Using SAS® Arrays to Manipulate Data
Ben Cochran, The Bedford Group, Raleigh, NC

ABSTRACT

The DATA step has been described as the best data manipulator in the business. One of the constructs that gives
the DATA step so much power is the SAS array. This presentation takes the user on a tour of SAS array applications
starting from a very elementary level to more advanced examples. After brief explanations of each application, the
attendees will get a chance to try their skills at solving an array of challenges.

INTRODUCTION

Often, SAS users need to manipulate data to get it ready for a report, application, or a data warehouse. As a matter
of fact, most of the time someone spends doing SAS programming is spent manipulating data. In an earlier career, |
found myself spending upwards of 80% of my time just getting data in the ‘right shape’. | was a little bewildered in
that | had already spent several years not only manipulating data, but teaching SAS courses on the subject. Not
only teaching, but WRITING courses on the subject as well. | had taken an informal survey among my consulting
friends, and they reassured me that data manipulation is a very timely task. Their records indicated that as much as
90% of their programming time was spent on data manipulation. This paper looks at several ways that arrays can
be used to manipulate data.

DEFINITION

A SAS array is a set of variables that are grouped together and referred to by a single name. These variables are
known as elements of the array. Each element is referred to by an index value which represents its position in the
array. A common analogy is a grocery list. On one list (lets call it grocery_list) , | can have several items; like apples,
bacon, chocolate, bread, eggs, coffee, milk, and ice cream. | can refer to the white beverage as milk, or the seventh
item on the list. | can refer to the frozen desert as ice cream, or the eighth item on the list. | also need to go to the
office supply store to make some purchases. | have a list for that trip, too... lets call it office_list. On that one list, |
have laptop, printer, pencils, and paper. | can refer to the item that writes as a pencil, or the third element of the
office_list.

SAS arrays are like these lists. They have hames and contain a number of items (variables). You can refer to each
item by (variable) name, or you can refer to each item by its number on the list (array).

You can do many things with SAS arrays. You can:
e perform repetitive calculations,
e create many variables with like attributes,
e read data,
e make the same comparison for several variables,
e perform table lookup.

Let’s start with a simple example. | have a sales dataset that has all its values in US Dollars. There is a French
subsidiary that needs to have these values converted to Euros. For illustration purposes, lets use the following
exchange rate:

1 USD =0.75 Euros or 1 Euro =1.333 USD

The dataset looks like this:

Obs COMPANY Sales_2001 Sales_2000 Sales_2002 Sales_2003
1 OUTHAY COMPANY 523.24 288.24 1,500.24 1,660.57
2 AUSTRAL 1AN WAY HOSP I TAL 523.24 499.24 804.24 874.62
3 NATIONAL GROVE UNIVERSITY 523.24 198.24 1,308.24 1,340.82
4 STATE INCOME OFF ICE 1,170.00 523.00 1,596.00 1,876.61
5 MELROSE TECH 251.29 628.71 1,178.29 1,320.58
b MELROSE UMIVERSITY 251.29 149.71 1,144.29 1,237.36
i MELROSE College 251.29 640.71 1,106.29 1,318.61
8 BUREAU OF TECHHOLOGY 251.29 418.71 954.29 1,077.62
9 LETELLO LABORATORIES 1,120.00 948.00 268.00 309.77

1

We need to write a DATA step to solve this problem. If we did not know anything about arrays, the program would
look like this:

data euros;
zet zasuser .=ales2003;

ezales_2000 = zale=s_2000 * 1.333;
ezales_2001 = =zales_2001 % 1.333;
ezales_#002 = =sale=s_2002 % 1.333;
ezales_2003 = =zales_2003 % 1.333;

run;

Notice the repetitive calculations. This is not too bad if we have only a small number of calculations to perform. But,
what if we have dozens, or even hundreds? Your program could become unruly and harder to maintain. The Use of
arrays can simplify the process.

The typical syntax of an array statement is:

array array-name {n} [$] [length] variable-names ;

where:

array-name is a valid SAS name.

n is the number of elements in the array

$ is used when the array elements are character variables (the default type is numeric)

length is used at compile time to assign lengths to character variables which are previously undefined.

An array statement:
e must refer to all character or all numeric variables,
e must appear in the DATA step before the array elements are referenced,
e can be used to create variables,
e is acompile time statement. SAS does not see it at execution time..

This array statement defines the four sales variables as elements of a SAS array.

array sales {4} sales_2000 — sales_2003;

If we look at the program data vector, this is what we would see:

sales 2000 | sales 2001 | sales 2002 sales 2003 |...

Array — elements 1 2 3 4

Now, values can be referred to by (variable) name, or by array element numbers.

DO LOOPS are typically used to process each element of an array. The value of the DO LOOP index variable
identifies the array element to be processed as shown in the pseudo code below.

do index-variable = 1 to 4;
. sales{index-variable} ...
end;

array sales {4} sales_2000 — sales 2003 ;

ARRAY APPLICATIONS

Application 1: The sales manager wants a report showing sales figures in Euros instead of US Dollars. Write a
DATA step using an array to accomplish this task. .

do i =1 to4;
esales{i}=sales{i}*1.3333;
end;
run;.

data taskl(keep=company sales: esales:) ;
array sales {4} sales 2000 - sales 2003 ;
array esales {4} esales_2000 — esales_2003;
set sasuser.sales2003;

Notice the sales: on the keep= option. It is shorthand for all variables that start with the letters sales. The same is
true for esales:.

The following PROC PRINT step is used to generate the output.

proc print data=task1(obs =7) ;
var sales_2000 — sales_2003 company esales_ 2000 — esales_2003 ;
format sales_2000 — sales_2003 dollar12.2 eales 2000 — esales_2003

eurol2.2;
Obs zales_2000 zales_2001 zsales_2002 zales_2003 COMPANY
1 $288.24 $523.24 $1,500.24 $1,660.57 OUTHAY COMPANY
2 $499.24 $523.24 $804.24 H874.62 AUSTRAL 1AM WAY HOSP I TAL
3 $198.24 $523.24 $1,308.24 $1,340.82 NATIONAL GROVE UMIVERSITY
4 $529.00 $1,170.00 $1,596.00 $1,876.61 STATE IHNCOME OFF ICE
5 $628.71 $251.29 $1,178.29 $1,320.58 MELROSE TECH
6 $149.71 $251.29 $1,144.29 $1,237.36 MELROSE UHIVERSITY
7 $640.71 $251.29 $1,106.29 $1,318.61 MELROSE College
Obs ezales_2000 ezales_2001 ezales_2002 ezales_2003
1 £384 .22 £697.47 £1,999.81 £2,213.53
2 £665 .48 £697 .47 £1,072.05 £1,165.87
3 £264 .25 £697.47 £1,743.88 £1,787.31
4 £705.16 £1,559.61 £2,127 .47 £2,501.52
5 £838.07 £334.97 £1,570.66 £1,760.33
6 £199.56 £334.97 £1,525.34 £1,649.40
7 £854.07 £334.97 £1,474.69 £1,757.71

Notice the effect of the euro format.

Application 2: A certain dataset has all its date values in character variables (not true SAS dates). Write a DATA

step to convert a series of character variables to numeric values.

data dates;
length datel — date3 $10;
input datel $ date2 $ date3 $;
datalines;
11jun08 11jun2008 06/11/2008
10julo8 10jul2008 07/10/2008

data convert;
set dates;
array c_dates { 3} $ 10 datel — date3;
array n_dates { 3} n_datel - n_date3;

doi=1to3;
n_dates{ | } = input(c_dates{ i}, anydtdtel0.);
end;
run;
proc print data=convert;
run:
Ob= datel date? dateld n_datel n_dated n_dated
1 11jun08 11jun?008 06-11/-2008 17694 17694 17694
2 10julod 10jul 2008 o7 1172008 17723 17723 17724

Notice all the N_DATE variables have been converted to SAS dates and stored as numbers.

The next application uses the data below. It is characterized by a series of cholesterol readings generated on a
series of dates. Some patients have more readings than others. The head physician at the clinic wants to know

the difference in readings for each patient from one month to the next.

patient_ reading_ reading_
Obs id date_1 1 date_2 2
1 1009 03JaN 216.9 0OGFEB 212.3
2 1017 02JaN 190.2 04FEB 189.5
3 1023 o4.JaN 256.3 OSFEB 249.5
4 1234 05JnN 196.2 0GFEB 199.9
5 1333 06JAaN 192.5 07FEB 196.5
6 1354 o7JaN 222.6 03FEB 226.2
Fa 1378 03JaN 212.5 02FEB 210.8
8 1444 o4JnM 206.2 01FEB 202.3
9 1545 05JaN 188.8 02FEB 189.0
10 1812 06JAN 199.2 03FEB 198.2

reading_

date_3 3

09MAR 209.6
0SHMAR 192.8
OEMAR 243.5
07MAR 197.5
08MAR 195.3
o4MAR 229.8
0SHMAR 207.9
02MAR 200.2
03MAR 190.4
o4MAR 196.8

date_4
0BAPR
03APR

05APR

04APR

reading_
4
207.8
241.2

226.3

195.2

Application 3: Use array processing to calculate monthly differences in Cholesterol readings.

data difference (drop =i);
array chol {4} reading_1 —reading_3;
array diff {3} ;
set sasuser.cholesterol(drop=date_2 — date_4);

doi=1to3;
diff{ i} =chol{i+ 1}—-chol{i};
end;
rename date_1 = Starting_Date;

run;

The Program Data Vector looks like this:

reading_1| reading_2| reading 3| reading_4 | diffl | diff2 | diff3 | patient_id | date_1 i

Notice that there are two ARRAY statements. On the second ARRAY statement, notice that there are no variables
listed. This is an example of an ARRAY statement creating new variables (DIFF1, DIFF2, and DIFF3). Also, with 4
readings, there will only be 3 differences... (between 1 and 2, between 2 and 3, and between 3 and 4).

The following PROC PRINT step is used to generate the report.

proc print data=difference(obs=¥) width=min label;
var patient_id Starting_Date diffl - diff3;
format starting_date mmddyy10.;
title 'Changes in Cholesterol Readings';
label diffl = 'Change From Bead_1 to Bead 2°
diff?2 = 'Change From Read_? to Read_3'
diff3 = 'Change From Bead 2 to Bead 4°;
run;
Changesz in Cholezterol Readings
Change Change Change
From From From
patient_ Startino_ Read_1 to Read_2 to Read_3 to
Obs=s id Date Read_2 Read_3 Read_4
1 1009 010372001 -4 .6 -2.7 -1.8
2 1017 010272001 -0.7 3.3 .
3 1023 010452001 -6.8 -6.0 -2.3
4 1234 0170572001 3.7 -2.4 .
L 1333 017062001 4.0 -1.2 .
[1354 0170772001 3.6 3.6 -3.5
i 1378 0170372001 -1.7 -2.9 .

The doctor was so pleased with this report that she now wants to see the percent difference from reading to reading.

Application 4: Use array processing to calculate the percent difference in readings from month to month.

data difference (drop = i);
array chol {4} reading_1 - reading_3;
array diff {3} ;
array percent{ 3};
set sasuser.cholesterol(drop=date_2 — date_4);
doi=1to3;
diff{ i} =chol{i+ 1}—chol{i};
percent {i}=diff{ 1} /chol {1};
end;
rename date_1 = Starting_Date;
run;

This program is essentially the same as the previous one except for two statements. They are shown above in
boldface font. A similar PROC PRINT is used to create the output.

proc print data=p_differencel(obs=7¥) width=min label;
var patient_id S5tarting_Date percentl - percentd;
format starting_date mmddyyv10. percentl - percentd percenti.l;
title 'Percent Difference in Cholesterol Readings’;
label percentl '% Change From Read_1 to Read_2°

percent? = '% Change From RBead_? to Read_3°
percent3 = % Change From Bead_2 to Bead_4';
run;
Percent Difference in Cholesterol Readings
% Change % Change % Change
patient_ Starting_ From Read_1 From Read_2 From Read_3
Obs= id Date to Read_?2 to Read_3 to Head_4
1 1009 0170372001 (2.1%) (1.3%) (0.9%)
2 1017 01/02/2001 (0.4%) 1.7% .
2 1023 010452001 (2.7%)] (2.4%) (0.9%)
4 1234 0150572001 1.9% (1.2%) .
5 1333 010652001 2.1% (0.B6%) .
6 1354 01/07/2001 1.6% 1.6% (1.5%)
7 1378 0170352001 (0.8%) (1.4%) .

Notice the effects of the percent format. The negative values are in parenthesis.

Suppose we need to find out the average cholesterol reading. What does that mean? In order to do this, we need to
get all the reading values in one column.

First, we need to look at the DIM function. The DIM function returns the number of elements in an array. The typical
syntax is:

Dim < n > (array — hame) ...

where n represents the dimension of the array. The default value is 1 or blank.

Application 5: Use array processing to transform a data set from one row per patient, to one row per reading per

patient. Looking at the data, we need to take the data as it is and go from this shape...

patient_ reading_ reading_

Obs id date_1 1 date_2 2 date_3
1 1009 03JaN 216.9 0OGFEB 212.3 09MAR
2 1017 02JaN 190.2 04FEB 189.5 0SHMAR
3 1023 o4.JaN 256.3 OSFEB 249.5 OEMAR
4 1234 05JnN 196.2 0GFEB 199.9 07MAR
5 1333 06JAaN 192.5 07FEB 196.5 08MAR
6 1354 o7JaN 222.6 03FEB 226.2 o4MAR
Fa 1378 03JaN 212.5 02FEB 210.8 0SHMAR
8 1444 o4JnM 206.2 01FEB 202.3 02MAR
9 1545 05JaN 188.8 02FEB 189.0 03MAR

10 1812 06JAN 199.2 03FEB 198.2 o4MAR

3

209.
192.
243.
197.
195,
223,
207.
200,
190.
196.

reading_

ChAMNOLOWUINEom

date_4
0BAPR
03APR

05APR

04APR

reading_
4

207.8
241.2

226.3

195.2

... where there is one row per patient, to this shape...

patient_

Obs=s id date reading
1 1009 03JANZ001 216.9
2 1009 OGFEBZ001 212.3
3 1009 09MARZ001 209.6
4 1009 08APRZ2001 207.8
L 1017 02JANZ001 190.2
b 1017 04FEBZ2001 189.5
T 1017 O5MARZ001 192.8
8 1023 04JAaNZ001 256.3
1 1023 OS5FEBZ2001 249.5

... where there is one row per reading.

The DATA step to do this is shown below.

data transform(keep=patient_id date reading):
array chol {#*} reading_1 - reading_4;
array dates {#} date_1 - date_4;
set p_sug.cholesterol;
do i = 1 to dim(dates) while (dates{i} ne .);
date = dates{il};
reading = chol{il};
output;
end;
Fun;

proc print data=transform(obs=9) width=min label;
format date datei.;
title 'Trans=formed Data Set’;

Fun ;

Notice the {*} syntax on the ARRAY statement, and the DIM function in the DO Loop. The {*} tells SAS to figure out
how many elements are in the array. The DIM function returns the STOP value as the number of elements in the
array. So, in this case, SAS figures out that there are four elements in the array. The DIM function tells SAS to

execute loop four times.

With this DATA step, there will be four observations written out for every observation read in. Notice the placement of
the SET statement and the OUTPUT statement. For every iteration of this DATA step, the SET statement executes

once, and the OUTPUT statement execution executes either 3 or 4 times.

patient_
Obs id date reading
1 1009 03JAaNZ001 216.9
2 1009 06FEBZ001 212.3
3 1009 09MARZ2001 209.6
4 1009 08APR2001 207.8
L 1017 02JANZ2001 190.2
b 1017 04FEBZ2001 189.5%
i 1017 05MARZ001 192.8
g 1023 04JAaNZ001 256.3

The next set of applications uses the following data.

Obs= ztore vear qtr amount
1 050 2005 1 %23,508.99
2 050 2005 2 $26,172.41
3 050 2005 3 525.676.63
4 050 2005 4 %27 ,431.05
L 050 2006 1 $45,968. 31
b 050 2006 z2 $51,178.09
T 050 2006 3 %53,602.54
8 050 2006 4 $53,.728.53
b3 050 2007 1 %50,389.34

10 050 2007 2 %56,524 .56
11 050 2007 3 $59.063.14
12 050 2007 4 H$62,038.21
13 050 2008 1 $55,.953.56
14 050 2008 z2 $63,808.45
15 050 2008 3 %66,917.95
16 050 2008 4 %66,967.36

Application 6: The VP of Sales predicts quarterly sales growth next year will be 1.1%, 2.2%, 0.1%, and 3.3%.
Write a program that shows what the sales will be if this estimate is correct.

= data _4cast(drop=i);
array gtrs {4} y2008qg1 y2008qg2 y2008qg3 y2008q4;
array _4cast {4} y2009q1 y2009q2 y2009q3 y2009q4;
array pc_inc {4} _temporary_ (1.011 1.022 1.001 1.033) ;
set summed_gq;
do i =1 to dim(qgtrs);
_4cast(i) = qtrs(i) * pec_inc(i);
end;
run;
title 'Predicting Quarterly Increases of 1.1% 2.2% 0.1% 3.3%
= proc print data=_4cast(obs=8) width=min;
format _numeric_ dollar10.;
var store y:;
run;

Notice the use of the _.TEMPORARY_ keyword in the third ARRAY statement. This sets up temporary storage
locations (not variables) for the 4 values of the projected sales change. Also notice the VAR statement in the print
procedure. It can be translated to state: print the STORE variable, and then all those that start with the letter ‘y'.

8

Predicting Quarterly Increases of 1.1% 2.2%2 0.1X 3.3%
Obs =tore y2008ql w2008q2 »2008q3 200804 w2009q1 200992 20093 »200904

050 $55,954 $63,808 $66,918 $66,967 $56,569 $65,212 $66,985 $69,177
100 $52,810 $57,927 $60,315 $61,997 $53,391 $59,201 $60,376 $64,043
150 $98,781 $109,786 $111,562 $116,401 $99,867 $112,201 $111,674 $120,243
200 $72,717 $82,473 $82,752 $84.426 $73,517 $84,288 $82,835 587,213
250 $53,893 $60,228 $61,781 $64,.732 $54,486 §61,553 §G1,842 $GG,068
300 $44,693 $50,089 $49,578 $51,987 $45,184 $51,191 $49,628 $53,703
350 $35,863 $39,651 $42,868 $42,041 $36,258 $40,523 $42,911 $43,429
400 $47,254 $51,455 $53,053 $55,954 $47,773 $52,587 $53,106 $57,801

[--R - A L L

When the processing of data depends on more than one factor, you can use multidimensional arrays. The next set
of applications will illustrate processing data with multidimensional arrays. The typical syntax of a multidimensional
ARRAY statement is:

array array-name {..., rows, columns } $ length elements (initial values) ;

If you write the following ARRAY statement...

array test {2,4} (11, 22,33, 44,55, 66,77,88);

.. conceptionally creates the following two dimensional ‘table’.

test {1,1} test {1,2} test {1,3} test{1,4}
11 22 33 44

test {2,1} test {2,2} test{2,3} test{2,4}
55 66 77 88

The following application uses the following data.

Ob= store vear qtr _FREQ_ total_=sales
1 11 2000 1 2971 $301,910.00
2 Lo 2000 2 3390 341,540, 00
3 Lo 2000 2 3420 $339,800.00
4 Lo 2000 4 3694 $377,610.00
Y Lo 2001 1 3332 5324 ,370.00
b Lo 2001 2 arii 402 ,570.00
7 Lo 2001 3 3866 %$385,760.00
g Lo 2001 4 3945 $379,.810.00

The VP of Sales calculated that the average profit over the last several years per quarter was 9.1%, 10.3%, 11.5%,
and 7.8% for quarters 1 through 4 respectively. Based on these calculations, she wants to determine the profits
for the 8 quarters in this data set.

Application 7: Write a DATA step to calculate profit for 2 years, 2000 and 2001.

data gtr_profit(drop= wear gtr _freg_ total_sales
vr2000_gl -- w2001 _qg4);
array gtrs [2000:2001,4} »r2000_qgl - »r2000_qg4
wr2001_gl - w2001 _qg4;
array q_pc {4} _temporary_ (.091, .103, .113, .078);
array q_profit {2000:2001,4} prof_»00ql - prof_yv00g4
prof_»0lilgl - prof_v0lg4;
do until(last.=tore=1];
zet qtrly_=sales;
by store;
qgtrs{vear ,qgtr} = total_=ales;
q_profitivear ,qtr}=total_sales * g_pciqtr};
end ;
Fun;

In the first and third ARRAY statements, the 2 dimensional array is 2 years (row dimension) and 4 quarters (column
dimension). The second ARRAY statement contains the projected percent increases. The output just contains the
columns with the projected profit and is shown below.

Quarterly Profits for 2000 and 2001

prof_ prof_ prof_ prof_ prof_ prof_ prof_ prof_
Obs store woogl w02 wi0q3 w04 wligl wig? wlg3 vOlg4

1 50 %27,474 $35,179 $38,397 $29,454 $29,518 $41,465 $43,591 29,625
2 100 $43,007 $55,066 $58,729 $43,224 $48,862 $60,063 $66,673 $50,325
3 150 $62,477 S$73,776 $B87,140 $60,189 $65,938 $83,770 595,822 566,443
4 200 $35,512 $42,319 $48,190 $34,489 $36,313 $49,323 $53,987 537,280
L 250 $36,008 542,940 $49,155 $35,150 $39,652 $48,505 $55,853 $39,708
6 300 $22,922 S$27,.412 $33,923 523,490 $24,474 $34,586 536,826 $25,577
7 350 $19,227 $25,388 $29,046 $19,540 $22 954 $27,195 $30,356 521,938
g8 400 $22,938 531,042 $31,917 $24,185 $23,190 $30,785 $36,394 %$26,705
CONCLUSION

Using arrays in SAS can allow the user a great deal of flexibility to manipulate data in a number of different ways.

ACKNOWLEDGMENTS

As always, | would like to thank the people in the Technical Support department of SAS Institute for their kind and
helpful assistance for this past year. A special thank you goes to Larry Stewart of the Education Division of SAS
Institute for being my first SAS mentor and teaching me a lot about the DATA step.

CONTACT INFORMATION
If you have any questions or comments, the author can be reached at:
Ben Cochran
The Bedford Group
3224 Bedford Avenue
Raleigh, NC 27607
Work Phone: 919.741.0370
Email: bedfordgroup@nc.rr.com
Web: www.bedford-group.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

10

Other brand and product names are trademarks of their respective companies.

11

