
1

Paper BI-07

Project Automation and Tracking Using SAS
Rajesh Lal, Experis, Portage, MI

ABSTRACT
During the life cycle of a project involving SAS® programming, there are various tasks that are done manually, ranging from
project setup to tracking of project status, and project wind-up, which are effort intensive and error prone. By automation,
timely production and validation of standardized programs and outputs can be ensured.

This paper describes a utility that is implemented in SAS, automates the project startup related activities, keeps track of
validation status and documentation, version control status, SAS log check, program readability status, and performs project
wind-up activities. It helps ensure that a project team always has an up-to-date picture of validation status during the life cycle
of a project, is regulatory compliant for computer system validation and prepared for internal or external audits.

INTRODUCTION
A clinical trial study or any project in general can have hundreds of SAS programs creating datasets, tables, listings and
graphs as outputs. In a fast-paced production environment, where timelines are short and last minute change requests are
frequent, quick setup of the project, timely and accurate tracking of project status and health, and quick wind-up of the project
are crucial to the timely delivery of the outputs for regulatory submissions.

By using Program Index (PI), which is a Microsoft Excel® file, to store the list of all the SAS programs required for a clinical
trial study/project and other related information at a central place, many tasks can be automated by reading in the information
from the PI.

This paper introduces a SAS utility that reads in the PI, performs the project startup related activities to eliminate manual entry
of the information that is already present in the PI, keeps track of validation comparison status, status from validation
documents, re-validation requirements, version control status, SAS log check status, program readability status, overall
validation status and performs project wind-up activities.

The utility helps ensure that a project team always has an up-to-date picture of validation status during the life cycle of a
project, is regulatory compliant for computer system validation and prepared for internal or external audits.

The utility reads in the PI into a SAS dataset, performs the required operations, creates or updates the variables in the SAS
dataset for various status information and writes the SAS dataset back to MS Excel PI file. This utility is comparable to a utility
called “PI Manager” developed by Tony Chang & Dana Soloff, Amgen Inc., which has a subset of features, is implemented in
java, and therefore is not easily editable/customizable by a SAS programmer.

OVERVIEW
The utility is implemented for unix SAS 9.2, but can be ported to unix SAS 9.1.3 or PC SAS 9.1.3/9.2 with some limitations, as
described in ‘Design considerations and implementation’ section. The following is a list of features of the utility:

Automation of project start-up related activities:
1. Create standard directory structure for the project
2. Create empty SAS program files with header information, or template programs for specific type of TLGs.
3. Create a shell script or batch file for the project
4. Create empty validation documents with production program/validation program/ validation document information

and program complexity dependent checklist of validation activities

Tracking of project status:

5. Updating the date/time stamp of SAS programs/validation documents #
6. Getting validation status from validation documents #
7. Identifying re-validation requirements #
8. Summarizing overall programming status #
9. Version control status (RCS and TeamWare compatible)
10. Summary of SAS log errors, warnings and other Notes 6
11. Fetching validation comparison status from SAS list file of the validation program
12. Program readability

Project wind-up activities:
13. Check-in the programs, make the outputs read-only

2

14. Redundant programs/files in production/validation location

Figure 1 below shows a flow chart that describes how the utility performs its operations.

Figure 1. Flow chart

PROGRAM INDEX FILE
Program Index file is a Microsoft Excel file, which contains the list of all SAS programs required for a clinical study/project,
program author names, template names, program complexity, program modified date, version control status, SAS log check
status, Program readability status, output filenames, validation program name, validation program author names, validation
program modified date, validation document name, last validation date, comparison results, validation document status and
overall status. Table 1 below shows a PI with sample data:

Yes

No

No

Yes

No

Yes

Update the date/time stamp of programs and
validation documents by reading the file system

Get validation status from validation
documents and update in the PI dataset

Identify re-validation requirements and update
in the PI dataset

Fetch SAS log check summary by checking
the log files for messages

Summarize overall programming status

Fetch validation comparison status by reading
the SAS list files of the validation programs for
decoded system return code of proc compare

Get version control status by reading the file
system

Fetch program readability status by looking

for patterns

If config parameter is set, check-in the
programs into version control system

Create a list of redundant programs/files in
production/validation location by comparing

file system and PI contents

End

Start

Read the configuration parameters

Project directories
exist?

Create project directories

Read PI

Create macro variables for info in PI

Do all programs
exist?

Create programs with header
info & template programs

Update shell script file

Do all validation
docs exist?

Create validation docs with the
info from the PI

Create backup of the current excel PI and
overwrite PI dataset to excel PI

3

Table 1. Sample PI

UTILITY FEATURES
AUTOMATION OF PROJECT START-UP RELATED ACTIVITIES:

1. CREATE STANDARD DIRECTORY STRUCTURE FOR THE PROJECT

The utility creates standard directory structure for a project by running operating system commands, depending upon the
locations specified in configuration parameters. Below is a SAS macro that checks for the existence of a directory and creates
the directory if it does not exist.

/* configuration parameters */
%let sdtm = /compoundA/studyX/sdtm/programs/;
%let sdtm_out = /compoundA/studyX/sdtm/output/;
%let sdtm_test = /compoundA/studyX/sdtm/validation/;
...
%macro mk_dir(dir=) ;
 %local rc fileref ;
 %let rc = %sysfunc(filename(fileref,&dir)) ;
 %if %sysfunc(fexist(&fileref)) %then
 %put Note: the directory "&dir" exists ;
 %else
 %do ;
 %sysexec mkdir -p &dir ;
 %put Note: the directory "&dir" has been created. ;
 %end ;
 %let rc=%sysfunc(filename(fileref)) ;
%mend mk_dir ;

%mk_dir(dir=&sdtm);
%mk_dir(dir=&sdtm_out);
%mk_dir(dir=&sdtm_test);

/* repeat for other project locations */

2. CREATE EMPTY SAS PROGRAM FILES WITH HEADER INFORMATION, OR TEMPLATE PROGRAMS FOR SPECIFIC TYPE OF
TLGS

The utility creates blank programs with standard header, populated with information such as program name & location, output
name & location and the name of the programmer. If there is a template program for a particular type of program, the template

SR_
NO

PGM
_TYP

PGM_N
AME

PGM
_AUT
HOR

TEMP
LATE
_NAM
E

COM
PLE
XITY

PGM_LAS
T_MOD_D
ATE

VERSIO
N_CONT
ROL_ST
ATUS

LOG_C
HECK_S
TATUS

PGM_REA
DABILITY

OUTPU
T_FILE
NAME

VALIDA
TION_P
GM

VALID
ATION
PGM
AUTH
OR

VALIDATI
ON_PGM
_LAST_M
OD_DAT
E

VALID
ATION
_DOC
UMEN
T

LAST_VA
LIDATION
_DATE

COMP
ARISO
N_RES
ULT

VALI
DATI
ON_D
OCU
MENT
_STA
TUS

OVER
ALL_V
ALIDA
TION_
STATU
S

1 S dm.sas John E 29-Nov-
2010 09:29

Not chkd
in

Errors,
Warning
s, Notes

Dead code
, Bad
Indent

dm.sas7
bdat

v_dm.sa
s

Harry 30-Nov-
2010
10:12

v_dm.x
ls

30-Nov-
2010 11:20

Matchin
g

Pass Pass

2 S ae.sas Harry M 30-Nov-
2010 13:51

Chkd in Warning
s, Notes

OK ae.sas7
bdat

v_ae.sas John 30-Nov-
2010
14:21

v_ae.xl
s

30-Nov-
2010 14:25

BY
variable
s do not
match

Fail Fail

 …

3 T t_ae.sas Harry aetmp.
sas

M 30-Nov-
2010 14:59

Chkd in Clean Insufficient
comments

t_ae_saf
.rtf

v_t_ae.s
as

John 29-Nov-
2010
11:22

v_t_ae.
xls

29-Nov-
2010 11:26

Matchin
g

Pass Re-
validat
e

4 T t_ae.sas Harry aetmp.
sas

M 30-Nov-
2010 14:59

Chkd in Clean Insufficient
comments

t_sae_s
af.rtf

v_t_ae.s
as

John 29-Nov-
2010
11:22

v_t_ae.
xls

29-Nov-
2010 11:26

A value
compari
son
was
unequal

Pass Re-
validat
e

5 G g_km.sa
s

John C 30-Nov-
2010 13:45

Chkd out Warning
s

OK g_km.cg
m

v_g_km.
sas

Harry 01-Dec-
2010
18:45

v_g_k
m.xls

30-Nov-
2010 13:49

Manual
compari
son

Pass Pass

4

is appended to the standard header, so that the programmer can quickly modify certain things in the template and get the
program up and running, e.g. a template program for creating AE tables, using a standard AE macro can be used for creation
of the standard AE tables. Below is a piece of SAS code that creates the standard header and appends any template
programs.

/* read in PI file into a SAS dataset, pi_ds, using proc import. Please refer to the 'Design
considerations and implementation' section for details on reading from/writing to Excel files
*/
...
/* create 1 observation per SAS program, by appending the name of multiple outputs */
...
/* create macro variables for program names & locations, outputs & locations, programmer
names */
...
/* create standard header using macro variables created above */
%do i=1 %to &pgm_cnt;
 %if not %sysfunc(fileexist("&&pgm_path&i.&&pgm_name&i")) %then %do;
 data _null_;
 file "&&pgm_path&i.&&pgm_name&i" notitle nofootnote;
 put "/***";
 put "Program Name : &&pgm_name&i";
 put "Program Path : &&pgm_path&i";
 Put "Output : &&out_path&i.&&out_names&i";
 Put "Programmer : &&pgm_author&i";
 put "***/";
 put "%include 'setup.sas'";
 put ;
 run;
 %if &&tmpl_name&i ne %str() %then %do;
 %if %sysfunc(fileexist("&tmpl_path.&&tmpl_name&i")) %then %do;
 data _null_;
 infile "&tmpl_path.&&tmpl_name&i";
 file "&&pgm_path&i.&&pgm_name&i" mod notitle nofootnote;
 input;
 put _infile_;
 run;
 %end;
 %else %do;
 %put The template file "&tmpl_path.&&tmpl_name&i" does not exist;
 %end;
 %end;
 %end;
%end;
Figure 2 shows the standard program header generated by above SAS code. Please note that the template program has been
appended to the standard header.

Figure 2. Standard header and appended template generated by above SAS code

5

3. CREATE A SHELL SCRIPT OR BATCH FILE FOR THE PROJECT

The utility creates a unix shell script file or a batch file for all the programs in the project, which can be scheduled to run at
specific intervals to keep the project outputs and status up to date.

%if not %sysfunc(fileexist("&sdtm.run_all.sh")) %then %do;
data _null_;
 set pi_ds1;
 where pgm_type = "S";
 file "&sdtm.run_all.sh";
 if _n_ eq 1 then do;
 put "#!/bin/sh";
 put "cd &sdtm";
 end;
 put "sas -9.2 " pgm_name;
run;
data _null_;
 set pi_ds1;
 where pgm_type = "T";
 file "&sdtm.run_all.sh" mod;
 if _n_ eq 1 then do;
 put "cd &table";
 end;
 put "sas -9.2 " pgm_name;
run;
/* repeat the above step for listings and graphs */
%end;

Figure 3 shows the shell script file generated by executing the above SAS code.

Figure 3. Shell script file generated by above SAS code

4. CREATE EMPTY VALIDATION DOCUMENTS WITH PRODUCTION PROGRAM/VALIDATION PROGRAM/ VALIDATION

DOCUMENT INFORMATION AND PROGRAM COMPLEXITY DEPENDENT CHECKLIST OF VALIDATION ACTIVITIES

The utility creates validation documents (Microsoft Excel) with production and validation program name and location
information populated, so that manual entry of this information is not needed. Validation programmer should complete the
validation by following the validation checklist in the validation document and should mark the status of the checklist item.

Once the outputs are validated, the validation programmer should update the validation status in the validation document.
Please refer to the ‘Design considerations and implementation’ section for details on reading from/writing to Excel files. The
piece of SAS code below shows the creation of the validation document. Please note that the checklist of activities to be
performed during validation is customized based upon the complexity of the program, which is read from the PI.

%do i=1 %to &pgm_cnt;
/* create validation documents using macro variables created */
 %if not %sysfunc(fileexist("&&test_path&i.&&test_doc&i")) %then %do;
 data temp;
 length a b $200;
 a="Validation Status"; b=" "; output;
 a="Validation Document Name"; b="&&test_path&i.&&test_doc&i"; output;
 a="Program Name"; b="&&pgm_path&i.&&pgm_name&i"; output;
 a="Output "; b="&&out_path&i.&&out_names&i"; output;

6

 a="Programmer "; b="&&pgm_author&i"; output;
 a="Validation Programmer"; b="&&val_author&i"; output;
 a=" "; b=" "; output;
 a=" "; b=" "; output;
 a="Check list of validation activities "; b="Activity Status (Pass/Fail)"; output;
 %if &&pgm_cmpx&i = E %then %do;
 /* checklist for 'Easy' programs. Repeat for 'Medium' and 'Complex' programs */
 a="Check list item 1 "; b=" "; output;
 a="Check list item 2 "; b=" "; output;
 a="Check list item 3 "; b=" "; output;
 a="Check list item 4 "; b=" "; output;
 %end;
 label a="Program Validation Document" b="Template Version 0.1";
 run;
 proc export data = temp
 outfile= "&&test_path&i.&&test_doc&i"
 dbms=xls label replace;
 run;
 %end;
%end;

Figure 4 shows the validation document, v_t_ae.xls, as viewed in Microsoft Excel, generated by the SAS code above for
program t_ae.sas.

Figure 4. Validation document generated by SAS code
TRACKING OF PROJECT STATUS:

5. UPDATING THE DATE/TIME STAMP OF SAS PROGRAMS/VALIDATION DOCUMENTS #

The utility collects last modified system date and time for a SAS program, an output file, and a validation document specified in
the Program Index file, if the file exists. Please refer to the ‘Design considerations and implementation’ section for details on
fetching file modified date and time. The operating system dependent SAS code below shows the method to fetch this
information from file system for Microsoft Windows® and unix based systems.

/*updating the date/time stamp of sas programs and validation documents*/
%macro upd_dttm(mrgvar=,dtvar=,loc=,ext=sas);
/* for Microsoft Windows based systems */
%if &SYSSCP = %str(WIN) %then %do;
 filename tmpfl pipe "dir &loc.*.&ext";
 data fs1(keep=fnm dttm rename=(fnm=&mrgvar));
 infile tmpfl firstobs=6;
 length fnm $200 dt $10 tm $5;
 input dt $10. @;
 if missing(dt) then delete;
 else input tm $ ampm $ fsz $ fnm $;
 dttm = dhms(input(dt,mmddyy10.), hour(input(cats(tm,ampm),time8.)),
 minute(input(cats(tm,ampm),time8.)),0);

7

 format dttm datetime16.;
 run;
%end;

/* for unix based systems */
%else %if &SYSSCP = %str(SUN 64) %then %do;
 filename tmpfl pipe "ls -l --time-style=long-iso &loc.*.&ext";
 data fs1(keep=fnm dttm rename=(fnm=&mrgvar));
 infile tmpfl firstobs=2;
 length fnm $200 permissions usr grp dt fsz $10 tm $5;
 input permissions $ var2 usr $ grp $ fsz $ dt $ tm $ fnm $;
 dttm = dhms(input(dt,yymmdd10.), hour(input(tm,time5.)),
 minute(input(tm,time5.)),0);
 format dttm datetime16.;
 run;
%end;

/* update the file modified date time in PI dataset */
proc sql noprint;
 create table pi_ds_upd as
 select a.*, coalesce(b.dttm,a.&dtvar) as new_dt format=datetime16.
 from pi_ds as a left join fs1 as b
 on a.&mrgvar = b.&mrgvar;
quit;

data pi_ds(drop=new_dt);
 set pi_ds_upd;
 &dtvar = new_dt;
run;
filename tmpfl clear;
%mend upd_dttm;
/* update program modification dates */
%upd_dttm(mrgvar=pgm_name,dtvar=pgm_last_mod_date,loc=&sdtm);
%upd_dttm(mrgvar=pgm_name,dtvar=pgm_last_mod_date,loc=&table);
%upd_dttm(mrgvar=pgm_name,dtvar=pgm_last_mod_date,loc=&listing);
%upd_dttm(mrgvar=pgm_name,dtvar=pgm_last_mod_date,loc=&graph);
/* repeat for validation programs and validation documents */

6. GETTING VALIDATION STATUS FROM VALIDATION DOCUMENTS #

A validation document is a Microsoft Excel file, which has the details of the program being validated, a checklist of validation
activities to be performed, and also an overall “Pass” or “Failed” status field. The validation document is read in using proc
import. The validation status field fetched from the validation document is populated against each SAS program.

7. IDENTIFYING RE-VALIDATION REQUIREMENTS #

After completion of validation, if production program is modified, this means that a re-validation is needed. This is
accomplished by comparing the date time of production program, validation program, and validation document.

8. SUMMARIZING OVERALL PROGRAMMING STATUS #

The utility generates an overall validation report for the study. It summarizes total number of outputs and number and percent
of outputs for different development status. Table 2 below is an example of the summary report:

Project Status Report:
Total Number of Output Files: 100
Number of Files in Programming: 10 (10%)
Number of Files under Validation 1 (1%)
Number of Files Validated: 86 (86%)
Number of Files Need Re-Validation: 8 (8%)
Number of Files Validation Passed: 60 (60%)
Number of Files Validation Failed: 15 (15%)

Table 2: Sample overall programming status

8

9. VERSION CONTROL STATUS (RCS AND TEAMWARE COMPATIBLE)

The utility fetches the version control status of each program and populates it in the PI. This feature is available on the unix
platform, using RCS or TeamWare version control systems. Other version control systems which use a sequential file in a
fixed name sub-folder can also be tracked. The following criteria are used for status:

a) Not version controlled – the sequential file used by version control system does not exist in the expected sub-folder
b) Checked in – the sequential file exists and the main file is read-only.
c) Checked out – the sequential file exists and the main file is writable.

This information is updated in the “Version Control Status” column for each program in the PI.

Please see ‘Design considerations and implementation’ section for details of fetching file read-only attribute.

10. SUMMARY OF SAS LOG ERRORS, WARNINGS AND OTHER NOTES 6

For each program listed in the PI, the utility scans the SAS log file for errors, warnings and other Notes. Summary of this
information is updated in the PI under column “Log Check Status” for each program. Depending upon the value of
configuration parameter email_on, an email is sent out to the programmer of the program. Table 3 below shows the criteria
used:

email_on value An email is sent out to the programmer if:
0 Never
1 There are errors in the log
2 There are errors and/or warnings in the log
3 There are errors and/or warnings and/or notes in the log

Table 3. Parameter values and criteria for posting an email

11. FETCHING VALIDATION COMPARISON STATUS FROM SAS LIST FILE OF THE VALIDATION PROGRAM

If the validation program compares the production version of the output with the validation version using proc compare and
prints the decoded value of system return code in the SAS list file (.lst) along with a uniquely identifiable text string, the utility
can fetch the proc compare result from the list file and populate against each program in the PI under “Comparison Result”
column. If the expected text string is not found then it is assumed that a manual comparison is being done.

For ease of implementation, the proc compare step and printing of the system return code can be combined in a macro. For
comparing tables and listings in rich text file format (.rtf), these files can be converted to SAS datasets. The piece of SAS code
below shows how a validation program should compare the validation output with production output and print the decoded
values of system return code in the SAS list file.

/* compare */
proc compare base=prod compare=qc ;
run;
/* store the system return code in a macro variable */
%let rc=&sysinfo;
/* print the decoded values in the list file along with output names */
data _null_;
 file print notitles nofootnotes;
 put "Proc compare RC from SYSINFO for &out_name: Start";
 if &rc='...............1'b then put 'Data set labels differ';
 if &rc='..............1.'b then put 'Data set types differ';
 if &rc='.............1..'b then put 'Variable has different informat';
 if &rc='............1...'b then put 'Variable has different format';
 if &rc='...........1....'b then put 'Variable has different length';
 if &rc='..........1.....'b then put 'Variable has different label';
 if &rc='.........1......'b then put 'Base data obs not in comparison';
 if &rc='........1.......'b then put 'Comparison data obs not in base';
 if &rc='.......1........'b then put 'Base data BY group not in comp';
 if &rc='......1.........'b then put 'Comp data BY group not in base ';
 if &rc='.....1..........'b then put 'Base data variable not in comp';
 if &rc='....1...........'b then put 'Comp data variable not in base ';
 if &rc='...1............'b then put 'A value comparison was unequal ';
 if &rc='..1.............'b then put 'Conflicting variable types ';
 if &rc='.1..............'b then put 'BY variables do not match ';

9

 if &rc='1...............'b then put 'Fatal error: comparison not done ';
 put "Proc compare RC from SYSINFO for &out_name: End";
run;

12. PROGRAM READABILITY

The utility checks to see if there are “enough” comments, proper indentation, and absence of dead code in the programs.
Correspondingly, a message is written in the column in the program index. These characteristics of a program are not easily
“quantifiable” or “programmatically traceable” and are indicative only.

a) “Enough” comments: Number of comments in a program is counted and compared to total lines of code in the program.
Using a threshold specified in configuration parameter “comnt_thr”, a decision is made and appropriate status is written to
the “Program Readability” column in the PI. The SAS code below counts the number of single and multiline comments
using pearl regular expressions.

*** read in the sas program file;
data pgm;
 infile "&&pgm_path&i.&&pgm_name&i" truncover;
 length txt $500;
 input;
 txt = _infile_;
run;
*** count and remove comments;
data pgm1;
 set pgm;
 *** cmnts = number of comments in the program,
 cntdstar = 1, if in the current record, there is a comment started with a '*'
 that continues on the next record.
 cntdslash = 1, if in the current record, there is a comment started with a '/*'
 that continues on the next record.;
 retain cmnts 0 cntdstar cntdslash 0;
 txt_ = txt;
 *** comments on a single line;
 if not cntdslash and (prxmatch("/(\;)(\s)*(*)+[^;]*(\;)/",txt)
 or
 prxmatch("/^(\s)*(*)+[^;]*(\;)/",txt)
 or
 prxmatch("/(\/*)+[\w\W]*(*\/)/",txt)) then do;
 txt_ = prxchange("s/(\;)(\s)*(*)+[^;]*(\;)/ /",-1,txt);
 txt_ = prxchange("s/^(\s)*(*)+[^;]*(\;)/ /",-1,txt_);
 txt_ = prxchange("s/(\/*)+[\w\W]*(*\/)/ /",-1,txt_);
 cmnts = cmnts + 1;
 end;
 *** multiline comments starting with a slash and star;
 else if not cntdslash and prxmatch("/(\/*)+[\w\W]*/",txt) and not
prxmatch("/(\/*)+[\w\W]*(*\/)/",txt) then do;
 cntdslash = 1;
 txt_ = prxchange("s/(\/*)+[\w\W]*/ /",-1,txt);
 end;
 else if cntdslash and not prxmatch("/[\w\W]*(*\/)/",txt) then do;
 txt_ = " ";
 end;
 else if cntdslash and prxmatch("/[\w\W]*(*\/)/",txt) then do;
 cntdslash = 0;
 txt_ = prxchange("s/[\w\W]*(*\/)/ /",-1,txt);
 cmnts = cmnts + 1;
 end;
 *** multiline comments starting with a star;
 else if not cntdstar and
 (
 (prxmatch("/(\;)(\s)*(*)+[^;]*/",txt) and

10

 not prxmatch("/(\;)(\s)*(*)+[^;]*(\;)/",txt))
 or
 (prxmatch("/^(\s)*(*)+[^;]*/",txt) and not prxmatch("/^(\s)*(*)+[^;]*(\;)/",txt))
) then do;
 cntdstar = 1;
 txt_ = prxchange("s/(\;)(\s)*(*)+[^;]*/ /",-1,txt);
 txt_ = prxchange("s/^(\s)*(*)+[^;]*/ /",-1,txt_);
 end;
 else if cntdstar and not prxmatch("/[^;]*(\;)/",txt) then do;
 txt_ = " ";
 end;
 else if cntdstar and prxmatch("/[^;]*(\;)/",txt) then do;
 cntdstar = 0;
 cmnts = cmnts + 1;
 txt_ = prxchange("s/[^;]*(\;)/ /",-1,txt);
 end;
run;
b) Proper indentation: for each data and proc step, indentation is checked in each SAS statement, until the “end” of the

group is reached. Appropriate text is written to the “Program Readability” column in the PI. The SAS code below
determines the indentation of the first statement after a data or proc statement and sets a variable value to 1 if there are
indentation problems. Similar concept can be expanded to cover nested indentation of blocks of SAS code. Please refer
to “Future Developments” section for details of other blocks of SAS code that should be considered.

data pgm2;
/* txt_ contains the text without any SAS comments */
 set pgm1(keep=txt_ where=(not missing(txt_)));
 retain in_dtpc blk_ind in_blk 0;
 *** replace each tab character with defined number of spaces;
 txt_ = prxchange("s/^(\t)*/ /",-1,txt_);
 *** find the indentation of the first statement after the start of the block;
 if not blk_ind and in_blk then do;
 blk_ind = prxmatch("/\S/",txt_);
 end;
 *** mark the start of a data or proc step ;
 if prxmatch("/(data |proc)[\w\W]*/",txt_) then do;
 blk_col=prxmatch("/(data |proc)[\w\W]*/",txt_);
 blk_ind = 0;
 if not prxmatch("/(data |proc)[\w\W]*;/",txt_) then do;
 in_dtpc = 1;
 end;
 else do;
 in_blk = 1;
 end;
 end;
 *** if data or proc statement is on multiple lines, continue to next line;
 else if in_dtpc and prxmatch("/[\w\W]*;/",txt_) then do;
 in_dtpc = 0;
 in_blk = 1;
 end;
 *** end of the data or proc step;
 else if prxmatch("/\s*(run|quit)\s*;/",txt_) then do;
 in_blk = 0;
 blk_ind = 0;
 end;
 *** if the indentation of 2nd statement after data or proc statement is not the same as
 1st statement after data or proc step, there may be an indentation problem;
 if in_blk and blk_ind then do;
 if blk_ind ne prxmatch("/\S/",txt_) then indt_err = 1;

11

 end;
run;
c) Dead Code: In a multiline SAS comment, proc or data step, other common SAS statements are checked to see if there is

commented out code in the program. Appropriate text is written to the “Program Readability” column in the PI.

PROJECT WIND-UP ACTIVITIES:

13. CHECK-IN THE PROGRAMS, MAKE THE OUTPUTS READ-ONLY

The utility can perform the following tasks when appropriate configuration parameters are set:

a) Check in the programs that are either checked out or not in version control system by running the specified OS
commands for each program.

b) Make the outputs read-only, by running appropriate chmod commands for each output.

14. REDUNDANT PROGRAMS/FILES IN PRODUCTION/VALIDATION LOCATION

The utility creates a list of programs/files that are present in the project directory and are not there in the PI. There is an option
to skip particular files from this list, e.g. setup files. This list can be useful while cleaning up the project directories and is a list
of files that are potentially not needed (created temporarily for testing purposes or backup copies etc.)

DESIGN CONSIDERATIONS AND IMPLEMENTATION
The utility is implemented for unix SAS 9.2, but can be ported to unix SAS 9.1.3 or PC SAS 9.1.3/9.2 with some limitations.
Table 4 below describes the various SAS features needed for various platforms:

Feature SAS 9.1.3 SAS 9.2
Unix Windows Unix Windows

Reading/writing to single
sheet MS Excel file

proc import /export proc import /export proc import /export proc import /export

Reading/writing to multiple
sheet MS Excel file

proc import + excelxp
tagset

proc import /export proc import /export proc import /export

Fetching file modified
date/time

Pipe option in
filename statement

Pipe option in
filename statement

Pipe option in
filename statement/
FINFO function

Pipe option in
filename statement/
FINFO function

Fetching file read-only
attribute

Pipe option in
filename statement/
FINFO function

Pipe option in
filename statement

Pipe option in
filename statement/
FINFO function

Pipe option in
filename statement

Table 4. SAS features needed for implementation on various platforms

FUTURE DEVELOPMENTS
There are seemingly endless possibilities of attaching other “plug-in” utilities to this utility because Program Index is a central
location of storing vital information about the project components.

“Program Readability” is quite a “qualitative” characteristic of a SAS program that I have tried to quantify. The sample SAS
codes presented in this paper are not foolproof. I do intend to continue to work on this concept and further perfect the
algorithms to quantify the indentation of other SAS blocks, e.g. if-then-else, do-end, select-when-end, %if-%then-%else and
%do-%end.

CONCLUSION
Automation of various project activities can greatly enhance a team’s ability to timely and effectively deliver standardized
outputs for a regulatory submission. The utility aims to achieve this goal and creates a programming environment where a lead
programmer can automate some routine tasks effectively and accurately track the project status and the team can go to a
central location and see what items are pending and need fixing.

FOOTNOTES
these features are similar to the java application, PI Manager, developed by Tony Chang & Dana Soloff, Amgen Inc.
6 Please refer to reference number 6 below for implementation details of log checking.

12

REFERENCES
1. “A Simple Solution for Managing the Validation of SAS® Programs That Support Regulatory Submissions” by Tony Chang

& Dana Soloff, Amgen Inc. http://www.sascommunity.org/mwiki/images/f/fb/Chang_and_soloff.pdf
2. SAS Online Documentation for version 9.1.3 and 9.2.
3. “Let your title macro report study progress” by Yang Chen, Consultant, Jersey City, NJ

http://www.pharmasug.org/cd/papers/AD/AD07.pdf
4. “The 10 Most Frequently Asked Questions of Exporting to Excel®”

http://www.mwsug.org/proceedings/2010/excel_db/MWSUG-2010-113.pdf
5. Excelxp tagset demo: http://support.sas.com/rnd/base/ods/odsmarkup/excelxp_demo.html
6. “You’ve Got E-Mail: Automatic Log Checking Via E-mail Notification”, Aaron Augustine, Deloitte & Touche LLP, Prasenjit

Dutta, Deloitte & Touche Audit Services India Private Limited. http://www2.sas.com/proceedings/sugi31/128-31.pdf
7. “An Introduction to Perl Regular Expressions in SAS 9” by Ron Cody, Robert Wood Johnson Medical School, Piscataway,

NJ. http://www2.sas.com/proceedings/sugi29/265-29.pdf
8. GNU RCS: http://www.gnu.org/software/rcs/rcs.html

ACKNOWLEDGMENTS
I would like to thank Jack Fuller and Scott Davis for reviewing this paper and providing valuable comments.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Author Name: Rajesh Lal
Company: Experis
Address: 5220 Lovers Ln Ste 200
City state ZIP: Portage, MI - 49002
Work Phone: 269-553-5147
Fax: 269-553-5101
E-mail: rajesh.lal@experis.com
Web: www.experis.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

http://www.sascommunity.org/mwiki/images/f/fb/Chang_and_soloff.pdf�
http://www.pharmasug.org/cd/papers/AD/AD07.pdf�
http://www.mwsug.org/proceedings/2010/excel_db/MWSUG-2010-113.pdf�
http://support.sas.com/rnd/base/ods/odsmarkup/excelxp_demo.html�
http://www2.sas.com/proceedings/sugi31/128-31.pdf�
http://www2.sas.com/proceedings/sugi29/265-29.pdf�
http://www.gnu.org/software/rcs/rcs.html�

