
1

Paper BI-13

How Readable and Comprehensible Is a SAS® Program? A Programmatic
Approach to Getting an Insight into a Program

Rajesh Lal, Experis, Portage, MI, USA
Raghavender Ranga, Vertex, Cambridge, MA, USA

ABSTRACT
In any programming language, there are general guidelines for writing “better” programs. Well-written programs are
easy to re-use, modify, and comprehend. SAS programmers commonly have guidelines for indentation, program
headers, comments, dead code avoidance, efficient coding, etc.

It would be great if we could gauge a SAS program’s quality by quantifying various factors and generalize for
individual programming styles.

This paper aims to quantify various qualitative characteristics of a SAS program using Perl regular expressions, and
provide insight into a SAS program. This utility, when used across a large project, can serve as a tool to gauge the
quality of programs and help the project lead take any corrective measures to ensure that SAS programs are well
written, easily comprehensible, well documented and efficient.

INTRODUCTION
One of the key stages of the software development life cycle is the development of the code and the fundamental
principle while developing the code is using the best programming practices. A plethora of information is available on
the guidelines of using best programming practices and these guidelines can be applied to any programming
language. Following these guidelines during program development ensures readability of the programs, ease of re-
use across the projects, minimal errors during development, minimal effort for future enhancements, and increased
efficiency in the program. Not following these guidelines during development stages usually leads to error prone
programs, limited use of the program for any further enhancements, or inability to replicate across the projects
because of its poor readability and comprehensibility.

In practice, not all the principles of these guidelines are applied to the programs. Although, every programmer strives
to use these guidelines, often only some of them are followed or some of them get missed. In this paper we try to
quantify some of these qualitative characteristics of a SAS program using SAS Perl regular expressions. The
program is rated based upon these characteristics and is given a score.

OVERVIEW
Some characteristics of a good SAS program are listed below. The following sections describe in detail how the utility
quantifies each of these characteristics.

• Program header

• Indentation

• Comments

• Data set naming convention

• Dead code (commented out code) avoidance

• Line size limitation

• Optimum code usage

The utility reads in the SAS program along with Pattern Definition Files (files which define SAS Perl regular
expressions that are used to identify patterns in the input SAS program). The utility identifies and extracts single and
multi-line comments, calculates comments expectancy, compares actual versus expected comments, calculates
actual versus expected indentation, identifies dead code (commented out code) by searching for SAS keywords,
compares the standard program header template with actual header, identifies code that may be optimized, searches
for and identifies data set names that are not following standard conventions and generates a summary of the
calculated information.

The flowchart shown in Figure 1 below summarizes the process flow when the utility we’re presenting is run on a SAS
program.

How Readable and Comprehensible is a SAS® Program? A Programmatic Approach to Getting an Insight into a Program, continued

2

Figure 1. Flow chart for overall processing of the utility

When this utility is used across a large project, it can serve as a tool to gauge the quality of the programs. By looking
at the scores provided by this utility, a project lead can take any corrective measures, if required, to ensure that SAS
programs are well written, easily comprehensible, well documented and efficient.

Figure 2 shows how the utility reads multiple SAS programs from a project, reads in the Pattern Definition Files,
processes the SAS programs and generates the reports.

No

No

Yes

Yes

No

Yes

End

Compare the standard program header
template with the program header

Set the flag for missing header info

Search for lines of code spanning wider than
a pre-specified column width and set flag

variable

Search for data set names not following
standard conventions and set flag variables

Calculate comment
expectancy based on
number of data/proc

steps, calculation, and
complexity

Search for patterns of un-optimized code and
set flag variables

Summarize all the flag variables calculated

Start

Identify single line and
multi-line comments and

separate from the
executable SAS code

Read the input
SAS Program

Actual indent =
expected indent?

Set the indent error flag

Set the flag for dead code

Create the summary report with ratios
calculated

Recursively parse the
SAS code for blocks of

statements and calculate
expected indentation

based on first line indent
within a block

Search the comments for
common SAS keywords

Header info
missing?

SAS keywords
found in comments

How Readable and Comprehensible is a SAS® Program? A Programmatic Approach to Getting an Insight into a Program, continued

3

Figure 2. Overall data flow diagram of the utility when used on a large project

ASSUMPTIONS AND LIMITATIONS
For checking the program header completion, the utility expects a blank standard header template as an input, and
that every program should use the same standard header.

Quantification of the comments has been done based on only a certain number of factors, including the number of
DATA or PROC steps, important decision making or logical SAS statements, complexity of calculations etc. More
factors can be identified and added in the Pattern Definition Files.

Indentation algorithm follows a scalable and recursive approach to detect actual versus expected indentation levels
and adapts to individual preferences of number of spaces used for indentation. It only works for a limited set of
commonly used SAS statement blocks, which can be expanded by adding more patterns to the Pattern Definition
Files.

Code optimization is gauged using some of the basic SAS language patterns and other patterns can be identified and
plugged into the utility to expand the scope.

To simplify the flow chart in Figure 3 and Figure 4, it is assumed that there is at least one comment and one
DATA/PROC step in the input SAS program.

PROGRAM HEADER
Every program should start with a program header section. The goal of this component of the utility is to check the
completeness of the program header. Program header labels are passed into the utility and using these labels as the
starting point the utility checks if each of these individual sections is completed. The header is divided into two parts:
mandatory and optional sections. In the mandatory section, utility expects all the fields are completed whereas in the
optional section individual fields can either be completed with the relevant text or entered with ‘NA’ where applicable.
Program Name, Author, SAS version and Purpose are classified as mandatory fields and Program Dependency,
History, Input and Output files are treated as optional fields. The utility counts the empty fields and the total number of
fields present in the header section using regular expressions. If the below header is passed into the utility, it counts
the total number of non-missing fields. In the example header below, there are 6 non-missing fields and 2 blank
fields. So the value of HDCNT is 6 and since HDCNT is not equal to the total number of fields (TOTCNT = 8) the
utility calculates percent of non-missing fields in the header section.

/**
Program: example.sas
Programmer: Author Name
Creation Date: 2011-11-14
Purpose: Program for table report
Input: All Input parameter need to run the program if none put NA
Output: Output Report
Program Dependency:
History:
**/

The following code snippet calculates the number of missing and non-missing fields:

data header;
 set pgm;
 retain hdcnt 0 totcnt 8;

SAS
Programs

Utility

Output
Report

Pattern
Definition

Files

How Readable and Comprehensible is a SAS® Program? A Programmatic Approach to Getting an Insight into a Program, continued

4

 if prxmatch("/(Program) *(:) *(\w\W)*/",txt) then hdcnt +1;
 if prxmatch("/(Programmer) *(:) *(\w\W)*/",txt) then hdcnt +1;
 if prxmatch("/(Creation Date) *(:)([\d\D])*/",txt) then hdcnt +1;
 **** repeat for Purpose, Input, output, etc.;
 percomp = (hdcnt/totcnt)*100;
run;

Display 1 shows how the utility calculates the number of non-missing fields.

Display 1. Display showing recursive indentation calculations

INDENTATION
By using proper indentation in a SAS program, the programmer ensures that various blocks in the program are easy
to distinguish and it’s easy to follow the program logic. The utility uses a scalable and recursive algorithm described in
Figure 3 to calculate the actual and expected indentation and adapts to the individuals’ preferences for number of
spaces used for indentations. For each recursion, a ‘level starter’ is identified along with an ‘end of statement’.
Depending upon whether or not the ‘end of statement’ is on the same line as the ‘level starter’ further lines are
checked to see the presence of ‘end of statement’. Once ‘end of statement’ is reached, the starting position of next
statement is noted and is compared with starting position of the current level. Further statements within the same
block are checked for indentation level equal to that of the first statement. If any of the statements are not indented as
expected, a flag is set. The above logic is used recursively for multiple levels of indentation. The flag is used to gauge
the overall indentation compliance of the program. The flow chart in Figure 3 below explains the process.

Below is an example of Pattern Definition File for indentation:

%let rxst1=/(data)[\w\W]*/; *** pattern for DATA step;
%let rxct1=%str(/(data)[\w\W]*;/);
%let rxes1=%str(/[\w\W]*;/);
%let rxen1=%str(/\s*run/);

%let rxst2=/(proc)[\w\W]*/; *** pattern for PROC step;
%let rxct2=%str(/(proc)[\w\W]*;/);
%let rxes2=%str(/[\w\W]*;/);
%let rxen2=%str(/run|quit/);

%let rxst3=%str(/(if)[\w\W]*do;/); *** pattern for IF statement with DO-END;
%let rxct3=%str(/(if)[\w\W]*do;/);
%let rxes3=%str(/[\w\W]*;/);
%let rxen3=%str(/end/);

How Readable and Comprehensible is a SAS® Program? A Programmatic Approach to Getting an Insight into a Program, continued

5

Figure 3. Flow chart of the utility for indentation calculations

Below is a snippet of SAS code that calculates actual and expected indentation levels recursively.

*** read in the SAS program file ***;
data pgm2;
 set pgm1(keep=txt_ where=(not missing(txt_)));
 *** flags reqd for each indentation level;
 array lvl_indtA[10] lvlinda01-lvlinda10;
 array lvl_indtB[10] lvlindb01-lvlindb10;
 retain lvl_cnt 1 stmt_cont 0 _1st indx lvlinda01-lvlinda10 lvlindb01-lvlindb10;

 if _1st then do; *** if this is the first statement after level start;
 lvl_indtB(lvl_cnt) = prxmatch("/\S/",txt_); *** calculate user indent;
 _1st = 0;
 end;

No

Set the indentation error flag

Actual indent =
expected indent?

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

Yes

Start

Read the SAS
Program

Read the pattern
definition file

Search for a ‘level starter’ in the
program

A ‘level ender’
found?

An ‘end of
statement’ found?

Search for an ‘end of
statement’ in the program

Increment the level count.

Record the starting position of the
first statement in the block

For subsequent statements in the current
block, compare the actual indentation with the

expected indentation

Search for a ‘level ender’ or ‘level
starter’ in the program

A ‘level starter’
found?

Decrement the level count

End of SAS
program?

End

A new ‘level starter’
found?

A

A

How Readable and Comprehensible is a SAS® Program? A Programmatic Approach to Getting an Insight into a Program, continued

6

 *** if a statement is not already continuing, parse for a level starter;
 if not stmt_cont then do i=1 to &nst;
 rxst = symget("rxst"||strip(put(i,8.)));
 rxct = symget("rxct"||strip(put(i,8.)));
 *** if found, mark the start of a level ;
 if prxmatch(rxst,txt_) then do;
 indx=i;
 lvl_indtA(lvl_cnt)=prxmatch(rxst,txt_);
 *** if the statement does not end on the same line, mark it as continuing;
 if not prxmatch(rxct,txt_) then stmt_cont = 1;
 else do;
 *** otherwise, increment the level counter and set flag so that the;
 *** user given indent for the next statement in the block can be;
 *** caclulated;
 lvl_cnt = lvl_cnt + 1;
 _1st = 1;
 end;
 end;
 end;
 *** if a statement is continuing and end of that statement is found;
 else if prxmatch(symget("rxes"||strip(put(indx,8.))),txt_) then do;
 *** reset the statement continuing flag;
 stmt_cont = 0;
 *** increment the level counter and set flag so that the user given;
 *** indent for the next statement in the block can be caclulated;
 lvl_cnt = lvl_cnt + 1;
 _1st = 1;
 end;

 *** if an end of statement is found;
 if lvl_cnt and not stmt_cont and
 prxmatch(symget("rxen"||strip(put(indx,8.))),txt_) then do;
 *** decrement the level counter;
 lvl_cnt = lvl_cnt - 1;
 end;

 *** put a description of the current lvl e.g. DATA/PROC step, IF statement etc;
 lvl_starter = put(indx,lvls.);

 *** calculate indentation errors;
 if not _1st and lvl_indtB(lvl_cnt) ne prxmatch("/\S/",txt_) then indt_err = 1;
run;

For example, if the following SAS code in Display 2 is passed into the utility, it calculates line 6 as indentation error.
After calculating the flag indt_err for each line, overall indentation compliance is calculated as ratio of lines of code
having indentation as expected to the total lines of code. So, a SAS program containing the following DATA step
would have an indentation compliance ratio of 9/10 = 90%.

Display 2. Display showing recursive indentation calculations

How Readable and Comprehensible is a SAS® Program? A Programmatic Approach to Getting an Insight into a Program, continued

7

COMMENTS
Comments are required for comprehending the flow of a program. The utility calculates the ‘comment expectation’
based on a number of factors, including the number of DATA or PROC steps, important decision making or logical
SAS statements, complexity of calculations etc., which is read in as a list of pre-defined patterns from a Pattern
Definition File. This comment expectation is compared with actual comments and a compliance flag is set. Using this
flag the overall actual versus expected comments ratio is calculated.

Display 3 shows comments calculations for a sample piece of code. Figure 4 shows the process flow for comment
calculations.

Below is an example of a Pattern Definition File, using DATA step, PROC step, IF statement, assignment statement,
CASE statement as key steps in a SAS program for which a comment is expected. More patterns can be identified
and added to this list.

%let ptrn1=/(data)[\w\W]*/; * start of a DATA step;
%let ptrn2=/(proc)[\w\W]*/; * start of a PROC step;
%let ptrn3=%str(/(if)[\w\W]*;/); * IF statement;
%let ptrn4=%str(/[\w\W]*(=)[\w\W]*;/); * assignment statement;
%let ptrn5=%str(/(case)[\w\W]*/); * CASE statement;

Display 3. Display showing comment calculations

How Readable and Comprehensible is a SAS® Program? A Programmatic Approach to Getting an Insight into a Program, continued

8

Figure 4. Flowchart showing process flow for comment calculations

No No

No
No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes Yes

Start

Read the input SAS Program & comments
expectancy pattern definition file

Search for start of a single line comment (*) or
a multiline comment (/*)

Calculate comments expectancy
based on patterns

Start of multi line
comment found?

Mark the start of multi line comment flag
Is this a multiplication

or exponentiation
operator?

Mark the start of single line comment flag

End of single line
comment found on

the same line?

Mark subsequent lines as comment and search
for the end of single line comment (;)

End of single line
comment found?

End of SAS
program?

Calculate actual to expected comments ratio and create report

End

End of multi line
comment found?

Mark subsequent lines as comment and search
for the end of single line comment (*/)

End of multi line
comment found on the

same line?

Start of single line
comment found?

Search for end of single line comment (;)

Search for end of multi line comment (*/)

How Readable and Comprehensible is a SAS® Program? A Programmatic Approach to Getting an Insight into a Program, continued

9

DATA SET NAMING CONVENTION
One of the important considerations in naming a data set or a variable is to fully represent the entity. Names that are
too short do not convey any meaning. This utility counts the number of instances where the data set names are
created using single character or single character followed by a number of digits or data set names larger than 8
characters long. Although variables names larger than 8 characters may be just fine in some industries, they are not
expected to be more than 8 characters in Clinical/Pharmaceuticals industries as dictated by CDISC standards or FDA
requirements. This utility checks for data set naming patterns like X, X1 etc. Display 4 below shows the screen shot of
the output of the utility when run to check the length of data set names. In the display, the variable “txt” stores each
line of the program as individual record and variable “DTNM” extracts and stores every instance of the output data set
name. Once, the data set names are extracted, algorithm counts the instances which do not meet the above
mentioned criteria of length of data set name. In this particular example, “DTNMFLG” variable has a value of 2 that
means there are two data set names which do not meet the above described criteria.

Display 4. Screen shot output for checking data set naming convention compliance

DEAD CODE (COMMENTED OUT CODE) AVOIDANCE
Inside the single or multi-line comments, utility checks for any SAS keywords and tries to identify if it is dead code or
commented out code. If the commented line is identified as dead code, a flag is set and this flag is used to gauge the
overall occurrences of dead code in the SAS program. In the Display 5 below, “TXT” variable contains each line of
the input program as record on which the utility is run. When this utility is run on the program, “DEDLN” variable
identifies the starting line number of a block of DATA or PROC step which are commented or line number of
commented individual statements. Thus, by counting the number of non missing values in the in the “DEDLN”
variable the utility gives the overall occurrences of the dead code in the program with associated line numbers.

How Readable and Comprehensible is a SAS® Program? A Programmatic Approach to Getting an Insight into a Program, continued

10

Display 5. screen shot for identifying dead code in the program

LINE SIZE LIMITATION
A program is difficult to read and comprehend if it spans over more columns than are readable on a screen without
repeatedly scrolling horizontally, unless the wide line is a part of ‘DATALINES’ or otherwise necessary to be on the
same line and cannot be broken down to multiple lines. The utility checks to see if any of the qualifying statements
are longer than a pre-defined line size, and if so, flags it as a wide line and then gauges the presence of wide lines in
the program. For example, in the Display 6 below, the utility reads the input program and stores each line of program
in the “TXT” variable. “LNSZFLG” variable identifies the line number of the input program which is wider than the
predefined line size and by counting the number of the non-missing values in the “LNSZFLG” variable the utility gives
the total number of instances where the input program is wider than the predefined line size.

Display 6. screen shot for identifying lines beyond the predefined size

How Readable and Comprehensible is a SAS® Program? A Programmatic Approach to Getting an Insight into a Program, continued

11

OPTIMUM CODE USAGE
In this feature, utility checks for some of the programming styles that would render some insight about the efficiency
of the program. Although each programmer has his/her own style of coding, however, there are certain programming
steps that are unnecessarily duplicated and if avoided, would decrease the processing time and will be more efficient.
This utility does not try to tackle the logic but only checks for some of the basic programming techniques which are
deemed unnecessary. The utility looks for patterns as shown below in the example 1, a DATA step is followed by a
SORT procedure without any processing done in the DATA step. The DATA step could have been avoided by using
PROC SORT with OUT= option. Also, as shown in example 2, the utility checks the DATA steps where ‘IF’ statement
is used and can be replaced with the ‘WHERE’ statement. The possibilities are endless if we want to characterize the
program efficiency.

***example 1;
data new;
 set old;
run;
proc sort data = new;
 by var1 var2;
run;

***example 2;
data new;
 set old;
 if var1 > 0;
run;

UTILITY SAMPLE OUTPUT
Report for program test.sas:
Program header compliance: 6/8 (75%)
Program Indentation: 9/10 (90%)
Comments: 4/7 (57%)
Data set naming convention incompliance: 4
Dead code instances: 3
Line size incompliance: 1
Un-optimized code instances: 1

FUTURE DEVELOPMENTS
Additional patterns can be plugged in to the utility for indentation checking, commented out code recognition,
expectancy of comments and program efficiency.

CONCLUSION
Once we calculate the scores from the individual sections, the utility gives the summary report for each program for
which the utility was run. Quantification of various qualitative characteristics of a SAS program provides an important
insight into the program. When this utility is used across a large project, it can serve as a tool to monitor the quality of
programs and take any corrective actions, if required. It can help ensure that SAS programs are well written, easily
comprehensible, well documented and efficient.

REFERENCES
• SAS Online Documentation

• An Introduction to Perl Regular Expressions in SAS 9 by Ron Cody, Robert Wood Johnson Medical School,
Piscataway, NJ – SUGI 29

• Steve McConnell, Code Complete, 1993, Microsoft Press.

ACKNOWLEDGMENTS
We would like to thank Chuck Kincaid, Scott Davis, Jack Fuller, Dave Polus and Brian Varney for reviewing this paper
and providing valuable comments.

How Readable and Comprehensible is a SAS® Program? A Programmatic Approach to Getting an Insight into a Program, continued

12

CONTACT INFORMATION
Your comments and questions are valued and encouraged. For any questions or sample codes described in this
paper, please contact the authors at:

Name: Rajesh Lal
Enterprise: Experis
Address: 5220 Lovers Lane, STE 200
City, State ZIP: Portage, MI 49002
Work Phone: 269-553-5147
Fax: 269-553-5101
E-mail: rajesh.lal@experis.com
Web: www.experis.com

Name: Raghavender Ranga
Enterprise: Vertex Pharmaceuticals
Address: 130 Waverly Street
City, State ZIP: Cambridge, MA 02139
Work Phone: 617-444-7639
Fax: 617-444-6766
E-mail: raghavender_ranga@vrtx.com
Web: www.vrtx.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:rajesh.lal@experis.com�
http://www.experis.com/�
mailto:raghavender_ranga@vrtx.com�
http://www.vrtx.com/�

	Abstract
	Introduction
	oVERVIEW
	ASSUMPTIONS AND LIMITATIONS

	PROGRAM HEADER
	Indentation
	COMMENTS
	Data Set Naming Convention
	Dead code (commented out code) avoidance
	Line size limitation
	OPTIMUM CODE USAGE
	Utility sample output
	FUTURE DEVELOPMENTS
	CONCLUSION
	References
	Acknowledgments
	Contact Information

