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Abstract

SAS/STAT® 9.3, coming soon to a site near you, delivers numerous enhancements to the statistical software. The
PHREG procedure supports frailty models for incorporating random effects in Cox regression, and the MCMC procedure
provides a RANDOM statement to facilitate fitting Bayesian models with random effects. The NLIN procedure has been
updated, and the MI procedure offers additional flexibility by providing a fully conditional specification method. The new
SURVEYPHREG and HPMIXED procedures are also outfitted with additional capabilities.

This talk reviews the highlights of SAS/STAT 9.22 and then describes important SAS/STAT 9.3 enhancements with
practical illustrations, mainly from the SAS/STAT 9.3 documentation.

Introduction

SAS/STAT has undergone considerable updates in recent years: SAS/STAT 9.2 brought major enhancements to the
product: Bayesian capabilities in the GENMOD, LIFEREG, and PHREG procedures; the MCMC procedure for fitting
general Bayesian models; the experimental HPMIXED procedure for performing mixed model analysis with a large
number of observations and/or class levels; the SEQDESIGN and SEQTEST procedures for group sequential analysis;
and production ODS Statistical Graphics. In addition, more than 200 new features were added to the existing software.

In 2009, SAS/STAT 9.22 arrived. It made a full complement of postfitting capabilities available in a large number of linear
modeling procedures as well as introducing the PLM procedure, which enables you to take stored model information and
use it to perform additional inference and scoring without refitting the original model. The SURVEYPHREG procedure
provides survival analysis, in the form of Cox proportional hazards regression, for sample survey data. The more
powerful and customizable structural equation modeling first implemented with the experimental TCALIS procedure
in SAS/STAT 9.2 was rolled into the CALIS procedure. Other enhancements include exact Poisson regression, zero-
inflated negative binomial models, model-averaging for high-dimension prediction, and improved prediction of spatial
processes with the spatial analysis procedures.

SAS/STAT 9.3, available later this year, both introduces new methodology as well as continues to refine existing func-
tionality. The SURVEYPHREG procedure becomes production and now handles time-dependent covariates. The
EFFECT statement also becomes production and is available in eleven linear modeling procedures. The MCMC pro-
cedure provides a RANDOM statement, which simplifies the specification of hierarchical random-effects models and
significantly reduces simulation time which improving convergence. This statement defines random effects that can
enter the model in a linear or nonlinear fashion and supports univariate and multivariate prior distributions.

The experimental FMM procedure fits statistical models to data where the distribution of the response is a finite mixture
of univariate distributions. These models are useful for applications such as estimating multimodal or heavy-tailed
densities, fitting zero-inflated or hurdle models to count data with excess zeros, modeling overdispersed data, and fitting
regression models with complex error distributions. The MI procedure now includes the experimental FCS statement,
which specifies a multivariate imputation by fully conditional specification (FCS) methods. Finally, The NLIN procedure
has been updated with experimental features for diagnosing the nonlinear model fit.

This paper reviews some of the new capabilities in the SAS/STAT 9.3 release. It draws heavily from the documentation
in progress for this release.

A Review of SAS/STAT 9.22

Many users are still finding out about SAS/STAT 9.22, a new release that ’snuck out’ with the third maintenance of
SAS® 9.3. This release contained many important enhancements to SAS/STAT software.

New architectural changes mean that many procedures added additional postfitting capabilities to their arsenal. Over
30 postfitting statements have been added to the linear modeling procedures. In addition, several existing statements
have been updated. Table 1 provides an overview of these capabilities. Checks indicate that new statements have
been added to procedures, stars indicate existing functionality, and starred checks indicate that existing statements
have been updated.
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Table 1 Postfitting Statements Available in Linear Modeling Procedures

Procedure CONTRAST EFFECTPLOT ESTIMATE LSMEANS LSMESTIMATE SLICE TEST
GENMOD ? X ? ?X X X
GLM ? ? ? ?

GLIMMIX ? ? ? ?X X
LOGISTIC ? X X X X X ?

MIXED ? ? ? X X
ORTHOREG X X X X X X
PHREG ? X X X X ?

SURVEYLOGISTIC ? X X X X ?

SURVEYPHREG X X X X X
SURVEYREG ? ? X X X X

In addition, the PLM procedure performs postfitting inference with model fit information saved from a number of
SAS/STAT modeling procedures. These procedures are equipped with the new STORE statement, which saves model
information as a SAS item store. An item store is a special SAS binary file that is used to store and restore information
that has a hierarchical structure. Ten SAS/STAT procedures now provide the STORE statement: GENMOD, GLIMMIX,
GLM, LOGISTIC, MIXED, ORTHOREG, PHREG, SURVEYLOGISTIC, SURVEYPHREG, and SURVEYREG.

The PLM procedure takes these item stores as input and performs tasks such as testing hypotheses, producing effect
plots, and scoring a new data set. These tasks are specified through the usual complement of postfitting statements
such as the TEST, LSMEANS, and new EFFECTPLOT and SCORE statements. Any procedure that offers the STORE
statement can produce the item stores that are necessary for postfitting processing with the PLM procedure. This allows
you to perform additional postfitting inference at a later time without having to refit your model, which is especially con-
venient for those models that are computationally expensive. In addition, with growing concerns for data confidentiality,
storing and using intermediate results for remaining analyses might become a requirement in some organizations.

The SURVEYPHREG procedure fits the semiparametric Cox model for proportional odds to sample survey data. Based
on work by David Binder (1983), the procedure provides design-based variance estimates, confidence intervals, and
hypothesis tests concerning the model parameters and model effects. For statistical inference, PROC SURVEYPHREG
incorporates complex survey sample designs, including designs with stratification, clustering, and unequal weighting.

The GENMOD procedure is equipped with an EXACT statement and performs exact Poisson regression as well as exact
logistic regression. In addition, it performs zero-inflated negative binomial regression as well as zero-inflated Poisson
regression. The EFFECT statement is available in the HPMIXED, GLIMMIX, GLMSELECT, LOGISTIC, ORTHOREG,
PHREG, PLS, QUANTREG, ROBUSTREG, SURVEYLOGISTIC, and SURVEYREG procedures. Effect types include
splines for semiparametric modeling, effects for situations in which measurements can belong to more than one class,
lag effects, and polynomials.

The SAS/STAT 9.22 release contains numerous other additions as well. See the paper “The Next Generation:
SASS/STAT® 9.22” by Stokes, Rodriguez, and Cohen (2010)

ODS Statistical Graphics Footprint Grows Larger

The 9.3 release marks another milestone in the evolution of statistical graphics in SAS. The ODS graphical capabilities
move to SAS® Base so they will be available to all SAS/STAT customers. This means that a SAS/GRAPH® license will
no longer be required to generate the plots produced by the statistical procedures. The SG family of procedures is also
part of Base SAS, and so is the ODS Graphics editor and the Graphical Template Language. You might be interested
in the ODS Graphics Designer, which enables you to create new graphics via a point-and-click interface.(Note that
SAS/GRAPH remains a SAS product with extensive graphics functionality.)
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Figure 1 New DMS Look

In addition, the default Display Manager settings have been changed so that resulting tables and graphs are inter-
spersed. ODS Graphics is now automatically turned on in Display Manager, and the default output destination is
HTML. The new HTMLBlue style affords a modern appearance. As a result of these changes, a few graphs behave
somewhat differently, mostly having to do with the number of points being plotted. See the “What’s Changed” section
in the “What’s New” chapter of the SAS/STAT 9.3 documentation for more detail.

In addition, several more graphics have been added to SAS/STAT. Figure 2 displays the agreement plot corresponding
to observer agreement analysis in the FREQ procedure:

Figure 2 Agreement Plot for MS Patient Study
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And the CLUSTER and VARCLUS procedures now produce dendrograms when ODS Graphics is enabled as illustrated
in Figure 3.

Figure 3 Dendrogram for Mileage Data

Finite Mixture Models

Finite mixture models allow you to fit statistical models to data when the distribution of the response is a finite mixture
of univariate distributions. These models are useful for applications such as estimating multimodal or heavy-tailed
densities, fitting zero-inflated or hurdle models to count data with excess zeros, modeling overdispersed data, and fitting
regression models with complex error distributions. Many well-known statistical models for dealing with overdispersed
data are members of the finite mixture model family: for example, zero-inflated Poisson models and zero-inflated
negative binomial models.

The experimental FMM procedure in SAS/STAT 9.3 fits finite mixtures of regression models of generalized linear models
in which the regression structure and the covariates are the same or different across the components. PROC FMM
performs maximum likelihood estimation for all models, and it provides Markov Chain Monte Carlo estimation for many
models, including zero-inflated Poisson models. The procedure includes many built-in link and distribution functions,
including the beta, shifted, Weibull, beta-binomial, and generalized Poisson distributions, as well as standard members
of the exponential family of distributions. In addition, several specialized built-in mixture models are provided, such as
the binomial cluster model (Morel and Nagaraj, 1993).

The FMM procedure uses the typical model-building syntax of SAS statistical procedures, including the CLASS and
MODEL statements, although multiple MODEL statements are required to build the mixture models in which model
effects, distributions, or link functions vary across mixture components. It also provides a number of features particular
to fitting finite mixture models. For example, it evaluates sequences of mixture models when you specify ranges for the
number of components, it has the ability to model regression and classification effects in the mixing probabilities, and
it can incorporate full or partially known component membership into the analysis. In addition, Bayesian methods are
available for several models.

The following data illustrates the use of a zero-inflated model. In a survey of park attendees, randomly selected
individuals were asked about the number of fish they caught in the last six months. Along with that count, the gender
and age of each sampled individual were recorded. The following DATA step displays the data for the analysis:

data catch;
input gender $ age count @@;
datalines;
F 54 18 M 37 0 F 48 12 M 27 0
M 55 0 M 32 0 F 49 12 F 45 11
M 39 0 F 34 1 F 50 0 M 52 4
M 33 0 M 32 0 F 23 1 F 17 0
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F 44 5 M 44 0 F 26 0 F 30 0
F 38 0 F 38 0 F 52 18 M 23 1
F 23 0 M 32 0 F 33 3 M 26 0
F 46 8 M 45 5 M 51 10 F 48 5
F 31 2 F 25 1 M 22 0 M 41 0
M 19 0 M 23 0 M 31 1 M 17 0
F 21 0 F 44 7 M 28 0 M 47 3
M 23 0 F 29 3 F 24 0 M 34 1
F 19 0 F 35 2 M 39 0 M 43 6

;

If you simply look at the data, it appears that many park attendees did not catch any fish. The zero counts are made up
of two populations: attendees who do not fish and attendees who fish badly. A zero-inflation mechanism thus appears
reasonable since a zero count can be produced by two separate distributions.

The following PROC FMM statements fit a standard Poisson regression model to these data. A common intercept is
assumed for men and women, and the regression slope varies with gender.

proc fmm data=catch;
class gender;
model count = gender*age / dist=Poisson;

run;

Figure 4 displays information about the model and data set. The “Model Information” table conveys that the model is a
single-component Poisson model (a Poisson GLM) and that parameters are estimated by maximum likelihood.

Figure 4 Model Information and Class Levels in Poisson Regression

Confidence Intervals for the Difference of Proportions

The FMM Procedure

Model Information

Data Set WORK.CATCH
Response Variable count
Type of Model Generalized Linear (GLM)
Distribution Poisson
Components 1
Link Function Log
Estimation Method Maximum Likelihood

Class Level Information

Class Levels Values

gender 2 F M

Number of Observations Read 52
Number of Observations Used 52

Figure 5 displays the “Fit Statistics” and “Parameter Estimates” tables from the maximum likelihood estimation. If the
model is not overdispersed, the Pearson statistic should roughly equal the number of observations in the data set minus
the number of parameters. With n D 52, there is evidence of overdispersion in these data with QP =85.96.

Figure 5 Fit Results in Poisson Regression

Fit Statistics

-2 Log Likelihood 182.7
AIC (smaller is better) 188.7
AICC (smaller is better) 189.2
BIC (smaller is better) 194.6
Pearson Statistic 85.9573

Parameter Estimates for 'Poisson' Model

Standard
Effect gender Estimate Error z Value Pr > |z|

Intercept -3.9811 0.5439 -7.32 <.0001
age*gender F 0.1278 0.01149 11.12 <.0001
age*gender M 0.1044 0.01224 8.53 <.0001
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Suppose that the cause of overdispersion is zero-inflation of the count data. The following statements fit a zero-inflated
Poisson model.

proc fmm data=catch;
class gender;
model count = gender*age / dist=Poisson ;
model + / dist=Constant;

run;

There are two MODEL statements, one for each component of the mixture. The distributions are different for the
components, so you cannot specify the mixture model with a single MODEL statement. The first MODEL statement
identifies the response variable for the model for COUNT, and it defines a Poisson model with intercept and gender-
specific slopes.

The second MODEL statement uses the continuation operator (“+”) and adds a model with a degenerate distribution by
using the DIST=CONSTANT option. Because the mass of the constant is placed by default at zero, the second MODEL
statement adds a zero-inflation component to the model. When you use the “+” sign, you pick up the response variable
and effects from the preceding MODEL statement; any additional effects you list after the “+” sign will be added to them.

Figure 6 displays the “Model Information” and “Optimization Information” tables for this run of the FMM procedure. The
model is now identified as a zero-inflated Poisson (ZIP) model with two components, and the parameters continue to
be estimated by maximum likelihood. The “Optimization Information” table shows that there are four parameters in
the optimization (compared to three parameters in the Poisson GLM model). The four parameters correspond to three
parameters in the mean function (intercept and two gender-specific slopes) and the mixing probability.

Figure 6 Model and Optimization Information in the ZIP Model

Confidence Intervals for the Difference of Proportions

The FMM Procedure

Model Information

Data Set WORK.CATCH
Response Variable count
Type of Model Zero-inflated Poisson
Components 2
Estimation Method Maximum Likelihood

Optimization Information

Optimization Technique Dual Quasi-Newton
Parameters in Optimization 4
Mean Function Parameters 3
Scale Parameters 0
Mixing Prob Parameters 1
Number of Threads 2

Figure 7 displays the results from fitting the ZIP model by maximum likelihood. The �2 log likelihood and the information
criteria suggest a much-improved fit over the single-component Poisson model (compare Figure 7 to Figure 5). The
Pearson statistic is reduced by a factor of 2 compared to the Poisson model and suggests a better fit than the standard
Poisson model.

Figure 7 Maximum Likelihood Results for the ZIP model

Fit Statistics

-2 Log Likelihood 145.6
AIC (smaller is better) 153.6
AICC (smaller is better) 154.5
BIC (smaller is better) 161.4
Pearson Statistic 43.4467
Effective Parameters 4
Effective Components 2

Parameter Estimates for 'Poisson' Model

Standard
Component Effect gender Estimate Error z Value Pr > |z|

1 Intercept -3.5215 0.6448 -5.46 <.0001
1 age*gender F 0.1216 0.01344 9.04 <.0001
1 age*gender M 0.1056 0.01394 7.58 <.0001
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Figure 7 continued

Parameter Estimates for Mixing Probabilities

----------------Linked Scale---------------
Standard

Effect Estimate Error z Value Pr > |z| Probability

Intercept 0.8342 0.4768 1.75 0.0802 0.6972

The number of effective parameters and components shown in Figure 5 equals the values from Figure 6. This is not
always the case because components can collapse (for example, when the mixing probability approaches zero or when
two components have identical parameter estimates). In this example, both components and all four parameters are
identifiable. The Poisson regression and the zero process mix, with a probability of approximately 0.6972 attributed to
the Poisson component.

Bayesian Techniques in the FMM Procedure

The FMM procedure enables you to fit some mixture models by Bayesian techniques. The following statements add
the BAYES statement to the previous PROC FMM statements:

proc fmm data=catch seed=12345;
class gender;
model count = gender*age / dist=Poisson;
model + / dist=constant;
performance cpucount=2;
bayes;

run;

The “Model Information” table indicates that the model parameters are estimated by Markov chain Monte Carlo tech-
niques, and it displays the random number seed (Figure 8). This is useful if you did not specify a seed to identify the
seed value that reproduces the current analysis. The “Bayes Information” table provides basic information about the
Monte Carlo sampling scheme. The sampling method uses a data augmentation scheme to impute component mem-
bership and then the Gamerman (1997) algorithm to sample the component-specific parameters. The 2,000 burn-in
samples are followed by 10,000 Monte Carlo samples without thinning.

Figure 8 Model, Bayes, and Prior Information in the ZIP Model

Confidence Intervals for the Difference of Proportions

The FMM Procedure

Model Information

Data Set WORK.CATCH
Response Variable count
Type of Model Zero-inflated Poisson
Components 2
Estimation Method Markov Chain Monte Carlo
Random Number Seed 12345

Bayes Information

Sampling Algorithm Gamerman
Data Augmentation Latent Variable
Initial Values of Chain ML Estimates
Burn-In Size 2000
MC Sample Size 10000
MC Thinning 1
Parameters in Sampling 4
Mean Function Parameters 3
Scale Parameters 0
Mixing Prob Parameters 1
Number of Threads 2

Prior Distributions

Initial
Component Effect gender Distribution Mean Variance Value

1 Intercept Normal(0, 1000) 0 1000.00 -3.5215
1 age*gender F Normal(0, 1000) 0 1000.00 0.1216
1 age*gender M Normal(0, 1000) 0 1000.00 0.1056
1 Probability Dirichlet(1, 1) 0.5000 0.08333 0.6972
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The “Prior Distributions” table identifies the prior distributions, their parameters for the sampled quantities, and their
initial values. The prior distribution of parameters associated with model effects is a normal distribution with mean 0
and variance 1,000. The prior distribution for the mixing probability is a Dirichlet(1,1), which is identical to a uniform
distribution (Figure 8). Since the second mixture component is a degeneracy at zero with no associated parameters, it
does not appear in the “Prior Distributions” table in Figure 8.

Figure 9 displays descriptive statistics about the 10,000 posterior samples. Recall from Figure 7 that the maximum
likelihood estimates were �3.5215, 0.1216, 0.1056, and 0.6972, respectively. With this choice of prior, the means
of the posterior samples are generally close to the MLEs. The “Posterior Intervals” table displays 95% intervals of
equal-tail probability and 95% intervals of highest posterior density (HPD) intervals.

Figure 9 Posterior Summaries and Intervals in the ZIP Model

Posterior Summaries

Standard
Component Effect gender N Mean Deviation

1 Intercept 10000 -3.5524 0.6509
1 age*gender F 10000 0.1220 0.0136
1 age*gender M 10000 0.1058 0.0140
1 Probability 10000 0.6938 0.0945

Posterior Summaries

Percentiles
Component Effect gender 25% 50% 75%

1 Intercept -3.9922 -3.5359 -3.0875
1 age*gender F 0.1124 0.1218 0.1314
1 age*gender M 0.0961 0.1055 0.1153
1 Probability 0.6293 0.6978 0.7605

Posterior Intervals

Equal-Tail
Component Effect gender Alpha Interval HPD Interval

1 Intercept 0.050 -4.8693 -2.3222 -4.8927 -2.3464
1 age*gender F 0.050 0.0960 0.1494 0.0961 0.1494
1 age*gender M 0.050 0.0792 0.1339 0.0796 0.1341
1 Probability 0.050 0.5041 0.8688 0.5025 0.8666

You can generate trace plots for the posterior parameter estimates by enabling ODS Graphics:

ods graphics on;
ods select TADPanel;
proc fmm data=catch seed=12345;

class gender;
model count = gender*age / dist=Poisson;
model + / dist=constant;
performance cpucount=2;
bayes;

run;
ods graphics off;

A separate trace panel is produced for each sampled parameter, and the panels for the gender-specific slopes are
shown in Figure 10. There is good mixing in the chains: the modest autocorrelation diminishes after about 10 succes-
sive samples. By default, the FMM procedure transfers the credible intervals for each parameter from the “Posterior
Intervals” table to the trace plot and the density plot in the trace panel.
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Figure 10 Trace Panels for Gender-Specific Slopes

New Confidence Intervals for the Difference of Proportions

It is often useful to describe the nature of the association in a 2 � 2 table by examining the difference of proportions
with the ’event’ response in each of the groups. For example, for the table in Table 2 you would be interested in looking
at the difference in the favorable response for the two treatment groups, Test and Control.

Table 2 Respiratory Treatment Outcomes

Treatment Favorable Unfavorable Total
Test 10 2 12
Control 2 4 6
Total 12 6 18
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The proportion pi of favorable events in the i th row is defined as ni1=niC. When the groups represent simple random
samples, and the difference d D p1 � p2 for the proportions p1 and p2,

Efp1 � p2g D �1 � �2

The variance is

V fp1 � p2g D
�1.1 � �1/

n1C

C
�2.1 � �2/

n2C

for which a consistent estimate is

vd D
p1.1 � p1/

n1C

C
p2.1 � p2/

n2C

A 100.1 � ˛/% confidence interval for .�1 � �2/ with continuity correction is written as

d ˙

�
z˛=2
p
vd C

1

2

�
1

n1C

C
1

n2C

��

where z˛=2 is the 100.1�˛=2/ percentile of the standard normal distribution; this confidence interval is based on Fleiss,
Levin, and Paik (2003). These confidence limits include a continuity adjustment to the Wald asymptotic confidence
limits that adjust for the difference between the normal approximation and the discrete binomial distribution.

The default Wald asymptotic confidence limits (without the continuity correction) in the FREQ procedure are appropri-
ate for larger sample sizes, say cell counts of at least 12. The continuity-corrected Wald confidence limits are more
appropriate for moderate sample sizes, say cell counts of at least 8.

Since the cell counts are relatively small in Table 2, you might consider exact methods for not only assessing association
(Fisher’s exact test) but also for the construction of the confidence intervals for the difference of proportions. The EXACT
statement provides an exact confidence interval based on the raw risk difference. You specify the RISKDIFF option in
the EXACT statement to generate it. However, this interval is known to be fairly conservative (wide). New in SAS/STAT
9.3 is a method for computing the exact confidence interval based on the Farrington-Manning score statistic which has
better coverage properties.

Also new in SAS/STAT 9.3 are several other methods for constructing the confidence interval for the difference of pro-
portions: Newcombe, Farrington-Manning, and Hauck-Anderson. These methods can be more suitable for small counts
than the exact intervals. See Stokes and Koch (2011) for more detail, as well as the PROC FREQ documentation. The
following example produces these new confidence intervals with the FREQ procedure.

The following SAS statements create the SAS data set SMALL:

data small;
input treat $ outcome $ count @@ ;
datalines;

Test Favorable 10 Test Unfavorable 2
Placebo Favorable 2 Placebo Unfavorable 4
;

The PROC FREQ statements request the new confidence intervals as suboptions of the RISKDIFF option in the TA-
BLES statement. The EXACT statement, with RISKDIFF=(FMSCORE), specifies the exact confidence interval based
on the Farrington-Manning score statistic.

proc freq order=data data=small;
weight count;
tables treat*outcome / riskdiff(cl=(wald newcombe fm ha exact) correct);
exact riskdiff(fmscore);
ods output PdiffCLs=pd;
ods output RiskDiffCol1=dif(keep=risk row where=(row='Difference'));

run;

The ODS OUTPUT statements are needed in order to plot the intervals in a later step.

Figure 11 displays the generated confidence intervals.
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Figure 11 Confidence Intervals for Difference of Proportions

Random-Effects Model

The FREQ Procedure

Statistics for Table of treat by outcome

Confidence Limits for the Proportion (Risk) Difference
Column 1 (outcome = Favorabl)
Proportion Difference = 0.5000

Type 95% Confidence Limits

Exact (FM Score) -0.0000 0.8433
Farrington-Manning 0.0380 0.9620
Hauck-Anderson -0.0516 1.0000
Newcombe Score (Corrected) -0.0352 0.8059
Wald (Corrected) -0.0571 1.0000

Note that the corrected Wald-based confidence interval is the widest interval. The scored-based exact (unconditional)
confidence interval has a relatively wide interval, (�0.0296, 0.8813) as does the interval based on Farrington-Manning
scores, (0.0380, 0.9620), which also excludes the value zero. The score-based exact confidence interval has a narrower
interval of (0.000, 0.8433), but it comes with a zero boundary. Not shown here, the default exact unconditional interval
is (�0.0296, 0.8813), which is fairly wide. The corrected Newcombe interval is the narrowest at (�0.0352, 0.8059), and
it might be the most suitable for these data as it does not exclude zero and thus is in harmony with the Fisher exact test
result.

By using the SGPLOT procedure, you can easily compare these confidence intervals graphically.

data risk;
set pd;
if _n_ = 1 then set dif(drop=row);
y = -_n_;
l = y + 0.25;

run;
ods graphics on;
proc sgplot data=risk noautolegend;

title 'Confidence Intervals for the Difference of Proportions';
scatter x = risk y = y / xerrorlower=lowercl xerrorupper=uppercl;
scatter x = risk y = l / markerchar=type;
yaxis display=none;
xaxis offsetmin=0.025 offsetmax=0.025;

run;
ods graphics off;

Figure 12 displays the resulting graph.
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Figure 12 Confidence Intervals for Difference of Proportions width

Frailty Models in Survival Analysis

When experimental units are clustered, the failure times of those units within a cluster tend to be correlated. One
approach to managing this correlation when you want to apply Cox regression is to estimate the regression parameters
by the maximum partial likelihood estimates, assuming an independent working assumption and accounting for the
correlation with a robust sandwich covariance matrix estimate (Lee, Wei, and Amato 1992).

Another approach is to account for within-cluster correlation by using a shared frailty mode in which the cluster effects
are incorporated in the model as normally distributed random variables.

The hazard rate for the j th individual in the i th cluster is

�ij .t/ D �0.t/eˇ0Zij .t/Ci

where �0.t/ is an arbitrary baseline hazard rate, Zij is the vector of (fixed-effect) covariates, ˇ is the vector of re-
gression coefficients, and i is the random effect for cluster i . The random components 1; : : : ; s are assumed to be
independent and identically distributed as a normal random variable with mean 0 and an unknown variance � .

In terms of the frailties u1; : : : ; us , given by i D log.ui /, the frailty model can be written as

�ij .t/ D �0.t/uieˇ0Zij .t/

Each frailty has a lognormal distribution with median 1. This gives the interpretation that individuals in cluster i with
ui > 1.ui < 1/ tend to fail at a faster (slower) rate than that under an independence model. The PHREG procedure
uses a penalized partial likelihood approach to fit frailty models.

The following DATA step creates the data set BLIND that represents 197 diabetic patients who have a high risk of
experiencing blindness in both eyes. One eye of each patient is treated with laser photocoagulation, and the other eye
is treated with standard remedies. The hypothesis of interest is whether the laser treatment delays the occurrence of
blindness. Since juvenile and adult diabetes have very different courses, it is also desirable to examine how the age of
onset of diabetes might affect the time of blindness. Since there are no biological differences between the left eye and
the right eye, it is natural to assume a common baseline hazard function for the failure times of the left and right eyes.

Each patient is a cluster that contributes two observations to the input data set, one for each eye. The following variables
are in the input data set BLIND:

� ID, patient’s identification

� Time, time to blindness
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� Status, blindness indicator (0:censored and 1:blind)

� Treat, treatment received (Laser or Others)

� Type, type of diabetes (Juvenile: onset at age � 20 or Adult: onset at age > 20)

The following SAS statements create the data set BLIND:

proc format;
value type 0='Juvenile' 1='Adult';
value Rx 1='Laser' 0='Others';

run;
data Blind;
input ID Time Status dty trt @@;
Type= put(dty, type.);
Treat= put(trt, Rx.);
datalines;

5 46.23 0 1 1 5 46.23 0 1 0 14 42.50 0 0 1 14 31.30 1 0 0
16 42.27 0 0 1 16 42.27 0 0 0 25 20.60 0 0 1 25 20.60 0 0 0
29 38.77 0 0 1 29 0.30 1 0 0 46 65.23 0 0 1 46 54.27 1 0 0
49 63.50 0 0 1 49 10.80 1 0 0 56 23.17 0 0 1 56 23.17 0 0 0
61 1.47 0 0 1 61 1.47 0 0 0 71 58.07 0 1 1 71 13.83 1 1 0
100 46.43 1 1 1 100 48.53 0 1 0 112 44.40 0 1 1 112 7.90 1 1 0
...

The next PROC PHREG statements fit a shared frailty model to the BLIND data set. The RANDOM statement specifies
the analysis, and it identifies ID as the clustering variable. The variable ID must also be listed in the CLASS statement.

proc phreg data=Blind;
class ID Treat Type;
model Time*Status(0)=Treat|Type;
random ID;
hazardratio 'Frailty Model Analysis' Treat;

run;

Figure 13 shows a tabulation of the data. 54 eyes treated with laser photocoagulation developed blindess, as did 101
eyes treated with other remedies.

Figure 13 Crosstabulations

Confidence Intervals for the Difference of Proportions

The FREQ Procedure

Table of Treat by Status

Treat Status

Frequency| 0| 1| Total
---------+--------+--------+
Laser | 143 | 54 | 197
---------+--------+--------+
Others | 96 | 101 | 197
---------+--------+--------+
Total 239 155 394

Figure 14 displays the estimate and asymptotic estimated standard error of the common variance parameter of the
normal random effects.

Figure 14 Variance Estimate of the Normal Random Effects

Confidence Intervals for the Difference of Proportions

The PHREG Procedure

Covariance Parameter Estimates

Cov REML Standard
Parm Estimate Error

ID 0.8308 0.2145
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Table 15 displays the Wald tests for both the fixed effects and the random effects. The random effects are statisti-
cally significant (p=0.0042). Laser photocoagulation appears to be effective (p=0.0252) in delaying the occurrence of
blindness, although there is also a significant treatment by diabetes type interaction effect (p=0.0071).

Figure 15 Type 3 Tests

Type 3 Tests

Wald Adjusted Adjusted
Effect Chi-Square DF Pr > ChiSq DF Pr > ChiSq

Treat 4.8964 1 0.0269 0.9587 0.0252
Type 2.6386 1 0.1043 0.6795 0.0629
Treat*Type 7.1336 1 0.0076 0.9644 0.0071
ID 110.3916 . . 74.2776 0.0042

Figure 16 contains the maximum likelihood parameter estimates.

Figure 16 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter Standard
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Treat Laser 1 -0.49849 0.22528 4.8964 0.0269
Type Adult 1 0.39781 0.24490 2.6386 0.1043
Treat*Type Laser Adult 1 -0.96530 0.36142 7.1336 0.0076

Analysis of Maximum Likelihood Estimates

Hazard
Parameter Ratio Label

Treat Laser . Treat Laser
Type Adult . Type Adult
Treat*Type Laser Adult . Treat Laser * Type Adult

Figure 17 displays the hazard ratio estimates. They show that laser photocoagulation is effective in delaying blindness
for both types of diabetes, and it is more effective for the adult-onset diabetes than for juvenile-onset diabetes.

Figure 17 Hazard Ratio Estimates for Frailty Model

Frailty Model Analysis: Hazard Ratios for Treat

Point 95% Wald Confidence
Description Estimate Limits

Treat Laser vs Others At Type=Adult 0.231 0.133 0.403
Treat Laser vs Others At Type=Juvenile 0.607 0.391 0.945

These results are similar to those found in a marginal model analysis, which are described in the PHREG documenta-
tion.

Bayesian Software Updates

Bayesian capabilities continue to grow in SAS/STAT software. First available via web-downloadable procedures, the
capabilities provided by the BAYES statement in the GENMOD, LIFEREG, and PHREG procedures have been updated
with new sampling methods. Conjugate sampling for the linear regression in the GENMOD procedure is now the
default, which provides computation time reductions. In addition, you can specify either the Gamerman algorithm or
the independent Metropolis algorithm with the SAMPLING= option in the BAYES statement in PROC GENMOD. You
can choose the random-walk Metropolis algorithm as an alternative sampling method in the PHREG procedure. PROC
PHREG also added the Zellner g-prior for the regression coefficients.

The MCMC procedure introduces the RANDOM statement in this release. It simplifies the construction of hierarchical
random-effects models and significantly reduces simulation time while improving convergence, especially in models
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with a large number of subjects or clusters. This statement defines random effects that can enter the model in a linear
or nonlinear fashion and supports univariate and multivariate prior distributions.

Consider a scenario in which data are collected in groups and you want to model group-specific effects. You can use a
random-effects model (sometimes also known as a variance-components model):

yij D ˇ0 C ˇ1xij C i C eij ; eij � normal.0; �2/

where i D 1; 2; � � � ; I is the group index and j D 1; 2; � � � ; ni indexes the observations in the i th group. In the regression
model, the fixed effects ˇ0 and ˇ1 are the intercept and the coefficient for variable xij , respectively. The random effect
i is the mean for the i th group, and eij are the error term.

Consider the following SAS data set:

title 'Random-Effects Model';
data heights;

input Family Gender$ Height @@;
datalines;

1 F 67 1 F 66 1 F 64 1 M 71 1 M 72 2 F 63
2 F 63 2 F 67 2 M 69 2 M 68 2 M 70 3 F 63
3 M 64 4 F 67 4 F 66 4 M 67 4 M 67 4 M 69
;

Height, gender, and family are recorded for 18 individuals. Since GENDER is a character variable and PROC MCMC
does not support a CLASS statement, you need to create the corresponding design matrix columns. The next DATA
step creates a dummary variable IGENDER. In this example, the design matrix for a factor variable of level 2 (M and F)
can be constructed using the following statement:

data iheights;
set heights;
IGender=('F');

run;

To model the data, you can assume that HEIGHT is normally distributed:

yij � normal.�ij ; �2/; �ij D ˇ0 C ˇ1gfij C i

The priors on the parameters ˇ0, ˇ1, i are also assumed to be normal:

ˇ0 � normal.0; var D 1e5/

ˇ1 � normal.0; var D 1e5/

i � normal.0; var D �2 /

Priors on the variance terms, �2 and �2 , are inverse-gamma:

�2 � igamma.shape D 0:01; scale D 0:01/

�2 � igamma.shape D 0:01; scale D 0:01/

The inverse-gamma distribution is a conjugate prior for the variance in the normal likelihood and the variance in the
prior distribution of the random effect.

The following statements fit a linear random-effects model to the data and produce the output shown in Figure 18:

ods graphics on;
proc mcmc data=iheights outpost=postout nmc=50000 thin=5 seed=7893;

ods select Parameters REparameters PostSummaries PostIntervals
tadpanel;

parms b0 0 b1 0 s2 1 s2g 1;
prior b: ~ normal(0, var = 10000);
prior s: ~ igamma(0.01, scale = 0.01);
random gamma ~ normal(0, var = s2g) subject=family monitor=(gamma);
mu = b0 + b1 * gf + gamma;
model height ~ normal(mu, var = s2);

run;
ods graphics off;
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The PROC MCMC statement specifies the input and output data sets, the simulation size, the thinning rate, and a
random number seed. The ODS SELECT statement displays the model parameter and random-effects parameter
information tables, summary statistics table, the interval statistics table, and the diagnostics plots.

The PARMS statement lumps all four model parameters in a single block. They are B0 (overall intercept), B1 (main
effect for IGENDER), S2 (variance of the likelihood function), and §2G (variance of the random effect). If a random
walk Metropolis sampler is the only applicable sampler for all parameters, then these four parameters are updated in a
single block. However, since the conjugate updater is used to draw posterior samples of S2 and S2G, PROC MCMC
updates these parameters separately (see the BLOCK column in the “Parameters” table in Figure 18).

The PRIOR statements specify priors for all the parameters. The notation b: is a shorthand for all symbols that start
with the letter ‘b’. In this example, b: includes B0 and B1. Similarly, S: stands for both S2 and S2G.

The RANDOM statement specifies a single random effect to be GAMMA, and it specifies that it has a normal prior
centered at 0 with variance S2G. The SUBJECT= argument in the RANDOM statement defines a group index FAMILY
in the model, where all observations from the same family should have the same group indicator value. The MONITOR=
option outputs analysis for all of the random-effects parameters.

Finally, the MU assignment statement calculates the expected value of HEIGHT in the random-effects model. The
MODEL statement specifies the likelihood function for HEIGHT.

The “Parameters” and “Random-Effects Parameters” tables, shown in Figure 18, contain information about the model
parameters and the four random-effects parameters.

Figure 18 Model and Random-Effects Parameter Information

Random-Effects Model

The MCMC Procedure

Parameters

Sampling Initial
Block Parameter Method Value Prior Distribution

1 s2 Conjugate 1.0000 igamma(0.01, scale = 0.01)
2 s2g Conjugate 1.0000 igamma(0.01, scale = 0.01)
3 b0 N-Metropolis 0 normal(0, var = 10000)

b1 0 normal(0, var = 10000)

Random Effects Parameters

Parameter Subject Levels Prior Distribution

gamma family 4 normal(0, var = s2g)

The posterior summary and interval statistics for B0 and B1 are shown in Figure 19 and Figure 20:

Figure 19 Posterior Summary Statistics

Random-Effects Model

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%

b0 10000 68.4591 1.2085 67.7939 68.4369 69.0863
b1 10000 -3.5381 0.9622 -4.1439 -3.5351 -2.9466
s2 10000 4.1495 1.9089 2.8251 3.7353 4.9854
s2g 10000 4.8368 17.4110 0.2218 1.2534 4.0669
gamma_1 10000 0.9374 1.2817 0.0832 0.6802 1.6250
gamma_2 10000 0.0167 1.1399 -0.4145 0.0325 0.5038
gamma_3 10000 -1.3313 1.6080 -2.1514 -0.9247 -0.1434
gamma_4 10000 0.0979 1.1495 -0.3470 0.0537 0.5802
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Figure 20 Posterior Summary Statistics

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

b0 0.050 66.0454 71.1125 65.8787 70.7985
b1 0.050 -5.4303 -1.5336 -5.4941 -1.6259
s2 0.050 1.7532 9.0102 1.4424 8.0066
s2g 0.050 0.0117 29.7402 0.00121 18.3336
gamma_1 0.050 -1.1857 3.8472 -1.1522 3.8666
gamma_2 0.050 -2.6485 2.4385 -2.3792 2.6240
gamma_3 0.050 -5.4020 0.6187 -4.8669 0.8624
gamma_4 0.050 -2.5324 2.6004 -2.2341 2.7602

Trace plots, autocorrelation plots, and posterior density plots for all the parameters are shown in Figure 20. The mixing
looks very reasonable, suggesting convergence.

Figure 21 Plots for b1 and Log of the Posterior Density

From the interval statistics table, you see that both the equal-tail and HPD intervals for B0 are positive, strongly indicat-
ing the positive effect of the parameter. On the other hand, both intervals for B1 cover the value zero, indicating that
IGENDER does not have a strong impact on predicting HEIGHT in this model.

In addition to the default Metropolis-based algorithms, PROC MCMC now takes advantages of certain forms of conju-
gacy in the model in order to sample directly from the target conditional distributions. In many situations, the conjugate
sampler increases sampling efficiency and provides a substantial reduction in computing time.

The MCMC procedure now supports multivariate distributions including the Dirichlet, inverse Wishart, multivariate nor-
mal, and multinomial distributions. You can find more information in the SAS Global Forum papers “Bayesian Modeling
Using the MCMC Procedure” and “The RANDOM Statement and More: PROC MCMC Moves On” by Fang Chen (2009,
2011).

More Highlights of SAS/STAT 9.3

A number of other important enhancements are available in this release as well.

The EFFECT statement

The EFFECT statement is now production. This statement is available in the HPMIXED, GLIMMIX, GLMSELECT,
LOGISTIC, ORTHOREG, PHREG, PLS, QUANTREG, ROBUSTREG, SURVEYLOGISTIC, and SURVEYREG proce-
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dures. The NATURALCUBIC option specifies a natural cubic spline basis for the spline expansion.

CALIS Procedure

The following features are now production: METHOD=FIML, mean structure analysis with the COSAN model, extended
PATH modeling language that supports the specification of variances or covariances as paths, unnamed free parameter
specification in all model, and improved improved RAM model specification.

In addition, PROC CALIS now provides detailed analysis of the missing patterns with the FIML estimation method. With
the COVPATTERN= and MEANPATTERN= options, you can specify various standard mean and covariance patterns
by using keywords. PROC CALIS then generates the required covariance and mean structures automatically.

NLIN Procedure

The NLIN procedure provides several experimental features for diagnosing the nonlinear model fit, including the PLOTS,
NLINMEASURES, and BIAS options in the PROC NLIN statement. The NLINMEASURES displays global measures
of nonlinearity, and the BIAS option computes Box’s bias statistics for the parameter estimates. The PLOTS option
enables you to plot the fitted model, fit diagnostics, tangential and Jacobian leverage, and local influence. You can add
the leverage, local influence, and residual diagnostics to the output data set.

Figure 22 Diagnostics Panel from NLIN Procedure

HPMIXED Procedure

The HPMIXED procedure provides mixed models analysis for when you have large amounts of data and/or large
numbers of class levels that may be beyond the grasp of the MIXED procedure. PROC HPMIXED employs sparse
matrix methods and other numerical techniques to fit the required mixed models. The HPMIXED procedure became
production with SAS/STAT 9.22.

PROC HPMIXED provides the REPEATED statement, which defines the repeated effect and the residual covariance
structure in the mixed model. The AR(1), CS, CSH, UC, UCH, and UN covariance structures are now available with the
TYPE= option in the RANDOM statement.
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MI Procedure

The experimental FCS statement specifies a multivariate imputation by fully conditional specification (FCS) methods.
For data with an arbitrary missing data pattern, these methods enable you to impute missing values for all variables,
assuming that a joint distribution for these variables exists. The FCS method requires fewer iterations than the MCMC
method.

QUANTREG Procedure

The new QINTERACT option in the TEST statement enables you to test whether any difference exists among the
coefficients across quantiles if several quantiles are specified in the MODEL statement. The RANKSCORE option in
the TEST statement now supports the tau score function, which is appropriate for non-iid error models.

For Further Information

A good place to start for further information is the “What’s New in SAS/STAT 9.3” chapter in the online documentation
when it becomes available.In addition, the Statistics and Operations Focus Area includes substantial information about
the statistical products, and can be found at support.sas.com/statistics/. The quarterly e-newsletter for that
site is available on its home page. And of course, complete information is available in the online documentation located
here: support.sas.com/documentation/onlinedoc/stat/.
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