run;

proc append base=dates data=temp;
run;
$end;

/*The following corrects for dates missing from the Hong Kong Observatory*/
data all;
do Gregorian date='01janl1901'd to '31ldec2100'd;
output;
end;
run;

data dates;
merge dates all;
by Gregorian date;
run;
$mend getcdates;

%getcdates

data dates;
set dates;
/* The Hong Kong Observatory data begins at 01JAN1901 which is in Chinese month 11*/
retain chinese month 11;
if find(upcase (lunar date), 'MONTH') then chinese month=
input (compress (lunar date, ,'kd'),?? best8.);
run;

data dates;
set dates;
if chinese month ne lag(chinese month) then chinese day=0;
chinese day+1;
if n eq 1 then chinese day=11;*start from 01JAN1901;
run;

data Chinese Calendar;
set dates;
if n eq 1 then chinese year=1900;

select;
when (chinese month=1 and chinese day=1) do;

10

season=1;
chinese year+l;

end;
when (chinese month=1 and chinese day=15) season=2;
when (find (lowcase (solar term), 'bright') and
find(lowcase (solar term), 'clear')) season=3;
when (chinese month=5 and chinese day=5) season=4;
when (chinese month=7 and chinese day=7) season=5;
when (chinese month=7 and chinese day=15) season=6;
when (chinese month=8 and chinese day=15) season=7;
when (chinese month=9 and chinese day=9) season=38;
when (chinese month=10 and chinese day=15) season=9;
when (find (lowcase (solar term), 'winter') and
find(lowcase (solar term), 'solstice')) season=10;
when (chinese month=12 and chinese day=23) season=11;
otherwise season=0;
end;

run;

/* Create Interval Datasets Chinese Month, Chinese Holidays and Chinese Holidays
data Chinese Month;

set Chinese Calendar (keep=Gregorian date chinese month

rename= (Gregorian date=begin chinese month=season)) ;

by season notsorted;

if first.season;

format begin date9.;
run;

data Chinese Holidays;
set Chinese Calendar (keep=Gregorian date season
rename= (Gregorian date=begin));
by season notsorted;
if first.season;
format begin date9.;
run;

data Chinese Years (drop=chinese year);
set Chinese Calendar (keep=Gregorian date chinese year
rename= (Gregorian date=begin)) ;

select (mod(chinese year,12));
when (0) season=1;
when (1) season=2;
when (2) season=3;
when (3) season=4;
when (4) season=5;
when (5) season=6;
when (6) season=7;
when (7) season=8;
when (8) season=9;
when (9) season=10;
when (10) season=11;

when (11) season=12;
otherwise season=0;
end;
format begin date9.;
run;,

data Chinese Years;
set Chinese Years;
by season notsorted;
if first.season;
format begin date9.;
run;

/*Create formats for Chinese Holidays and Chinese Years */
proc format;
value ch(default=40)

11

1="Chinese New Year -- ChundJie'

2="Lantern Festival -- YuanXiaoJie'
3='Qingming Festival -- QingMingJie'
4="'Dragon Boat Festival -- DuanWudJie'
5='Night of Sevens -- QiXi'

='Ghost Festival -- ZhongYuandJie'
7='Mid-Autumn Festival -- ZhongQiuJie'
8="'Double Ninth Festival -- ChongYangJie'
9="'Xia Yuan Festival -- XiaYuandJie'
10="Winter Solstice Festival -- DongZhi'
11="Kitchen God Festival -- XiaoNian';

value cy(default=20)
1="the Monkey Year'
2='the Rooster Year'
3='the Dog Year'
4="'the Pig Year'
5='the Rat Year'
='the Ox Year'
7="'the Tiger Year'
8='the Rabbit Year'
9='the Dragon Year'
10="'the Snake Year'
11="the Horse Year'
12="'the Goat Year';

run;

/*Set the intervalds option to identify Chinese months, holidays and years */
options intervalds=(cm=Chinese Month ch=Chinese Holidays cy=Chinese Years);

/*CODE TO CREATE AN INTERVAL DATASET FOR THE NCAA MARCH MADNESS ROUNDS*/

~
*
*

This program is designed to create an interval dataset that will allow one to use
interval functions on dates from the NCAA March Madness Basketball tournament. The
program relies on and accesses the tournament start dates that are posted on the
tournament's Wikipedia page.

The code creates an interval dataset for all tournament rounds between 1985 and
2012.

AUTHOR: Arthur Tabachneck
DATE: December 12, 2011
MODIFIED: July 25, 2012

P S S T S R R

proc delete data=dates;
run;

/**
* The following macro downloads the pages from Wikipedia which contain the start
* dates for all NCAA March Madness tournaments between 1985 and 2012.
*
*/
%macro getmdates;
%do 1=1985 %to %sysfunc(year (%sysfunc(today()))):
filename ncaa http
"http://en.wikipedia.org/wiki/&i. NCAA Men%27s Division I Basketball Tournament";
data temp (keep=startdate enddate);
format startdate enddate date9.;
informat sdate $21.;
infile ncaa lrecl=32000;
input @ "began on " sdate &;
if sdate ne "" then do;
x=findc (sdate, ', "',2,'b");

12

startdate=input (substr (sdate, 1, x),anydtdte2l.);
if &i. ge 2011 then do;
startdate=startdate+2;
enddate=startdate+20;
end;
else if &i. ge 2001 then do;
startdate=startdate+1;
enddate=startdate+l19;
end;
else enddate=startdate+18;
output;
stop;
end;
run;
proc append
base=dates data=temp;
run;
%end;
%mend getmdates;
%getmdates

/**
* Create an Interval Dataset that captures the dates of each Tournament round
*
*/
data roundds (keep=begin season);
set dates end=lastrec;
round=0;
i=0;
do begin= mdy(l,1,year (startdate)) to mdy(l2,31,year (startdate));
if startdate<=begin<=enddate then do;
i+1;
if i in (1,3,8,10,17,19) then round+l;
if i in (1:4,8:11,17,19) then season=round;
else season=0;

end;
else season=0;
output;
end;
if lastrec then do;
season=0;
year+l;
output;
end;
format begin date.;
run;
/xx
* Set intervalds option
*
* The following line is all that is needed in order to establish Rounds as a valid
* interval using the roundDS dataset
*
*

/
options intervalds=(Rounds=roundDS) ;

data test (keep=date round);
format date date9.;
do date='ljan2011'd to '31ldec2012'd;
round=INTINDEX ('Rounds', date);
if round then output;
end;
run;

13

[*CODE TO CREATE INTERVAL DATASETS FOR BRITISH FISCAL YEARS*/

/**
*This program is designed to create interval datasets that will allow one to use
*interval functions on dates from a fiscal year that begins on April 6th and ends
*on April 5th.

*

*

*AUTHOR: Arthur Tabachneck
*DATE: September 8, 2011

*

*/

/**
* Create Interval Datasets for year, quarter and month
*

*/

data fyds fgds fmds;
do begin= '06APR1900'd to 'O5APR2100'd;
if day(begin) eg 6 then do;
season=max (month (begin) -3, (month (begin)<4) *
(month (begin)+9));
end=intnx ('month', begin, 1, 'same')-1;
output fmds;
if month (begin) eqg 4 then do;
season=year (begin) ;
end=intnx ('year', begin, 1, 'same')-1;
output fyds;
end;
if month (begin) in (4,7,10,1) then do;
season=max (round (month (begin) /4,1),
(month (begin)<4) *4);
end=intnx ('month', begin, 3, 'same')-1;
output fqgds;
end;
end;
end;
format begin end date.;
run;

/**
Set intervalds option

The following line is all that is needed in order to establish FiscalQuarter,
FiscalYear and FiscalMonth as valid intervals using the FQDS, FYDS and FMDS
interval datasets, respectively

ok X % ok ok %

/

options intervalds=(FiscalQuarter=FQDS
FiscalYear=FYDS
FiscalMonth=FMDS) ;

/**
*Test using sashelp.pricedata and the intindex function
*

*/

data need (keep=date fiscal: next:);
set sashelp.pricedata;
fiscal year=INTINDEX('FiscalYear',6 date);
fiscal qtr=INTINDEX('FiscalQuarter',6 date);
fiscal month=INTINDEX ('FiscalMonth', date);
next year start=intnx('FiscalYear',6 date,1l,'b');
next year middle=intnx ('FiscalYear',6date,1l,'m');

14

next year end=intnx('FiscalYear', date,1,'e');
format date next: date9.;
run;

15

