
1

Paper 44-2012

Innovative Techniques:
Doing More with Loops and Arrays

Arthur L. Carpenter
California Occidental Consultants, Anchorage, AK

ABSTRACT
DO loops and ARRAY statements are common tools in the DATA step. Together they allow us to iteratively
process large amounts of data with a minimum amount of code. You have used loops and arrays dozens of
times, but do you use them effectively? Do you take advantage of their full potential? Do you understand what
is really taking place when you include these statements in your program?

Through a series of examples let’s look at some techniques that utilize DO loops and ARRAYs. As we discuss the
techniques shown in the examples we will also examine the use of the loops and the arrays by highlighting some
of the advanced capabilities of these statements. Included are examples of DO and ARRAY statement shortcuts
and ‘extras’, the DOW loop, transposing data, processing across observations, key indexing, creating a stack, and
others.

KEYWORDS
DO loop, DO UNTIL, DOW loop, ARRAY statement, DIM function, SET statement options

INTRODUCTION
Although most SAS DATA step programmers have made use of DO loops and arrays, few take full advantage of
the power and flexibility of these tools. There are many variations of the DO statement and these can be used in
conjunction with arrays to accomplish a number of tasks that can otherwise be quite intractable. The primary
objective of this paper therefore is to demonstrate the interaction of DO loops and arrays.

In the examples that follow, I have for the most part, assumed that that the reader has at least a passing
understanding of the:

• types of DO loops and their basic syntax
• ARRAY statement and its various forms

Many of the examples in this paper have been borrowed (with the author’s permission) from the SAS Press book
Carpenter’s Guide to Innovative SAS® Techniques (Carpenter, 2012). When appropriate a reference to this book
will be made in the form of ”(3.1.2)”. This indicates that additional discussion can be found in Chapter 3 Section
1.2 of that book.

Shorthand Variable Naming (2.6.1)
Several shorthand naming conventions exist for specifying a list of variables.

 A set of variables with a common prefix and a numeric suffix can be used wherever a list of variables can be
specified. When used in an ARRAY statement, variables not already on the PDV will be created.

 array vis {10} visit1 - visit10;

https://support.sas.com/pubscat/bookdetails.jsp?pc=62454

2

All variables with a common prefix regardless of the suffix can be addressed using a colon.

 array vis {10} visit:;

Specialized name lists can be used to address variables by their type. Since each of these lists will pertain to the
current list of variables, they will not create variables. In each case the resulting list of variables will be in the
same order as they are on the Program Data Vector

 CHARACTER All non-temporary character variables

 NUMERIC All non-temporary numeric variables

 ALL All non-temporary variables on the PDV

 array allnum {*} _numeric_;

DO Loop Specifications (3.9.2)
The iterative DO loop specification is probably the one most commonly used. However there are a number of
variations that are less commonly applied.

The iterative DO can accept compound loop specifications. Each specification is separated by a comma.

 do count=1 to 3, 5 to 20 by 5, 26, 33; . . . end;

In this loop the value of COUNT takes on the values of: 1, 2, 3, 5, 10, 15, 20, 26, 33.

The index variable can also be character with each individual value specified.

 do month = 'Jan', 'Feb', 'Mar'; . . . end;

The iterative DO loop is evaluated at the bottom of the loop. This means that the index variable is incremented
and then evaluated. For the following DO loop, the variable COUNT exits the loop with a value of COUNT=4.

 do count=1 to 3; . . . end;

Sometimes we want to prevent the index variable from being incremented beyond the maximum value. When
the following DO loop terminates the variable COUNT exits the loop with a value of COUNT=3.

 do count=1 to 3 until(count=3); . . . end;

The DO UNTIL and DO WHILE loop forms of the DO loop will be executed indefinitely until some exit criteria is
met. For these loops the index variable must be incremented manually by the programmer. It is also possible to
set up an infinite loop with conditional exit and increment the index variable automatically. Notice that this
iterative DO loop does not have a TO specified.

 do k=1 by 1 until(x=5); . . . end;

3

ARRAY Statement Forms
Although the simple use of the ARRAY statement is well known, it also supports a number of less commonly
used alternate syntax structures.

The dimension of the array (number of elements is enclosed in braces). Here the dimension of the array is 3,
and the index starts at 1.

 array list {3} aa bb cc;

 array list {1:3} aa bb cc;

Typically the index for the array starts with one and has a maximum value of the dimension. However the index
can start at any numeric value. The following array also has a dimension of 3, however its index starts at 0, and
can take on a maximum value of 2.

 array list {0:2} aa bb cc;

When the number of array elements is unknown, an asterisk can be used to cause SAS to determine the
dimension for you. In each of these arrays has a dimension of 16 and each addresses the same list of variables
(VISIT1-VISIT16).

 array vis {16} visit1-visit16;

 array vis {*} visit1-visit16;

 array visit {16} ;

When the number of variables is unknown you will have to let SAS determine the dimension.

 array nvar {*} _numeric_;

 array cvar {*} _character_;

Initial values can be inserted into an array through the use of parentheses that enclose a list of initial values.
Here the character variables CLIST1 – CLIST3 will be initialized to ‘a’, ‘b’, and ‘c’ respectively.

 array clist {4:6} $1 ('a', 'b', 'c');

Temporary Arrays
Temporary arrays can be especially useful when you need the power of an array, but do not have or want the
values to be stored in variables. A temporary array stores values on the PDV in temporary locations that are not
transferred to the new data set. The keyword _TEMPORARY_ is used instead of a variable list, and the
dimension must be specified.

 array visdate {16} _temporary_;

Like other arrays it is possible load initial values. These two array specifications are the same.

 array list {5} _temporary_ (11,12,13,14,15);

 array list {5} _temporary_ (11:15);

In the array ALIST all six values are initialized to 3, while the initial values of BLIST are 1,2,3,1,2,3.

 array alist {6} _temporary_ (6*3);

 array blist {6} _temporary_ (2*1:3);

4

Simple Example – Transposing Data
Most, but not all, SAS procedures prefer to operate against normalized data, which tends to be tall and narrow,
and often contains classification variables that are used to identify individual rows. Data in non-normal form
tends to have one column for each level of one of the classification variables. Converting between the two
forms can be accomplished using PROC TRANSPOSE or from within the DATA step. This is one of the 'classic'
uses of arrays in conjunction with DO loops.

NORMAL to NON-NORMAL (Rows to Columns) (2.4.2)
 In the normal form data shown to the right, there are
two classification variables SUBJECT and VISIT with one
row for each combination. We would like to transpose
this data so that there is one row per SUBJECT and one
column for each value of VISIT. Notice that subject 208
did not have a VISIT=3 and the last visit for this subject in
the study was 10 (out of a possible 16 visits).

Commonly the process of transposing will involve the use
of an array and an iterative DO loop.

  The new variables (VISIT1
through VISIT16) are defined
and retained.
 An iterative DO loop is used
to clear the array for each
subject.
 The value to be transposed is
assigned to the new variable
using VISIT as the index variable
to the array.
 After all the visits for this
subject have been accumulated
in the array, the new observation is written.

Normal Form

Obs SUBJECT VISIT sodium

 1 208 1 13.7

 2 208 2 14.1

 3 208 4 14.1

 4 208 5 14.1

 5 208 6 13.9

 6 208 7 13.9

 7 208 8 14.0

 8 208 9 14.0

 9 208 10 14.0

 10 209 1 14.0

. . . . portions of the table are not shown

data lab_nonnormal(keep=subject visit1-visit16);

 set lab_chemistry(keep=subject visit sodium);

 by subject;

 retain visit1-visit16 ; 

 array visits {16} visit1-visit16; 

 if first.subject then do i = 1 to 16; 

 visits{i} = .;

 end;

 visits{visit} = sodium; 

 if last.subject then output lab_nonnormal; 

 run;

 S v v v v v v v

 U v v v v v v v v v i i i i i i i

 B i i i i i i i i i s s s s s s s

 J s s s s s s s s s i i i i i i i

O E i i i i i i i i i t t t t t t t

b C t t t t t t t t t 1 1 1 1 1 1 1

s T 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

1 208 13.7 14.1 . 14.1 14.1 13.9 13.9 14 14 14.0

2 209 14.0 14.0 . 13.9 14.2 14.5 13.8 14 . 13.8 14 14.1 14.2 14.1 14 14.1

. . . . portions of the table are not shown

5

NON-NORMAL to NORMAL (Columns to Rows) (2.4.2)
The process for transposing from columns to rows is very similar to the one shown in the previous example. The
primary difference is in the placement of the OUTPUT statement within the DO loop.

 A list abbreviation is used to name
all variables that start with VISIT.
 The array specifies variables that
already exist.
 The iterative DO loop steps
through the 16 potential visits.
 The value is assigned using VISIT as
the array index.
 The new observation is written
from within the DO loop.

Array Functions (3.10.3)
There are three functions that have been specifically designed to work with arrays.

 DIM returns the dimension of the array

 LBOUND returns the lowest bound of the array index

 HBOUND returns the upper bound of the array index

The DIM function can be useful when you need to step through an array and you do not know how many

elements the array contains.  The array CHEM
contains all numeric variables, but the dimension will
depend on how many numeric variables are in the
incoming data set.  The DIM function allows us to
step through the array without knowing the number
of numeric variables.

In this example the index variable (i) ranges from 1 to
the dimension. This approach would not work if the
index variable did not start at 1.

The HBOUND and LBOUND functions can be used to determine the range of the index variable. In this example
we want to find all subjects that are within an inch of any given subject. The first DO UNTIL loop is used to read
the height for each individual into the HEIGHTS array. A second pass of the data is made in the second DO UNTIL
where the height of each subject is compared to each of the other subjects.

data lab_normal(keep=subject visit sodium);

 set lab_nonnormal(keep=subject visit:); 

 by subject;

 array visits {16} visit1-visit16; 

 do visit = 1 to 16; 

 sodium = visits{visit}; 

 output lab_normal; 

 end;

 run;

data newchem(drop=i);

 set advrpt.lab_chemistry

 (drop=visit labdt);

 array chem {*} _numeric_; 

 do i=1 to dim(chem); 

 chem{i} = chem{i}/100;

 end;

 run;

6

 The temporary array is
defined using the lowest
(&LB) and highest (&HB)
subject number of interest.
 The subject number itself
is used as the index to the
array.
 The DO loop uses the
LBOUND and HBOUND
functions to return the limits
of the array.

WORKING ACROSS OBSERVATIONS (3.1)
Because SAS reads one observation at a time into the PDV, it is difficult to ‘remember’ the values from an earlier
observation (look-back) or to anticipate the values of a future observation (look-ahead).
Without doing something extra, only the current observation is available for use.

A form of look-back not discussed in this paper is accomplished through the use of the LAG function. As these
techniques typically require neither arrays or DO loops they have not been included in this paper.

Processing Within Groups (Using FIRST. and LAST.) (3.1.1)
A very common solution to processing within and across groups is the use of FIRST. and LAST. processing. These
techniques are especially useful when counting items, but they do require that the data be sorted (to allow the
use of the BY statement ).

In this example we need to count both the
number of clinics and the number of
patient visits within a region.
 The counters are initialized for each
region.
 The clinic is counted once for each
region, while each patient visit  is
counted.
 Once all observations for the reagion
have been processed the observation can
be written out to the data set
WORK.COUNTER.

The IF statement at  could be replaced

by a simple, and quicker, assignment statement.
 clincnt + first.clinnum;

data CloseHT;

array heights {&lb:&hb} _temporary_; 

do until(done);

 set advrpt.demog(keep=subject ht) end=done;

 heights(subject)=ht; 

end;

done=0;

do until(done);

 set advrpt.demog(keep=subject ht) end=done;

 do Hsubj = lbound(heights) to hbound(heights); 

 closeHT = heights{hsubj};

 if (ht-1 le closeht le ht+1)

 & (subject ne hsubj) then output closeHT;

 end;

end;

stop;

run;

data counter(keep=region clincnt patcnt);

 set regions(keep=region clinnum);

 by region clinnum; 

 if first.region then do; 

 clincnt=0;

 patcnt=0;

 end;

 if first.clinnum then clincnt + 1; 

 patcnt+1; 

 if last.region then output; 

 run;

7

Transposing to Temporary Arrays (3.1.2)
When we need to work with values
from multiple observations it is often
very effective to save the values to an
array. Essentially we are transposing
the rows to an array and the code is
similar to that used in the transpose
example earlier in the paper
(transposing rows to columns).

In this example we want to calculate
the average number of days between
visits.

A temporary array  is used to hold all
of the visit dates for each subject. The
array is cleared  using the CALL
MISSING routine.  The values for
each observation are loaded into the
array and when the last observation for
the subject has been read , the values
in the array can be processed. The
difference  is accumulated  so that
the average difference can be
calculated .

Building a FIFO Stack (3.1.7)
When processing across a series of observations for the calculation of statistics, such as running averages, a
stack can be helpful. A stack is a collection of values that have automatic entrance and exit rules. Values tend to
rotate through a stack.

Stacks come in two basic flavors; First-In-First-Out, FIFO, and Last-In-First-Out, LIFO. In a FIFO stack the oldest
value in the stack is removed to make room for the newest value. When done correctly implementation of a
stack in the DATA step is straightforward.

A three day moving average of potassium levels is to be calculated for each subject. The key will be to designate
a temporary array to be used as the stack. The index of this array will start at 0. For a moving average the
dimension of the array  and the second argument to the MOD function  will always be the number of items
to be included in the moving average.

data labvisits(keep=subject count meanlength);

 set advrpt.lab_chemistry;

 by subject;

 array Vdate {16} _temporary_; 

 retain totaldays count 0;

 if first.subject then do;

 totaldays=0;

 count = 0;

 call missing(of vdate{*}); 

 end;

 vdate{visit} = labdt; 

 if last.subject then do; 

 do i = 1 to 15;

 between = vdate{i+1}-vdate{i}; 

 if between ne . then do;

 totaldays = totaldays+between; 

 count = count+1;

 end;

 end;

 meanlength = totaldays/count; 

 output labvisits;

 end;

 run;

8

 Items in the temporary array are
automatically retained.
 The index for the temporary array
that is to serve as the FIFO stack always
starts at 0.
 The stack is cleared for each subject
as is the visit counter.
 A visit counter is incremented for
each visit.
 The MOD function is used to
determine the index for the array.
Because of the cyclic nature of the MOD
function, the newest entry will always
automatically overwrite the oldest
entry in the array (the FIFO stack).
This is the key to the processing of the
stack.
 The mean of the items in the stack are
calculated.

USING SET STATEMENT OPTIONS (3.8)
Although a majority of DATA steps use the SET statement, few programmers take advantage of its full potential.
The SET statement has a number of options that can be used to control how the data are to be read. Some of
these options include:

 END= used to detect the last observation from the incoming data set(s)

 KEY= specifies a index to be used when reading

 INDSNAME= used to identify the current data source

 NOBS= number of observations

 POINT= designates the next observation to read

 UNIQUE used with KEY= to read from the top of the index

The END= option was used previously to control the exit from a DO UNTIL loop in the example showing the use
of the LBOUND and HBOUND functions.

Using POINT= and NOBS= (3.8.1)
The SET statement by default reads one observation after another, first observation to last. The POINT= option
makes it possible to perform a non-sequential read.

The POINT= option identifies a temporary variable that indicates the number of the next observation to read.
The NOBS= option also identifies a temporary variable, which after DATA step compilation will hold the number
of observations on the incoming data set.

In this example a random subset of a larger data set is to be selected without replacement (each observation
can only be selected at most one time). The selected observation will be noted in the temporary array OBSNO
by using the observation number as the array index.

data Average(keep=subject visit labdt

 potassium Avg3day);

 set labdates;

 by subject;

 * dimension of array is number of

 * items to be averaged;

 retain visitcnt .; 

 array stack {0:2} _temporary_; 

 if first.subject then do;

 call missing(of stack{*}); 

 visitcnt=0;

 end;

 visitcnt+1; 

 index = mod(visitcnt,3); 

 stack{index} = potassium; 

 avg3day = mean(of stack{*}); 

 run;

9

 The percentage of the total
number of observations is
calculated.
 The temporary array must have
a dimension that is at least as big
as the observation count.
 Generate a random number
between 1 and the number of
observations (OBSCNT).
 If the observation number held
in POINT has not already been
selected , read and write it.
 The POINT= and NOBS= options
are specified on the SET
statement.
 This observation is marked as
having been selected.
 When using the POINT= option
the DATA step must be
terminated with a STOP

statement.

USING THE DOW LOOP (3.9.1)
Although thought to have been initially proposed by Don Henderson, the DOW loop, which is also known as the
DO-W loop, was named for Ian Whitlock who popularized the technique and was one of the first to demonstrate
its efficiencies.

The DATA Step’s Implied Loop
The DATA step has an implied loop. This loop is executed once for each
incoming observation. During the DATA step’s execution phase the DATA
statement  is executed at the top of the implied loop. At this time a number of
operations are performed on the PDV. These include setting derived variables to
missing and incrementing the temporary variable _N_.

A Single Pass DATA Step
When using a DOW loop, the implicit loop of the DATA step is replaced with an explicit one (here a DO UNTIL
loop). Because of the DO UNTIL (DOW) loop, the DATA statement is executed only once, and this can increase
the efficiency of the DATA step.

 The DO UNTIL loop executes until the temporary variable EOF takes
on the value of 1.
 The SET statement includes the use of the END= option. The
temporary variable EOF will be zero for all observations except the last
one.
 Although not needed in this example, it is generally a good idea to
use a STOP statement to terminate a DATA step that includes a DOW
loop.

%macro rand_wo(dsn=,pcnt=0);

 data rand_wo(drop=cnt totl);

 totl = ceil(&pcnt*obscnt); 

 array obsno {10000} $1 _temporary_; 

 do until(cnt = totl);

 point = ceil(ranuni(0)*obscnt); 

 if obsno{point} = ' ' then do; 

 set &dsn point=point nobs=obscnt; 

 output rand_wo;

 obsno{point}='x'; 

 cnt+1;

 end;

 end;

 stop; 

 run;

%mend rand_wo;

%rand_wo(dsn=advrpt.demog,pcnt=.3)

data implied; 

 set big;

 output implied;

 run;

data dowloop;

 do until(eof); 

 set big end=eof;

 output dowloop;

 end;

 stop; 

 run;

10

In the next slightly more interesting example of a DOW loop two data sets are merged using two SET
statements. In this case we want to merge a single observation summary data set (which contains a mean
value) onto the analysis data, which is then used to calculate a percent change.

11

 The summary data set is read only

once (IF _N_=1), however because of
the DATA step’s implied loop, the IF
statement’s expression is evaluated for
every observation on the analysis data
set.
 The analysis data set is read and the
percent difference from the mean
weight is calculated.

 Because the implied loop has been
circumvented, this SET statement will
execute only once.
 A DO UNTIL is used to create the
DOW loop with the exit criteria being
the reading of the final observation.
 The END= option is used to create the
temporary Boolean variable, EOF, to flag
the last observation.
 Unless you are very comfortable with
your understanding of the operation of
the DATA step and what causes it to
terminate, the STOP statement is

recommended when using a DOW loop.

Key Indexing – a Simple Hash (6.7.2)
Key Indexing is generally considered the fastest form of table lookups. This technique named and promoted by
Paul Dorfman is used to essentially merge two data sets. Unlike the
MERGE statement such as the one shown to the right, Key Indexing does
not require that either data set be sorted. In this example the clinic name
needs to be merged onto the larger data set, WORK.DEMOG. The only
variable in common is the clinic number (a numeric value stored in a
character variable). Generally sorting these two data sets and applying the
MERGE in a DATA step will be fast enough. However when sorting
becomes problematic as the data sets get large, or if you just do not want to sort either data set, key indexing
may be an option.

The key to this technique is the use of a temporary array to hold the values that are to be transferred (the clinic
names). As a bonus neither data set needs to be sorted.

proc summary data=advrpt.demog;

 var wt;

 output out=means mean=/autoname;

 run;

data Diff1;

 if _n_=1 then set means(keep=wt_mean); 

 set advrpt.demog(keep=lname fname wt); 

 diff = (wt-wt_mean)/wt_mean;

 run;

data Diff2;

 set means(keep=wt_mean); 

 do until(eof);

 set advrpt.demog(keep=lname fname wt)

 end=eof;

 diff = (wt-wt_mean)/wt_mean;

 output diff2;

 end;

 stop; 

 run;

data clinnames;

 merge demog

 clinicnames;

 by clinnum;

 run;

12

 The range or
dimension of the
array must be
sufficient to hold
all the clinic
names. Since the
clinic numbers are
used as the array
index, and these
are probably not
sequential, there
will likely be a lot
of empty space in
the array. Because
arrays are held in
memory and since

we generally have quite a bit of available memory, very large arrays are generally not a problem.
 A DO UNTIL is used to read the values of the smaller data set so that the clinic names can be placed into the
temporary array.
 The clinic name is stored in the temporary array using the clinic number as the array index. In this example
the clinic number is stored in a character variable so it must be converted to numeric using the INPUT function.
 The observation is read that contains the current clinic number. This number is used in an assignment
statement  to retrieve the clinic name.

Hash Object Initialization (6.7.2)
Hash objects can also be used to perform a table lookup. These techniques can be more flexible than key
indexing as they do not require a single numeric index. Like key indexing, the hash object also avoids the need
to sort the incoming data.

Hash objects need to be declared and defined. Very often this is done in a conditionally executed DO block

within the DATA step. This DO block can generally be
avoided through the use of a DOW loop.

In the following DATA step the same table lookup, that was performed using key indexing in the previous
example, is performed using a hash object. A DOW loop  is used to read the data (the larger data set) and to
retrieve a clinic name from the hash object.

data clinnames(keep=subject lname fname clinnum clinname);

 array chkname {999999} $35 _temporary_; 

 do until(allnames); 

 set advrpt.clinicnames end=allnames;

 chkname{input(clinnum,6.)}=clinname; 

 end;

 do until(alldemog);

 set advrpt.demog(keep=subject lname fname clinnum) 

 end=alldemog;

 clinname = chkname{input(clinnum,6.)}; 

 output clinnames;

 end;

 stop;

 run;

If _n_=1 then do;

 declare hash lookup . . .

end;

13

 The attributes of the variables that are to be loaded into the hash object are added to the PDV. This makes it
unnecessary to specify the attributes explicitly. This SET statement is never executed and is therefore only used
during step compilation to load variable attributes onto the PDV.
 The data set containing the clinic names is loaded into the hash object using the DATASET: constructor.
 The hash objects size is specified using the HASHEXP: constructor.
 The clinic number is defined as the key variable for this hash object (you can have multiple key variables).
 The clinic name variable (CLINNAME) is stored in the LOOKUP hash object as a variable that can be retrieved.
 The DOW loop is set up using a DO UNTIL. The exit criteria is based on the detection of the last observation
on the incoming data set by using the END= option on the SET statement.
 The variables of interest, including the index variable CLINNUM, are read from the incoming data set.
 Continue to read observations until the last observation (DONE=1), this terminates the DOW loop .
 If the FIND method is successful (the clinic number is in the hash object), the clinic name is retrieved from the
hash object, and the observation is written to WORK.HASHNAMES.

SUMMARY
There is so very much that one can do with both DO loops and ARRAYS. This becomes even truer when they are
used in conjunction with each other. You need to study and learn the various forms of the statements and you
must learn how they are compiled and executed within the context of the DATA step.

You can do a great deal with the simple forms of these statements, but as you learn the deeper nuances of the
techniques that surround the use of DO loops and arrays, a new world of opportunity is made available to you.

The tools and techniques associated with the use of DO loops and arrays are a staple of the innovative SAS
programmer.

data hashnames(keep=subject clinnum clinname lname fname);

 if 0 then set advrpt.clinicnames; 

 declare hash lookup(dataset: 'advrpt.clinicnames', 

 hashexp: 8); 

 lookup.defineKey('clinnum'); 

 lookup.defineData('clinname'); 

 lookup.defineDone();

 * Read the primary data;

 do until(done); 

 set advrpt.demog(keep=subject clinnum lname fname) 

 end=done; 

 if lookup.find() = 0 then output hashnames; 

 end;

 stop;

 run;

14

ABOUT THE AUTHOR
Art Carpenter’s publications list includes five books, and numerous papers and posters presented at SUGI, SAS
Global Forum, and other user group conferences. Art has been using SAS® since 1977 and has served in various
leadership positions in local, regional, national, and international user groups. He is a SAS Certified Advanced
Professional programmer, and through California Occidental Consultants he teaches SAS courses and provides
contract SAS programming support nationwide.

AUTHOR CONTACT
Arthur L. Carpenter
California Occidental Consultants
10606 Ketch Circle
Anchorage, AK 99515

(907) 865-9167
art@caloxy.com
www.caloxy.com

REFERENCES
Many of the examples in this paper have been borrowed (with the
author’s permission) from the book Carpenter’s Guide to Innovative
SAS® Techniques by Art Carpenter (SAS Press, 2012).

TRADEMARK INFORMATION
SAS, SAS Certified Professional, SAS Certified Advanced
Programmer, and all other SAS Institute Inc. product or service names are registered trademarks of SAS
Institute, Inc. in the USA and other countries.
® indicates USA registration.

http://www.caloxy.com/
https://support.sas.com/pubscat/bookdetails.jsp?pc=62454
https://support.sas.com/pubscat/bookdetails.jsp?pc=62454

