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ABSTRACT  

Response surface methodology is a set of technology to present the cause and/or effect relationship between factor 
variables and response variable. The standard procedure of response surface contains four steps: (a) design the 
experiment, (b) estimate the coefficient of response surface, (c) do the lack-of fit test, and (d) investigate the region of 
interest. This paper described the RSREG procedure, which was designed for standard response surface analysis. 
Application of the RSREG procedure includes estimating the coefficient of response surface, lack of fit test and 
canonical structure analysis and predicting the new response values.  

INTRODUCTION  

Response surface methodology is a useful tool in modeling curvature effects in many scientific areas. The general 
scenario requires that the response is a quantitative continuous variable; the most important function is to identify the 
combination of levels of factors in experimental design that leads to determine optimum conditions and save 
resources. The RSREG procedure is specialized for analyzing the response surface analysis. GLM procedure also 
can estimate the coefficient of response surface and carry out lack of fit test.  The fundamental function of response 
surface analysis is to examine the characteristics of the fitted surface with first or second order of quantitative 
predictors. Give that, response surface analysis is like a regression issue. However, response surface analysis is 
quite different from routine regression analysis in using very unique experimental design, coded predictor variables, 
etc. Therefore, RSREG procedure is superior to GLM and/or REG procedure with response surface analysis 
because: (1) RSGRE contains canonical analysis and ridge of optimum response; (2) it requires comparably shorter 
model statement.  

The primary goal of this paper is to present an overview of RSREG procedure and how its commands used in design 
and analyzing response surface experiments. The second goal is to provide illustrative SAS codes in producing visual 
graphs to help the researcher deeply understand the design and the properties of dataset. 

EXAMPLE ONE 

The following example uses a two factor quadratic model and the data set is from Table 16.9 of Dean and Voss 
(1999).  The experiment studied the relation between the standard deviation of a copper-plating thickness (Y) and 
anode-cathode separation (x1) and cathodic current density (x2) of the product. 

x1      x2        Y   

9.5     31      5.6                                                                        

9.5     41      6.45                                                                       

11.5    31      4.84                                                                       

11.5    41      5.19                                                                       

10.5    36      4.32                                                                       

10.5    36      4.25                                                                                   

9       36      5.76                                                                       

12      36      4.42                                                                       

10.5    29      5.46                                                                       

10.5    43      5.81     

 

The quadratic model for this example is written as 
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We will take the following steps to analyze this data: 

1. fit the model and estimate the parameter 

2. use canonical analysis to examine the shape of response surface 

3. use ridge analysis to look for the optimum region.   

 

MODEL FITTING AND PARAMTER ESTIMATION  

The following statement invokes the RRREG procedure on data a. We require a lack of fit test on the fitted model with 
LACKFIT option. We will orderly illustrate the output tables from the following statement.  

proc rsreg data=a;                                                                         

model y=x1 x2/lackfit;                                                                     

run; 

 

Using an appropriate coding transformation of the data is one important aspect of response-
surface analysis. The coding way on predictors will affect the results of canonical analysis. The  
coding approach makes all coded variables vary over the same range and fall between -1 and 
1. Therefore, each predictor has an equal share in potentially determining the dominant 
predictor in response surface analysis. The coded variable x1=(factor A-10.5)/1.5 and 

X2=(Factor B-36)/7 
(Table1). 

 
 
                                 Table 1.1: Summary 
statistics for example one 
 
 
 
 
 

 

 

 

 
 
 
 
 
 
 
                  
                                                         
                                         
 
 
Simple statistics of response of y is also showed in Table 1. R square is 0.9705, which indicates 97% of variability 
explained by the fitted model. Hypothesis test on linear, quadratic and crossproduct in ANOVA table indicates the 
linear and quadratic terms are significantly important, and interaction between x1 and x2 is not significant (Table2).                                                                
 
 
 
 
 

              The RSREG Procedure 

 

 Coding Coefficients for the Independent Variables 

  Factor    Subtracted off      Divided by 

 

  x1             10.500000        1.500000 

  x2             36.000000        7.000000 

 

  Response Surface for Variable y 

  Response Mean                   5.210000 

  Root MSE                        0.189920 

  R-Square                          0.9705 
  Coefficient of Variation          3.6453 
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Table 1.2: 
Analysis of 
Variance 

                                                   
 
 
 
 
 
 
 
 
 
 
 

                   

 

 

 

       

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
Table1.3: 
Lack of fit 

test 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                      Type I Sum 

Regression    DF      of Squares    R-Square    F Value    Pr > F 

 Linear       2        2.271313      0.4645      31.49    0.0036 

Quadratic     2        2.411708      0.4932      33.43    0.0032 

Crossproduct  1        0.062500      0.0128       1.73    0.2584 

Total Model   5        4.745521      0.9705      26.31    0.0037 

 

                                                           Parameter       

                                                            Estimate 

                                                           Standard                                                 

                                                           from Coded 

Parameter    DF   Estimate    Error    t Value    Pr > |t|    Data 

Intercept    1  79.689773   13.747965   5.80     0.0044    4.293903 

 x1          1   -7.818717  1.831147   -4.27    0.0130     -0.711176 

 x2          1   -1.812593  0.330244   -5.49    0.0054     0.298737 

 x1*x1       1   0.392600   0.080832    4.86    0.0083     0.883350 

 x2*x1       1   -0.025000  0.018992    -1.32   0.2584     -0.262500 

 x2*x2       1   0.029413   0.003651    8.06    0.0013     1.441260 

Total Model  5   4.745521   0.9705      26.31   0.0037 

 

 

                    Sum of 

Residual    DF      Squares    Mean Square   F Value    Pr > F 

Lack of Fit  3      0.1418     0.0473          19.30    0.1654 

Pure Error   1      0.00245     0.00245 

Total Error  4      0.144279    0.036070 
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The table 3 includes a breakdown of lack of fit and pure error. The test indicates the second-order model is adequate 
for the data (p-value=0.1654).   
 
 
 
 
 
 
 
 
 
 
 

CANONICAL ANALYSIS   

Canonical analysis is used to investigate the overall shape of the curvature and determine the stationary point is a 
maximal, minimal or saddle point. The eigenvalues and eigenvectors indicate the shape of the response surface. 

Positive eigenvalues 
direct an upwards 
curvature, and 
negative eigenvalues 
direct a downward 
curvature. Therefore, 

all positive eigenvalue 
indicate an estimate 
stationary is a 
minimum, and all 
positive eigenvalue 
indicate a maximum 

and mixture of positive and 
negative eigenvalues 
indicate a saddle 
point. The larger 
absolute eigenvalues 
indicate the more 
importance in the 
curvature of response 
surface.  

A canonical analysis of 
the surface on example 
one indicates that the 
stationary point of the fitted surface is at (11.09, 35.52) in raw data and (0.39, -0.07) (Table 4) in coded units. Both 
eigenvalues are positive, indicating that the stationary point is a minimum. The eigenvalue of x1(anode-cathode 
separation) is larger than that of x2 (cathodic current density), indicates x1 is relatively more important than x2 (Table 
4). This is an ideal situation in response surface design. The previous two steps may be sufficient, since optimum 
point is within a range of the experimental design. If the optimum is out of the range of experiment, ridge analysis will 
be applied to further search for the optimum region. Example two will illustrate how to use ridge analysis. 
 
 
                            Table 1.4: Canonical Analysis for Example one

The RSREG Procedure 

 Canonical Analysis of Response Surface Based on Coded Data 

 

                Critical Value 

Factor           Coded         Uncoded 

 x1            0.392457       11.088685 

 x2           -0.067898       35.524714 

 

   Predicted value at stationary point: 4.144209 

                                                  

Eigenvectors             Eigenvalues              

                    x1              x2 

1.470594       -0.218120        0.975922 

 0.854015       0.975922        0.218120 

 

     Stationary point is a minimum. 
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EXAMPLE TWO:  A SADDLE SURFACE USING RIDGE ANALYSIS 

This data is from problem 6.15 of Kutner et al. (2004) to study the relation between patient satisfaction (Y) and three 
factors x1(patient age), x2(severity of illness) and x3 (anxiety level) in a hospital. There are 46 patients were collected 
and data set are available in the following address: 
http://br312.math.tntech.edu/6080/cd/KutnerData/Chapter%20%206%20Data%20Sets/CH06PR15.txt .  

The following statement invokes RSREG procedure containing LACKFIT option and ridge analysis. The statements 
produce Output table 2.1 through table 2.3. 

 

proc rsreg data=patient; 

model y=x1 x2 x3/lackfit; 

ridge max; 

run; 

                   

               Table2.1 summary statistics for example two 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table2.2 shows that the model is adequate for data with p-value=0.8510. The linear regression and corssproduct 
showed significant contrition to the model. Note that the X1(patient’s age is not significant in the analysis of variance 
for the model.  

               The RSREG Procedure 

 

     Coding Coefficients for the Independent 

Variables 

 

 Factor    Subtracted off      Divided by 

 

 x1             38.500000       16.500000 

 x2             51.500000       10.500000 

 x3              2.350000        0.550000 

 

 Response Surface for Variable y: satisfaction 

 

Response Mean                  61.565217 

Root MSE                        9.252264 

R-Square                          0.7695 

Coefficient of Variation         15.0284 
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The canonical analysis (Table 2.3) indicates that the shape of predicted response surface like a saddle. The 
eigenvlue of -33.21 shows that the hill orientation of the saddle is more curved than valley orientation, with 
eigenvalues of 30.05 and 0.63, respectively. The coefficients of the associated eigenvectors show that the valley is 
more aligned with X3(anxiety level) and hill with X2(severity of illness). There is no a unique optimum, since a saddle 
point in the canonical analysis.  

                                    Table2.2 Lack of fit test and analysis of variance 

 

 

 

 

 

 

 

                        Type I Sum 

Regression      DF      of Squares    R-Square    F Value    Pr > F 

Linear          3     9120.463666      0.6822      35.51    <.0001 

Quadratic       3      215.590388      0.0161       0.84    0.4812 

Crossproduct    3      951.492601      0.0712       3.70    0.0202 

Total Model     9           10288      0.7695      13.35    <.0001 

 

 

                          Sum of 

Residual        DF         Squares     Mean Square    F Value    Pr > F 

 

Lack of Fit        35     2901.257693       82.893077       0.46    0.8510 

Pure Error          1      180.500000      180.500000 

Total Error        36     3081.757693       85.604380 

 

                                                                                                                               

                                                                      Parameter                                       

                                                                       Estimate 

                                    Standard                             from   

                                                                        Coded           

                                                                         Data 

Parameter    DF        Estimate     Error   t Value   Pr > |t|                    

                                                                            

Intercept     1       22.435576   143.810689    0.16      0.8769       58.697270 

x1            1       -1.308107   3.304523      -0.40     0.6945      -22.494445 

x2            1       14.158692   7.850701      1.80      0.0797       -4.121989 

x3            1     -218.700531   89.903816     -2.43     0.0201       -4.595765 

x1*x1         1      0.039910     0.024817       1.61     0.1165       10.865365 

x2*x1         1      0.115937     0.085696       1.35     0.1845       20.086024 

x2*x2         1      -0.247873    0.129187      -1.92     0.0630      -27.327950 

x3*x1         1      -3.871899   1.162199      -3.33      0.0020      -35.137482 

x3*x2         1      2.772787    2.628167       1.06      0.2984       16.012847 

x3*x3         1      46.088116   26.486581      1.74      0.0904       13.941655 

 

                                            

                             The RSREG Procedure 

 

                            Sum of 

 Factor   DF      Squares     Mean Square    F Value   Pr > F      Label 

 x1        4     3754.898605      938.724651  10.97   <.0001   patient age 

 x2        4     357.235231      89.308808    1.04   0.3985 severity of illness 
 x3        4     1422.924474      355.731118   4.16    0.0072    anxiety level 
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                             Table 2.3 Canonical analysis for example two 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ridge analysis in Table 2.4 indicates that the maximum satisfaction will result from relatively young age, relatively 
lighter severity of illness and higher anxiety level.     

                                Table2.4  Ridge analysis for example two 

 

 

 

 

 

 

 

 

 

 

 

 

 

GRAPHS FOR RESPONSE SURFACE 

The canonical analysis provided the shape of a second-order response surface, the effective graphs will make the 
explanation easier and help the researcher understand deeply on the data. In RSREG procedure, plot option can 
produce appropriate plots through ODS graphics. For example, plot =all will produce all plots in some output panels.  

 

                           The RSREG Procedure 

     Canonical Analysis of Response Surface Based on Coded Data 

 

                           Critical Value 

       Factor           Coded         Uncoded    Label 

      x1           10.279168      208.106267    patient age 

      x2            6.458802      119.317420    severity of illness 

      x3            9.409070        7.524989    anxiety level 

 

           Predicted value at stationary point: -91.847309 

 

 

                                  Eigenvectors 

    Eigenvalues         x1              x2              x3 

    30.054195       -0.679937       -0.016717        0.733080 

    0.633872        0.661899        0.416236        0.623407 

    -33.208997      -0.315556        0.909103       -0.271949 

 
                     Stationary point is a saddle point. 

              The RSREG Procedure 

 

  Estimated Ridge of Maximum Response for Variable y: satisfaction 

 

 

Coded      Estimated    Standard       Uncoded Factor Values 

Radius     Response     Error    x1        x2         x3 

 

 0.0    58.697270    2.658718   38.500000  51.500000   2.350000 

 0.1    61.121258    2.639690   36.887244  51.289162   2.346387 

 0.2    63.812896    2.635607   35.273517  51.085272   2.357823 

 0.3    66.892226    2.715762   33.724997  50.925388   2.381385 

 0.4    70.446485    2.978678   32.264079  50.806620   2.412237 

 0.5    74.527045    3.505900   30.878784  50.716552   2.446976 

 0.6    79.162288    4.325171   29.550451  50.645359   2.483799 

 0.7    84.368246    5.423290   28.263794  50.586758   2.521798 

 0.8    90.154432    6.775988   27.007848  50.536846   2.560501 

 0.9    96.526790    8.362759   25.774946  50.493141   2.599649 
 1.0    103.489208   10.169313  24.559691  50.454014   2.639091 
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You may choose some plots, such as, plot=surface option allows you to print out contour plot(s) of all pairs of 
predictors, and plot=surface(3D) option will provide a three-dimension plot. The following code was used to generate 
plot in RSREG procedure with Example one.  

 

ods graphics on; 

proc rsreg data=a plots=(surface); 

model y=x1 x2/lackfit; 

run; 

ods graphics off; 

 

 

  

 

CREATING YOUR OWN PLOT 

Beyond the SAS default contour and surface graphs, you can make your own 3D graphs with GCONTOUR, G3D or 
G3DGRID procedures. In GCONTOUR the response to two independent variables is displayed as different contour 
lines. G3D is a 3-dimensional perspective representation, either as a 'sheet' of joined points or a scatter plot. In this 
section, we will demonstrate how to produce the various shapes of a plot. Data step allows you to create potential 
data points used in graphs step. The example is showed with data=grid. The predicted response would be stored in 
the data predict using the OUT=predict. 
 

 

data grid; 

do y=.; 

do x1=9 to 13 by 0.02; 

do x2 = 29 to 43 by 0.02; 

output; 

end; 

end; 

end; 

run; 

 

data new; 

set a grid; 

run; 

 

proc rsreg data=new out=predict noprint; 
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model y=x1 x2/lackfit predict; 

run; 

 

The plots from GCONTOUR procedure represent three-dimensional relationships in two dimensions. Lines or areas 
in a contour plot represent levels of magnitude (z) corresponding to a position (x, y) on a plane. By default, the 
GCONTOUR procedure automatically use seven contour levels of the contour variable, representing those levels with 
default colors and line types, you also can create more or less levels according to the need with levels option (see 
example below), meanwhile,  it generates a legend that is labeled with the contour variable's name. The G3D 
procedure allows you to view the surface plot from different angles by rotating the X-Y plane around the Z axis, or 
tilting the X-Y plane. 

goptions /*reset=global*/ gunit=pct border cback =white 

colors=(black blue green red);  

 

proc gcontour data=predict; 

plot x1*x2=y/grid xticknum=10 yticknum=10 levels=4 to 8 by 0.5 pattern join; 
run; 

 

proc g3d data=predict; 

plot x1*x2=y/plot x1*x2=y/grid caxis=blue xticknum=5 yticknum=4 zticknum=6 

rotate=0 to 180 by 60 tilt=0 to 90 by 15; 
run; 

 

 
 

CONCLUSION  

The RSREG procedure is another method to execute response surface analysis. It is easier to understand and use in 
graphing and canonical analysis. We would recommend learning this useful procedure when you need response 
surface analysis. GCONTOUR, G3D and G3dGRID are useful procedures to obtain nicer graphs. 
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