
1

Paper DV01-2012

FAQ: PROC TEMPLATE
Katherine Burgess, Sanford Research, Sioux Falls, SD

Ashley Miller, Sanford Research, Sioux Falls, SD

ABSTRACT

PROC TEMPLATE can be a very useful tool in SAS. It provides many options for organizing and presenting your

ODS output. We will provide a brief introduction to PROC TEMPLATE and demonstrate its use through SAS table

and style templates. Step by step examples of both will be given focusing on basic modifications such as changing

fonts, colors, and traffic lighting. Not only will we discuss how to EDIT and DEFINE your own template from a

beginner‟s perspective, we will also demonstrate how easy it is to save your template so that you can use it in future

projects, and share your template across multiple users on a single network.

INTRODUCTION

How many times have you generated output in SAS and then wished there was a way to change the overall

appearance? Have you ever wondered if there was a way to customize the appearance of your output in SAS? We

have all been asked to generate reports from output in SAS, but how often do you find yourself making style and

table changes in Word?

In this paper we will discuss the use of the TEMPLATE procedure, with a focus on style and table templates. PROC

TEMPLATE is an underutilized tool that allows you to customize output into a specific format. Once you have a

customized template, you can then save and apply the template to reports needed in the future. Previous papers

have shown how to edit and define your own template, what we hope to do is build on how easy it is to create your

template, save it, and use it again with other templates, and across multiple users.

PROC TEMPLATE is an efficient tool for creating visually appealing reports in SAS. As it is a powerful tool to use, it is

intimidating at first glance. This paper will introduce you to PROC TEMPLATE; how it is used, and where templates

are located and stored in SAS. Once this foundation is covered we will introduce you to two easy examples of both

table and style templates. The goal of this paper is to demonstrate how easy it is to go from standard output in Figure

1 to more structured and formatted output using both style and table template as seen in Figure 2.

Figure 1. PROC MEANS Output Figure 2. PROC MEANS utilizing PROC TEMPLATE

2

WHAT IS PROC TEMPLATE?

PROC TEMPLATE is a SAS procedure for output structuring. Just as PROC MEANS computes summary statistics

and PROC REPORT displays tables, PROC TEMPLATE is a procedure for controlling the appearance and structure

of SAS output. Think of it as the framework for the organization and presentation of your data.

Just as SAS provides different procedures for different purposes, SAS also provides different templates for different

uses. There are five different types of templates provided by SAS, and each has its own specific purpose. The four

template types are:

 Table: allows structural changes to your output

 Style: allows formatting changes to your output

 Tagset: allows markup language tags specific to your output file destination

 Graph: allows structural changes to your graphical output

For the remainder of this paper we will focus only on table and style templates, as covering all four would be beyond

the confines of this paper.

WHAT ARE THE USES OF PROC TEMPLATE?

The table and style template components of PROC TEMPLATE can be used for a wide range of purposes. For

example, if you work for a company that wishes to create a method of streamlining all reports so that they look the

same and are reproducible, either or both style and table templates would be helpful. You can use PROC

TEMPLATE to incorporate company logos, colors, or letterhead. Perhaps you have a paper to submit to a journal that

has specifications for how your output should be displayed. PROC TEMPLATE can do this for you. Do you work with

a group of people that would benefit from sharing templates? PROC TEMPLATE has the capability of being stored

and easily shared with multiple users on the same network for consistent reporting across individuals.

PROC TEMPLATE gives you the flexibility of customizing your own unique template or modifying an existing

template. By “modifying an existing template”, we mean a template that is already made and provided by SAS. All

procedures and data steps (except PRINT, TABULATE, and REPORT) in SAS come with a built-in default template,

which SAS uses to present output by default. Sometimes it is easier to make changes to this default template than it

is to customize a new template. The difference in defining a new template or editing an existing one will be discussed

later in this paper with examples. The fundamental point we wish to make here is that in order to make these

changes, you need to understand what templates your SAS procedure is currently using.

Figure 3. SAS TEMPLATE Examples

3

HOW DO YOU KNOW WHAT TEMPLATE SAS IS USING?

SAS provided a method of „tracing‟ your output with the functionality of ODS. To determine what template SAS is

using to create your output, you will need to use the ODS TRACE ON/OFF statement. For example, if you wanted to

determine the template being used in the MEANS procedure you would submit this code:

Example 1. PROC MEANS Using ODS TRACE ON/OFF Figure 4. ODS TRACE ON/OFF in Log

ODS TRACE ON;

PROC MEANS DATA=sashelp.shoes SUM;

 VAR sales returns;

 CLASS product;

RUN;

ODS TRACE OFF;

Figure 4 displays the ODS TRACE statement output in your log. You will notice that under „OUTPUT ADDED‟ is the

statement, „TEMPLATE: BASE.SUMMARY‟(circled above). This tells you that, for the MEANS procedure, the template

SAS uses is called BASE.SUMMARY. So now what do you do with that information? The next step is to locate the

template BASE.SUMMARY. Once you locate the template being used by SAS, you can access the code and make any

changes. Knowing where the templates are stored allows you to view all the templates provided by SAS. This is

particularly useful with SAS 9.3, as this version comes with over 50 default style templates.

WHERE CAN YOU LOCATE THE TEMPLATES?

SAS saves templates in locations known as item stores, which are created in the TEMPLATE procedure. These item

stores can be default stores that come with SAS or can be user defined. There are two default item stores:

1) SASHELP.TMPLMST: location of all templates supplied with SAS

2) SASUSER.TEMPLAT: default location for templates that you create and modify

To locate and view the contents of an item store you can use either 1) the SAS windowing environment, 2) the SAS

window command ODSTEMPLATES or 3) the TEMPLATE procedure.

Item stores can be made up of many different levels known as directories and subdirectories. These levels are then

used to locate the correct template to be used in your procedure. For example, let‟s locate the BASE.SUMMARY
template from our previous example. BASE.SUMMARY is a two level name, where SASHELP.TMPLMST store has

directory BASE which contains template SUMMARY. Using the SAS windowing environment, if you were to go to View

→ Results → View → Templates (as shown in Figure 22 in the appendix), you would see:

4

Figure 5. Locating template stores by the SAS windowing environment

Figure 5 illustrates the location of the templates provided by SAS. What if you wanted a listing of the templates you

have stored in SASUSER.TEMPLAT? You could locate the template store using the same method as shown in Figure

5, or you could code for an output listing of a specific store. For example, if you wanted to see a listing of all the

directories and templates that you have created and saved to SASUSER.TEMPLAT you could run the code:

PROC TEMPLATE;

LIST/STORE=SASUSER.TEMPLAT;

RUN;

The LIST/STORE=SASUSER.TEMPLAT statement tells SAS that you want an output listing of all templates located in

the SASUSER.TEMPLAT store. Figure 6 displays the listing from the SAS output of the above code. Notice that the

system tells you what item store it is making a listing of as well as what type each item is within the store.

Figure 6. Output listing of SASUSER.TEMPLAT store

For example, Figure 6 shows that STYLES.STYLETEMP1 is a style template within the directory „STYLES‟ of the item

store SASUSER.TEMPLAT. Notice that „DIR‟ under „TYPE‟ specifies that the item in the path is a directory, and the first

level in the name of all items within that directory. So within the directory „STYLES‟ we have two style templates:

STYLETEMP1 and STYLETEMP2 (as shown by arrows).

5

WHAT IS TABLE TEMPLATE?

Now that you know where and how templates are stored, let‟s examine what you can do with PROC TEMPLATE

starting with table template. Table template is what allows you to customize the appearance of your SAS output such

as a table from a MEANS procedure. Each procedure has a table template specifically used for the ODS output.

The appearance of ODS output can be created or modified by using either a DEFINE or EDIT statement. An EDIT

statement modifies a current table template while a DEFINE statement creates a new table template. When

designing table templates there are certain elements and attributes you can modify that affect the appearance of your

table, giving you the ability to customize the output. One can easily modify the table elements such as columns,

headers, and footers. Table attributes, which order table elements, consist of things such as text appearance,

justification of text, and formats and can be modified as well.

WHAT IS THE SYNTAX FOR TABLE TEMPLATE?

After learning the basics of table template, the next step is putting it to use. In order to use the table template, you

need to start with the syntax. The basic syntax is:

PROC TEMPLATE;

 DEFINE TABLE table-name;

 statements/attributes/headers/footers/columns…

 END;

 RUN;

Now let‟s put this syntax to use with some examples of what you can do to customize a table.

HOW DO YOU CHANGE HEADERS AND CUSTOMIZE COLUMNS?

Have you wanted to quickly and easily change the headers in your table? Or format the columns so your table is

more pleasing to the eye? Below is a step by step guide for doing just that.

Example 2. PROC TEMPLATE Table Template Figure 7. Table Template Columns

PROC TEMPLATE;

DEFINE TABLE tabtemp1; (1)

 COLUMN product _freq_ sales returns;

 HEADER header1 header2; (2)

 DEFINE HEADER header1; (3)

 TEXT 'Based on PROC MEANS';

 JUST=center;

STYLE=HEADER{BACKGROUND=teal};

 END;

 DEFINE HEADER header2; (4)

 TEXT 'Calculated Totals';

 JUST=center;

 START=_freq_;

 STYLE=HEADER{BACKGROUND=yellow};

 END=returns;

 END;

DEFINE product;

 HEADER="Type of Shoe";

 END;

 DEFINE _freq_;

 HEADER="Stores";

 END;

 DEFINE sales;(5)

 HEADER="Sales";

 FORMAT=DOLLAR14.2;

6

END;

 DEFINE returns;

 HEADER="Returns";

 FORMAT=DOLLAR14.2;

 END;

 END;

RUN;

In step (1) the DEFINE statement is used to name the table template „tabtemp1‟. The default table settings are used

for the MEANS procedure and only the elements and attributes that are addressed in the syntax will be modified.

The HEADER (2) names the column headers to be used in the table. The first HEADER (3) „header1‟ is given a title

and the JUST= statement is used to center it. It can also be right or left justified by modifying the syntax. The second

HEADER „header2‟ (4) is titled „Calculated Totals‟ and spans the columns „_freq_‟ , „sales‟ and „returns‟. This is

accomplished by using a START= and END= statement identifying the appropriate columns. (5) The „sales‟ and the

variable „returns‟ are formatted with the SAS FORMAT„DOLLAR14.2‟. Changes in variable names also occurred by

using a HEADER= statement. Now that the columns and headers are formatted let‟s move on to traffic lighting in the

table.

HOW DO YOU USE TRAFFIC LIGHTING?

“Traffic lighting” refers to highlighting certain cells with color based on a rule defined using a CELLSTYLE AS

statement. While our traffic lighting is not based on red, yellow, and green lights, certain cells are emphasized based

on the data values.

Example 2. Table Template Continued Figure 8. Traffic Lighting using Table Template

PROC TEMPLATE;

 DEFINE TABLE tabtemp1;

COLUMN product _freq_ sales

returns;

 DEFINE sales; (1)

 HEADER="Sales";

 FORMAT=DOLLAR14.2;

CELLSTYLE sales >=7000000

AS {FONT_WEIGHT=medium

BACKGROUND= light yellow

FOREGROUND=black};

 END;

 DEFINE returns;(2)

 HEADER="Returns";

 FORMAT=DOLLAR14.2;

CELLSTYLE Returns<=30000 AS

{FONT_WEIGHT=medium

BACKGROUND=moderate blue

FOREGROUND=black};

 END;

 END;

RUN;

In both „sales‟ (1) and „returns‟ (2) the code from above uses the CELLSTYLE AS statement. This allows the style of

a cell to be set according to its value. For example, in the „sales‟ column, the font, background, and foreground were

modified to emphasize values greater than 7,000,000. The same is true for the „returns‟ column; however it was

modified to emphasize values less than 30,000.

7

WHAT IS STYLE TEMPLATE?

Let‟s go a little further in exploring PROC TEMPLATE and look at style template and some of its possibilities. SAS

style template tells SAS how to display the output that it produces. A way to differentiate between the use of style

template and table template is that style template affects the entire document while table template affects specific

elements of the output. A style template affects the overall appearance of your output and can enhance both table

and graphics and, like a table template, is made up of elements and attributes. Think of elements as the area of

output you wish to change, such as headers, data display, and the table appearance. The attributes are what make

up the elements. These include, but are not limited to, fonts or backgrounds, borders of the table, and images.

WHAT IS THE SYNTAX FOR STYLE TEMPLATE?

The syntax for style template is the same as for the table template; let‟s look at the basic syntax of style template:

PROC TEMPLATE;

DEFINE STYLE style-name;

…..statements/attributes…
END;

RUN;

We will look more closely at the syntax as we walk through an example, but first let‟s venture into the world of colors
and fonts.

HOW DOES TEMPLATE USE COLOR AND FONTS?

Colors and fonts are both style attributes that can enhance the appearance of output. Colors can be specified using
hexadecimal codes (RRGGBB) or Hue Light Saturation (HLS) values. An example of HLS is „very light blue‟. An
example of hexadecimal code is cxFFFFFF for white. While white is simple and easy to remember, various other
colors are not so easy. A color picker that is available online can be a very useful tool. In Figure 9 below the
hexadecimal color is displayed in the box on top as „E01B6A‟ for the color of pink that is showing in the top right
corner.

Figure 9: Color Picker with Hexadecimal Codes

www.colorpicker.com

http://www.colorpicker.com/

8

Another great way to get a list of accurate SAS color names is using PROC REGISTRY.

The syntax is : Figure 10. PROC REGISTRY List

PROC REGISTRY LIST

STARTAT="COLORNAMES";

RUN;

As you can see this is a snippet of the entire list
and a useful tool for finding hexadecimal values
as well.

Font style attributes are specified by FONT_FACE, FONT_WEIGHT, FONT_STYLE, FONT_SIZE. FONT_FACE are
the fonts used such as „Arial‟, „Helvetica‟, „Cambria‟, etc. When outputting, if you list fonts SAS will go through the list
and pick the first available.

Examples of FONT_STYLE, FONT_WEIGHT, and TEXTDECORATION are given in Table 2 in the appendix. All are
useful in customizing your output for your audience. An example of TEXTDECORATION is seen below.

Example 3 Style Template Decoration Figure 11. Style Decoration Example

PROC TEMPLATE;

DEFINE STYLE amstyle;

 PARENT=styles.sasweb;

CLASS HEADER /

 FONT_FACE = "Impact"

 FONT_SIZE = 6

 FONT_WEIGHT = medium

 FONT_STYLE = roman

 FOREGROUND = cxffffff

 BACKGROUND = teal

 TEXTDECORATION=underline;

All of the above syntax will be explained in the example to follow. First let‟s look at how to easily create your own
style template.

9

HOW CAN YOU EASILY CREATE YOUR OWN STYLE?

An easy tool to use to create your own style template is the ODS STYLE_POPUP.

ODS MARKUP TYPE=style_popup

 PATH='c:\temp'

 FILE='presentpu.html'

 STYLE=styles.sasweb;

The PROC MEANS output from our above example is used. Notice when you hover over an element in the table, the
output is highlighted by a salmon pink color; this is due to the use of the ODS STYLE_POPUP. Now when you click
on the data or titles an html pop-up window appears with the syntax used for that specific element of the table. This
is a quick and easy way to determine the syntax of the style template of the output. Figure 12 is an example of the
data style syntax, and Figure 13 is an example of the header style syntax. To create your own style template, copy
and paste what is in the pop-up into the basic syntax of the style template and change the elements that you would
like to change. The next step is combining the table and style templates.

Figure 12: Data Style Element Pop Up Window

10

Figure 13: Header Style Element Pop Up Window

HOW DO YOU USE THE STYLE AND TABLE TEMPLATES TOGETHER?

The SAS code below is an example of using both the table template that was created in the previous example and
the style template example that follows. Prior to the PROC MEANS statement the style template is referenced,
telling SAS the specific template that will be used in the output. The DATA NULL step is used to reference the table
template.

ODS PATH SASUSER.TEMPLATE (UPDATE)

 SASHELP.TMPLMST (READ);

ODS HTML PATH = 'c:\temp'

 FILE= 'test1.html'

 STYLE=styletemp1; Referencing the style template to be used
ODS PATH SHOW;

PROC MEANS DATA=sashelp.shoes SUM;

 VAR sales returns;

 CLASS product;

 OUTPUT OUT=example1 SUM=;

RUN;

DATA _null_;

 SET example1;

 IF product = ' ' THEN DELETE;

 FILE PRINT ODS=(TEMPLATE='tabtemp1'); Referencing the table template created
 PUT _ODS_;

 TITLE 'Style Template Example';

 TITLE2 'Including Table Template as well...';

RUN;

ODS _ALL_CLOSE;

11

HOW DO YOU ADD STYLE TO HEADERS, FOOTERS, TITLES AND THE DATA?

The style pop-up tool shown above was used to copy and paste the template into SAS.

Example 4. Style Template Figure 14. Customized Style Template

PROC TEMPLATE;

DEFINE STYLE styletemp1;

 PARENT=styles.sasweb;

CLASS SYSTEMTITLE / (1)

 FONT_FACE = "Impact"

 FONT_SIZE = 7

 FONT_WEIGHT = medium

 FONT_STYLE = roman

 FOREGROUND = teal

 BACKGROUND = cxffffff;

CLASS HEADER / (2)

 FONT_FACE = "Impact"

 FONT_SIZE = 6

 FONT_WEIGHT = medium

 FONT_STYLE = roman

 FOREGROUND = cxffffff

 BACKGROUND = teal

 TEXTDECORATION=underline;

CLASS DATA / (3)

 FONT_FACE = "Impact"

 FONT_SIZE = 2

 FONT_WEIGHT = medium

 FONT_STYLE = roman

 FOREGROUND = cxffffff

 BACKGROUND = cx339999;

CLASS FOOTER / (4)

 FONT_FACE = "Impact"

 FONT_SIZE = 2

 FONT_WEIGHT = light

 FONT_STYLE =slant

 FOREGROUND = cxffffff

 BACKGROUND = teal;

END;

RUN;

Again this example was run using both the PROC MEANS example from above as well as the table template that
was created. As you can see from the example the syntax is very similar. The SYSTEMTITLE (1) and HEADER (2)
are identical with the exception of the changes in foreground and background. Using hexadecimal colors the font is
colored white (cxffffff) on the headers. Examining the FOOTER (4) shows similar syntax; however notice that the
FONT_STYLE request is slant. The data style within the table is affected by the CLASS DATA statement (3).

HOW DO YOU ADD STYLE TO BORDERS AND CELLS?

To affect the borders of your table and its appearance there are several style options. The FRAME= option specifies
which borders appear around the table. The BORDERSTYLE= option tells SAS which style of border will go around
the table. The RULES= option affects the borders of the columns and rows within a table. For more options and to
see examples of FRAME and BORDERSTYLE see Figures 23 and 24 in the appendix .

12

Exampe 4 . Style Template Continued Figure 15. Customized Style Template Borders

PROC TEMPLATE;

DEFINE STYLE styletemp1;

 PARENT=styles.sasweb;

CLASS TABLE /

 CELLPADDING=5

 CELLSPACING=3

 BACKGROUND= cxffffff

 FRAME= box

 RULES= all

 BORDERSPACING=3

 BORDERWIDTH=10

 BORDERSTYLE=double

 BORDERCOLOR=teal;

END;

RUN;

HOW DO YOU SPECIFY WHICH TEMPLATE TO USE?

Now that you know where templates are stored and how to create your own templates you need to know how to

specify which template to use in your code. To do this, SAS uses an ODS PATH statement. The function of the path

statement is to define the location of the templates you wish to use.

The default path statement is:

ODS PATH SASUSER.TEMPLAT (UPDATE)

 SASHELP.TMPLMST (READ);

This path statement is telling SAS to first look for the template in the SASUSER.TEMPLAT, and if it does not exist

there, to look in the SASHELP.TMPLMST next. You can also create a new item store with this path statement. For

example, if we wanted to create a new template and save it in a store called, EXAMPLE.MYTEMP, all we would need

to do is reset the path statement.

ODS PATH EXAMPLE.MYTEMP (UPDATE)

 SASHELP.TMPLMST (READ);

When SAS tries to locate the item store, EXAMPLE.MYTEMP, it will find that the store does not exist and will create it

instead. Now any new templates you create will be stored here, because it is listed first in the path statement and

has the access set to UPDATE.

Access options in the path statement define the manner in which SAS allows the user to access the item store. There

are three access level options: READ, WRITE, and UPDATE. The key to remember is to always set the

13

SASHELP.TMPLMST to READ. The READ option protects the already made templates provided by SAS. With READ

you can only access and use the templates in the store, you cannot delete or make changes. WRITE creates a new

item store and provides READ access. UPDATE creates a new item store if the specified one does not exist, and

allows you to add, delete, and make changes to the templates within the store.

There are two other options with the path statement that are very useful:

1) ODS PATH SHOW;

2) ODS PATH RESET;

The ODS PATH SHOW option allows you to keep track of the path order in your log. For example, if you wanted to

see what path ODS is using for the following code:

Example 5. ODS PATH SHOW Figure 16. Example of ODS PATH SHOW in log

ODS PATH EXAMPLE.MYTEMP (UPDATE)

SASHELP.TMPLMST (READ);

ODS PATH SHOW;

When you run this code you get a comment in your log that lets you know what the current ODS PATH list is and a

specification of the order. EXAMPLE.MYTEMP will be the first store SAS will use and then if the template is not found

in EXAMPLE.MYTEMP, SAS will look in the SASHELP.TMPLMST store.

If you decide to use another template that is in SASUSER.TEMPLAT then the ODS PATH RESET option will allow

you to set your path back to the SAS default path.

Example 6. ODS PATH SHOW and ODS PATH RESET Figure 17. Example of ODS PATH RESET in log

ODS PATH EXAMPLE.MYTEMP (UPDATE)

 SASHELP.TMPLMST (READ);

ODS PATH SHOW;

ODS PATH RESET;

ODS PATH SHOW;

HOW DO YOU CREATE SHARED TEMPLATES?

Have you ever wanted to create a template to share among a group of users? Perhaps you work for a company that

would prefer a certain style applied to each report generated by multiple users. The ODS PATH statement makes it

possible to share templates across different users on a single network. The trick to this process is that you must store

the template in a directory that is accessible to others.

14

LIBNAME group "W:\Shared\SDSUG Talks\Templates"; 1)

PROC TEMPLATE;

 DEFINE STYLE styletemp1/STORE=group.templates; 2)

 PARENT=styles.sasweb;

The first step is to establish a permanent item store in a public folder (1). Then when you are creating a new template
be sure to use the STORE= option in the define statement (2). This way your template is stored in the public directory
referenced in the LIBNAME, and makes your template accessible to all users.

 Figure 18. Log of Successful LIBNAME Statement

It is very important to successfully assign your library because all users that will be sharing templates will need to
specify the shared library within their LIBNAME statements. To make sure that the library reference was successfully
created, you can check your log. Figure 18 above gives an example.

 Figure 19. Log of Shared Template and Item Store

You can also check your log to make sure that the template you create is saved to the item store in the shared user
folder. Figure 19 shows that the style template, STYLETEMP1, was saved in the shared user item store

GROUP.TEMPLATES. Now other users that have access to the folder can use the STYLETEMP1 template by

referencing the library „GROUP‟ in their LIBNAME statement.

The following code is an example of using a shared template for a PROC PRINT with a different dataset than the
SASHELP.SHOES. This example uses the same style template that we created before, and applies it to the

SASHELP.CLASS data by accessing the template through the shared folder.

LIBNAME group "W:\Shared\SDSUG Talks\Templates"; 1)

ODS PATH RESET;

ODS PATH (PREPEND) group.templates(READ); 2)

ODS HTML FILE='C:\Documents and Settings\burgessk\My Documents\My Practice

Files\sharedtemp1.html'

STYLE=styletemp1; 3)

PROC PRINT DATA=sashelp.class (obs=5); RUN; 4)

ODS PATH SHOW; 5)

First, you reference the public file that contains the template in a LIBNAME statement (1). Make sure that you set the

ODS PATH to read from the shared item store first (2). Next, you reference the style template you wish to use from

the shared item store (3). Then you run your procedure (4) and view your current path in your log (5).

15

When you reference the shared templates in the LIBNAME statement, make sure to set the access to read only. This

way the stored template cannot be changed when used by other users. This allows for consistency and reproducibility

among those using the template. Next, set the path so that SAS will access and locate the templates stored in the

GROUP.TEMPLATES store first. This can be done by using the (PREPEND) option. If you wanted to move the first

item store to the end of the path statement you could use (APPEND), and if you wanted to remove an item store from

the path you could use (REMOVE). The rest is simple! You just reference the type of file and location of where you

want your output to go, state the style template you wish to use, and run the procedure.

Figure 20. Log of Current Path Figure 21. PROC PRINT Output Using Shared Template

Figure 20 shows the updated path with GROUP.TEMPLATES being the first item store on the path. Figure 21 shows

the PROC PRINT output with the STYLETEMP1 style template.

CONCLUSION

PROC TEMPLATE is a highly useful tool for editing and customizing your data. Table template provides a way to

structure your output and style template provides a way to format the appearance of your output. Together, both

templates can be used to produce visually appealing reports all within SAS. Templates can be stored and used for

future projects or shared with other SAS users, enhancing the flexibility and usability of this tool.

16

REFERENCES

Haworth, L.E. (2006), PROC TEMPLATE: The Basics, Proceedings of the Thirty-First SAS Users Group International

Conference, paper 112-31. http://www2.sas.com/proceedings/sugi31/112-31.pdf.

Haworth, L.E., Zender, C.L., Burlew, M.M. 2009. Output Delivery System: The Basics and Beyond. Cary, NC: SAS

Institute Inc.

Smith, K.D. (2007), PROC TEMPLATE Tables from Scratch, Proceedings of the SAS Global Forum 2007

Conference, paper 221-2007. http://www2.sas.com/proceedings/forum2007/221-2007.pdf.

Zender, C.L. (2009), Tiptoe through the Templates, Proceedings of the SAS Global Forum 2009 Conference, paper

227-2009. http://support.sas.com/resources/papers/proceedings09/227-2009.pdf.

Zender, C.L. (2010), SAS® Style Templates: Always in Fashion, Proceedings of the SAS Global Forum 2010

Conference, paper 033-2010. http://support.sas.com/resources/papers/proceedings10/033-2010.pdf.

ACKNOWLEDGMENTS

The authors wish to thank Dr. Paul Thompson and Dr. Susan Puumala in their review and guidance with this paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Katherine Burgess Ashley Miller
Sanford Research Sanford Research
 2301 East 60

th
 Street N. 2301 East 60

th
 Street N.

Sioux Falls, SD 57104 Sioux Falls, SD 57104
605-312-6465 605-312-6463
Katherine.Burgess@sanfordhealth.org Ashley.Miller@sanfordhealth.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

17

APPENDIX A.

Figure 22. Locating Templates using the SAS Windowing Environment

18

Table 1. Border Options

Table 2. Font Options

Frame Rules Borderstyle

Box All Dashed

Above Cols Dotted

Below Rows Double

Hsides Groups Groove

Vsides None Hidden

Lhs Inset

Rhs Outset

Void Ridge

 Solid

 None

Font Style Font Weight Text Decoration

Italic Bold Line_through

Roman Medium Overline

Slant Underline

19

Figure 23. Examples of FRAME Options

Figure 24. Examples of BORDERSTYLE Options

