

1

Quick Results with PROC SQL®

Kirk Paul Lafler, Software Intelligence Corporation, Spring Valley, California

Abstract
Structured Query Language (SQL) is a universal language that allows you to access data stored in relational
databases or tables. This hands-on workshop presents core concepts and features on using PROC SQL to access
data stored in relational database tables. Attendees learn how to define, access, and manipulate data from one or
more tables using PROC SQL quickly and easily. Numerous examples are presented on how to construct simple
queries, subset data, produce simple and effective output, summarize data with summary functions, and join two
tables.

Introduction
The SQL procedure is a wonderful tool for querying and subsetting data; restructuring data by constructing case
expressions; constructing and using virtual tables known as a view; access information from Dictionary tables; and
joining two or more tables to explore data relationships. Occasionally, an application problem comes along where the
SQL procedure is either better suited or easier to use than other more conventional DATA and/or PROC step
methods. As each situation presents itself, PROC SQL should be examined to see if its use is warranted for the task
at hand.

Example Tables
The examples used throughout this paper utilize a database of two tables. (A relational database is a collection of
tables.) The data used in all the examples in this paper consists of a selection of movies that I‟ve viewed over the
years. The Movies table consists of six columns: title, length, category, year, studio, and rating. Title, category, studio,
and rating are defined as character columns with length and year being defined as numeric columns. The data stored
in the Movies table is depicted below.

MOVIES Table

The data stored in the ACTORS table consists of three columns: title, actor_leading, and actor_supporting, all of
which are defined as character columns. The data stored in the Actors table is illustrated below.

2

ACTORS Table

Constructing SQL Queries to Retrieve and Subset Data
PROC SQL provides simple, but powerful, retrieval and subsetting capabilities. From inserting a blank row between
each row of output, removing rows with duplicate values, using wildcard characters to search for partially known
information, and integrating ODS with SQL to create nicer-looking output.

Inserting a Blank Row into Output
SQL can be made to automatically insert a blank row between each row of output. This is generally a handy feature
when a single logical row of data spans two or more lines of output. By having SQL insert a blank row between each
logical record (observation), you create a visual separation between the rows – making it easier for the person
reading the output to read and comprehend the output. The DOUBLE option is specified as part of the SQL
procedure statement to insert a blank row and is illustrated in the following SQL code.

SQL Code

PROC SQL DOUBLE;

 SELECT *

 FROM MOVIES

 ORDER BY category;

QUIT;

Removing Rows with Duplicate Values
When the same value is contained in several rows in a table, SQL can remove the rows with duplicate values. By
specifying the DISTINCT keyword prior to the column that is being selected in the SELECT statement automatically
removes duplicate rows as illustrated in the following SQL code.

SQL Code

PROC SQL;

 SELECT DISTINCT rating

 FROM MOVIES;

QUIT;

Using Wildcard Characters for Searching
When searching for specific rows of data is necessary, but only part of the data you are searching for is known, then
SQL provides the ability to use wildcard characters as part of the search argument. Say you wanted to search for all
movies that were classified as an “Action” type of movie. By specifying a query using the wildcard character percent
sign (%) in a WHERE clause with the LIKE operator, the query results will consist of all rows containing the word
“ACTION” as follows.

3

SQL Code

PROC SQL;

 SELECT title, category

 FROM MOVIES

 WHERE UPCASE(category) LIKE ‘%ACTION%’;

QUIT;

Phonetic Matching (Sounds-Like Operator =*)
A technique for finding names that sound alike or have spelling variations is available in the SQL procedure. This
frequently used technique is referred to as phonetic matching and is performed using the Soundex algorithm. In Joe
Celko‟s book, SQL for Smarties: Advanced SQL Programming, he traced the origins of the Soundex algorithm to the
developers Margaret O‟Dell and Robert C. Russell in 1918.

Although not technically a function, the sounds-like operator searches and selects character data based on two
expressions: the search value and the matched value. Anyone that has looked for a last name in a local telephone
directory is quickly reminded of the possible phonetic variations.

To illustrate how the sounds-like operator works, let‟s search each movie title for the phonetic variation of “Suspence”
which, by the way, is spelled incorrectly. To help find as many (and hopefully all) possible spelling variations, the
sounds-like operator is used to identify select similar sounding names including spelling variations. To find all movies
where the movie title sounds like “Suspence”, the following code is used:

SQL Code

PROC SQL;

 SELECT title, category, rating

 FROM MOVIES

 WHERE category =* ‘Suspence’;

QUIT;

Case Logic
In the SQL procedure, a case expression provides a way of conditionally selecting result values from each row in a
table (or view). Similar to an IF-THEN construct, a case expression uses a WHEN-THEN clause to conditionally
process some but not all the rows in a table. An optional ELSE expression can be specified to handle an alternative
action should none of the expression(s) identified in the WHEN condition(s) not be satisfied.

A case expression must be a valid SQL expression and conform to syntax rules similar to DATA step SELECT-
WHEN statements. Even though this topic is best explained by example, let‟s take a quick look at the syntax.

CASE <column-name>

 WHEN when-condition THEN result-expression

 <WHEN when-condition THEN result-expression> …

 <ELSE result-expression>

END

A column-name can optionally be specified as part of the CASE-expression. If present, it is automatically made
available to each when-condition. When it is not specified, the column-name must be coded in each when-condition.
Let‟s examine how a case expression works.

If a when-condition is satisfied by a row in a table (or view), then it is considered “true” and the result-expression
following the THEN keyword is processed. The remaining WHEN conditions in the CASE expression are skipped. If a
when-condition is “false”, the next when-condition is evaluated. SQL evaluates each when-condition until a “true”
condition is found or in the event all when-conditions are “false”, it then executes the ELSE expression and assigns
its value to the CASE expression‟s result. A missing value is assigned to a CASE expression when an ELSE
expression is not specified and each when-condition is “false”.

4

In the next example, let‟s see how a case expression actually works. Suppose a value of “Exciting”, “Fun”, “Scary”, or
“ “ is desired for each of the movies. Using the movie‟s category (CATEGORY) column, a CASE expression is
constructed to assign one of the desired values in a unique column called TYPE for each row of data. A value of
„Exciting‟ is assigned to all Adventure movies, „Fun‟ for Comedies, „Scary‟ for Suspense movies, and blank for all
other movies. A column heading of TYPE is assigned to the new derived output column using the AS keyword.

SQL Code

PROC SQL;

 SELECT TITLE,

 RATING,

 CASE

 WHEN CATEGORY = ‘Adventure’ THEN ‘Exciting’

 WHEN CATEGORY = ‘Comedy’ THEN ‘Fun’

 WHEN CATEGORY = ‘Suspense’ THEN ‘Scary’

 ELSE ‘’

 END AS TYPE

 FROM MOVIES;

QUIT;

In another example suppose we wanted to determine the audience level (general or adult audiences) for each movie.
By using the RATING column we can assign a descriptive value with a simple Case expression, as follows.

SQL Code

PROC SQL;

 SELECT TITLE,

 RATING,

 CASE RATING

 WHEN ‘G’ THEN ‘General’

 ELSE ‘Other’

 END AS Audience_Level

 FROM MOVIES;

QUIT;

Creating and Using Views
Views are classified as virtual tables. There are many reasons for constructing and using views. A few of the more
common reasons are presented below.

Minimizing, or perhaps eliminating, the need to know the table or tables underlying structure
Often a great degree of knowledge is required to correctly identify and construct the particular table interactions that
are necessary to satisfy a requirement. When this prerequisite knowledge is not present, a view becomes a very
attractive alternative. Once a view is constructed, users can simply execute it. This results in the underlying table(s)
being processed. As a result, data integrity and control is maintained since a common set of instructions is used.

Reducing the amount of typing for longer requests
Often, a query will involve many lines of instruction combined with logical and comparison operators. When this
occurs, there is any number of places where a typographical error or inadvertent use of a comparison operator may
present an incorrect picture of your data. The construction of a view is advantageous in these circumstances, since a
simple call to a view virtually eliminates the problems resulting from a lot of typing.

Hiding SQL language syntax and processing complexities from users
When users are unfamiliar with the SQL language, the construction techniques of views, or processing complexities
related to table operations, they only need to execute the desired view using simple calls. This simplifies the process
and enables users to perform simple to complex operations with custom-built views.

Providing security to sensitive parts of a table
Security measures can be realized by designing and constructing views designating what pieces of a table's
information is available for viewing. Since data should always be protected from unauthorized use, views can provide
some level of protection (also consider and use security measures at the operating system level).

5

Controlling change / customization independence
Occasionally, table and/or process changes may be necessary. When this happens, it is advantageous to make it as
painless for users as possible. When properly designed and constructed, a view modifies the underlying data without
the slightest hint or impact to users, with the one exception that results and/or output may appear differently.
Consequently, views can be made to maintain a greater level of change independence.

Types of Views
Views can be typed or categorized according to their purpose and construction method. Joe Celko, author of SQL for
Smarties and a number of other SQL books, describes views this way, "Views can be classified by the type of
SELECT statement they use and the purpose they are meant to serve." To classify views in the SAS System
environment, one must also look at how the SELECT statement is constructed. The following classifications are
useful when describing a view's capabilities.

Single-Table Views
Views constructed from a single table are often used to control or limit what is accessible from that table. These views
generally limit what columns, rows, and/ or both are viewed.

Ordered Views

Views constructed with an ORDER BY clause arrange one or more rows of data in some desired way.

Grouped Views

Views constructed with a GROUP BY clause divide a table into sets for conducting data analysis. Grouped views are
more often than not used in conjunction with aggregate functions (see aggregate views below).

Distinct Views

Views constructed with the DISTINCT keyword tell the SAS System how to handle duplicate rows in a table.

Aggregate Views

Views constructed using aggregate and statistical functions tell the SAS System what rows in a table you want
summary values for.

Joined-Table Views

Views constructed from a join on two or more tables use a connecting column to match or compare values.
Consequently, data can be retrieved and manipulated to assist in data analysis.

Nested Views

Views can be constructed from other views, although extreme care should be taken to build views from base tables.

Creating Views
When creating a view, its name must be unique and follow SAS naming conventions. Also, a view cannot reference
itself since it does not already exist. The next example illustrates the process of creating an SQL view. In the first
step, no output is produced since the view must first be created. Once the view has been created, the second step
executes the view, G_MOVIES, by rendering the view‟s instructions to produce the desired output results.

SQL Code

PROC SQL;

 CREATE VIEW G_MOVIES AS

 SELECT title, category, rating

 FROM MOVIES

 WHERE rating = ‘G’

 ORDER BY movie_no;

 SELECT *

 FROM G_MOVIES;

QUIT;

6

Exploring Dictionary Tables
The SAS System generates and maintains valuable information at run time about SAS libraries, data sets, catalogs,
indexes, macros, system options, titles, and views in a collection of read-only tables called dictionary tables. Although
called tables, Dictionary tables are not real tables. Information is automatically generated at runtime and each table‟s
contents are made available once a SAS session is started.

The contents from Dictionary tables permit a SAS session‟s activities to be easily accessed and monitored through
the construction of simple queries. This becomes particularly useful in the design and construction of software
applications since the information can be queried and the results acted upon in a specific task such as in the
allocation of filerefs or librefs.

SAS users can quickly and conveniently obtain useful information about their SAS session with a number of read-only
SAS data views called DICTIONARY tables. At any time during a SAS session, DICTIONARY tables can be used to
capture information related to currently defined libnames, table names, column names and attributes, formats, and
much more. DICTIONARY tables are accessed using the libref DICTIONARY in the FROM clause of a PROC SQL
SELECT statement. The name of each DICTIONARY table and view along with its purpose are presented below.

DICTIONARY Tables and Purpose

DICTIONARY table Purpose

CATALOGS Provides information about SAS catalogs.

CHECK_CONSTRAINTS Provides check constraints information.

COLUMNS Provides information about column in tables.

CONSTRAINT_COLUMN_USAGE Provides column integrity constraints information.

CONSTRAINT_TABLE_USAGE Provides information related to tables with integrity constraints defined.

DICTIONARIES Provides information about all the DICTIONARY tables.

EXTFILES Provides information related to external files.

FORMATS Provides information related to defined formats and informats.

GOPTIONS Provides information about currently defined SAS/GRAPH software graphics
options.

INDEXES Provides information related to defined indexes.

LIBNAMES Provides information related to defined SAS data libraries.

MACROS Provides information related to any defined macros.

MEMBERS Provides information related to objects currently defined in SAS data libraries.

OPTIONS Provides information related to SAS system options.

REFERENTIAL_CONSTRAINTS Provides information related to tables with referential constraints.

STYLES Provides information related to select ODS styles.

TABLE_CONSTRAINTS Provides information related to tables containing integrity constraints.

TABLES Provides information related to currently defined tables.

TITLES Provides information related to currently defined titles and footnotes.

VIEWS Provides information related to currently defined data views.

7

Displaying Dictionary Table Definitions
A dictionary table‟s definition can be displayed by specifying a DESCRIBE TABLE statement. The results of the
statements and clauses used to create each dictionary table can be displayed on the SAS Log. For example, a
DESCRIBE TABLE statement is illustrated below to display the CREATE TABLE statement used in building the
OPTIONS dictionary table containing current SAS System option settings.

PROC SQL Code

PROC SQL;

 DESCRIBE TABLE

 DICTIONARY.OPTIONS;

QUIT;

SAS Log Results

create table DICTIONARY.OPTIONS

 (

 optname char(32) label='Option Name',

 setting char(1024) label='Option Setting',

 optdesc char(160) label='Option Description',

 level char(8) label='Option Location'

);

Note: The information contained in dictionary tables is also available to DATA and PROC steps outside the SQL

procedure. Referred to as SASHELP views, each view is prefaced with the letter “V” and may be shortened with
abbreviated names. SASHELP views can be accessed by referencing the view by its name in the SASHELP library.
Please refer to the SAS Procedures Guide for further details on accessing and using dictionary views in the
SASHELP library.

Dictionary.COLUMNS
Retrieving information about the columns in one or more data sets is easy with the COLUMNS dictionary table.
Similar to the results of the CONTENTS procedure, you will be able to capture column-level information including
column name, type, length, position, label, format, informat, and indexes, as well as produce cross-reference listings
containing the location of columns in a SAS library. For example, the following code requests a cross-reference listing
of the tables containing the TITLE column in the WORK library.

Note: Care should be used when specifying multiple functions on the WHERE clause since the SQL Optimizer is

unable to optimize the query resulting in all allocated SAS session librefs being searched. This can cause the query
to run much longer than expected.

PROC SQL Code

PROC SQL;

 SELECT *

 FROM DICTIONARY.COLUMNS

 WHERE UPCASE(LIBNAME)=”WORK” AND

 UPCASE(NAME)=”TITLE”;

QUIT;

Results

8

Dictionary.TABLES
When you need more information about SAS files consider using the TABLES dictionary table. The TABLES
dictionary table provides detailed information about the library name, member name and type, date created and last
modified, number of observations, observation length, number of variables, password protection, compression,
encryption, number of pages, reuse space, buffer size, number of deleted observations, type of indexes, and
requirements vector. For example, to obtain a detailed list of files in the WORK library, the following code is specified.

Note: Because the TABLE Dictionary table produces a considerable amount of information, users should consider

specifying a WHERE clause when using.

PROC SQL Code

PROC SQL;

 SELECT *

 FROM DICTIONARY.TABLES

 WHERE UPCASE(LIBNAME)=”WORK”;

QUIT;

Results

PROC SQL and the Macro Language

Many software vendors‟ SQL implementation permits SQL to be interfaced with a host language. The SAS System‟s
SQL implementation is no different. The SAS Macro Language lets you customize the way the SAS software
behaves, and in particular extend the capabilities of the SQL procedure. Users can apply the macro facility‟s many
powerful features using the interface between the two languages to provide a wealth of programming opportunities.

9

From creating and using user-defined macro variables and automatic (SAS-supplied) variables, reducing redundant
code, performing common and repetitive tasks, to building powerful and simple macro applications, SQL can be
integrated with the macro language to improve programmer efficiency. The best part of this is that you do not have to
be a macro language heavyweight to begin reaping the rewards of this versatile interface between two powerful
Base-SAS software languages.

Creating a Macro Variable with Aggregate Functions
Turning data into information and then saving the results as macro variables is easy with summary (aggregate)
functions. The SQL procedure provides a number of useful summary functions to help perform calculations,
descriptive statistics, and other aggregating computations in a SELECT statement or HAVING clause. These
functions are designed to summarize information and not display detail about data. In the next example, the MIN
summary function is used to determine the minimum length movie in the MOVIES table with the value stored in the
macro variable MIN_LENGTH using the INTO clause. The results are displayed on the SAS log.

PROC SQL Code

PROC SQL NOPRINT;

 SELECT MIN(LENGTH)

 INTO :MIN_LENGTH

 FROM MOVIES;

QUIT;

%PUT &MIN_LENGTH;

SAS Log Results

PROC SQL NOPRINT;

 SELECT MIN(LENGTH)

 INTO :MIN_LENGTH

 FROM MOVIES;

QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.00 seconds

%PUT &MIN_LENGTH;

97

Building Macro Tools
The Macro Facility, combined with the capabilities of the SQL procedure, enables the creation of versatile macro tools
and general-purpose applications. A principle design goal when developing user-written macros should be that they
are useful and simple to use. A macro that violates this tenet or consists of complicated and hard to remember macro
variable names has little applicability to user needs and is typically avoided.

When possible, macro tools should be designed to serve the needs of as many users as possible. They should
contain no ambiguities, consist of distinctive macro variable names, the avoidance of possible naming conflicts
between macro variables and data set variables, and not try to do too many things. This utilitarian approach to macro
design and construction helps gain the widespread approval and acceptance by users.

Column cross-reference listings come in handy when you need to quickly identify all the SAS library data sets a
column is defined in. Using the COLUMNS dictionary table a macro can be created that captures column-level
information including column name, type, length, position, label, format, informat, indexes, as well as a cross-
reference listing containing the location of a column within a designated SAS library. In the next example, macro
COLUMNS consists of an SQL query that accesses any single column in a SAS library. If the macro was invoked with
a user-request consisting of %COLUMNS(WORK,TITLE);, the macro would produce a cross-reference listing on the
library WORK for the column TITLE in all DATA types.

10

PROC SQL and Macro Code

%MACRO COLUMNS(LIB, COLNAME);

PROC SQL;

 SELECT LIBNAME, MEMNAME

 FROM DICTIONARY.COLUMNS

 WHERE UPCASE(LIBNAME)=”&LIB” AND

 UPCASE(NAME)=”&COLNAME” AND

 UPCASE(MEMTYPE)=”DATA”;

QUIT;

%MEND COLUMNS;

%COLUMNS(WORK,TITLE);

Results

The SAS System

 Library

 Name Member Name

 WORK ACTORS

 WORK MOVIES

Submitting a Macro and SQL Code with a Function Key

For interactive users using the SAS Display Manager System, a macro can be submitted with a function key. This
simple, but effective, technique makes it easy to run a macro with the touch of a key anytime and as often as you like.
All you need to do is define the macro containing the instructions you would like to have it perform, assign and save
the macro call to the desired function key in the KEYS window one time, and include the macro in each session you
want to use it in. From that point on, anytime you want to execute the macro, simply press the designated function
key.

For example, a simple PROC SQL query can be embedded inside a macro. You will not only save keystrokes by not
having to enter it over and over again, but you will improve your productivity as well. The following code illustrates a
PROC SQL query embedded within a macro that accesses the “read-only” table DICTIONARY.TABLES. The
purpose of the macro and PROC SQL code is to display a “snapshot” of the number of rows in each table that is
currently available to the SAS System. Once the macro is defined, it can be called by entering %NOBS on any DMS
command line to activate the commands.

PROC SQL and Macro Code

%MACRO nobs;

 SUBMIT "PROC SQL; SELECT libname, memname, nobs FROM DICTIONARY.TABLES; QUIT;";

%MEND nobs;

To further reduce keystrokes and enhance user productivity even further, a call to a defined macro can be saved to a
Function Key. The purpose for doing this would be to allow for one-button operation of any defined macro. To
illustrate the process of saving a macro call to a Function Key, the %NOBS macro defined previously is assigned to
Function Key F12 in the KEYS window. Once the %NOBS macro call is assigned in the KEYS window, you will be
able to call the macro simply by pressing the F12 function key. The partial KEYS window is displayed below to
illustrate the process.

11

KEYS Window

Key Definition

F1 help
F2 reshow
F3 end;

... ...

F10 keys
F11 command focus
F12 %NOBS

Partial Output from Calling %NOBS

The SAS System

 Number of

 Library Physical

 Name Member Name Observations

 WORK ACTORS 13

 WORK CUSTOMERS 3

 WORK MOVIES 22

 WORK PG_RATED_MOVIES 13

 WORK RENTAL_INFO 11

PROC SQL Joins
A join of two or more tables provides a means of gathering and manipulating data in a single SELECT statement. A
"JOIN" statement does not exist in the SQL language. The way two or more tables are joined is to specify the tables
names in a WHERE clause of a SELECT statement. A comma separates each table specified in an inner join.

Joins are specified on a minimum of two tables at a time, where a column from each table is used for the purpose of
connecting the two tables. Connecting columns should have "like" values and the same datatype attributes since the
join's success is dependent on these values.

What Happens During a Join?
Joins are processed in two distinct phases. The first phase determines whether a FROM clause references two or
more tables. When it does, a virtual table, known as the Cartesian product, is created resulting in each row in the first
table being combined with each row in the second table, and so forth. The Cartesian product (internal virtual table)
can be extremely large since it represents all possible combinations of rows and columns in the joined tables. As a
result, the Cartesian product can be, and often is, extremely large.

The second phase of every join processes, if present, is specified in the WHERE clause. When a WHERE clause is
specified, the number of rows in the Cartesian product is reduced to satisfy this expression. This data subsetting
process generally results in a more manageable end product containing meaningful data.

Creating a Cartesian Product
When a WHERE clause is omitted, all possible combinations of rows from each table is produced. This form of join is
known as the Cartesian Product. Say for example you join two tables with the first table consisting of 22 rows and
the second table with 13 rows. The result of these two tables would consist of 286 rows. Very rarely is there a need to
perform a join operation in SQL where a WHERE clause is not specified. The primary importance of this form of join
is to illustrate a base (or internal representation) for all joins. As illustrated in the following diagram, the two tables are
combined without a corresponding WHERE clause. Consequently, no connection between common columns exists.

12

MOVIES ACTORS

Title Title

Length Actor_Leading

Category Actor_Supporting

Year

Studio

Rating

The result of a Cartesian Product is the combination of all rows and columns. The next example illustrates a
Cartesian Product join using a SELECT query without a WHERE clause.

SQL Code

PROC SQL;

 SELECT *

 FROM MOVIES, ACTORS;

QUIT;

Joining Two Tables with a Where Clause
The most reliable way to join two or more tables together, and to avoid creating a Cartesian product, is to reduce the
resulting set of data using one or more common columns. Joining two tables together is a relatively easy process in
SQL. To illustrate how a join works, a two-table join is linked using the movie title (TITLE) in the following diagram.

 MOVIES ACTORS

Title Title

 Length Actor_Leading

 Category Actor_Supporting

 Year

 Studio

 Rating

The next SQL code references a join on two tables with TITLE specified as the connecting column. In this example,
tables MOVIES and ACTORS are used. Each table has a common column, TITLE which is used to connect rows
together from each when the value of TITLE is equal, as specified in the WHERE clause. A WHERE clause restricts
what rows of data will be included in the resulting join.

SQL Code

PROC SQL;

 SELECT *

 FROM MOVIES, ACTORS

 WHERE MOVIES.TITLE = ACTORS.TITLE;

QUIT;

Joins and Table Aliases
Table aliases provide a "short-cut" way to reference one or more tables in a join operation. One or more aliases are
specified so columns can be selected with a minimal number of keystrokes. To illustrate how table aliases in a join
works, a two-table join is linked in the following diagram.

 MOVIES ACTORS

Title Title

 Length Actor_Leading

 Rating Actor_Supporting

13

The following SQL code illustrates a join on two tables with TITLE specified as the connecting column. The table
aliases are specified in the SELECT statement as qualified names, the FROM clause, and the WHERE clause.

SQL Code

PROC SQL;

 SELECT M.TITLE,

 M.LENGTH,

 M.RATING,

 A.ACTOR_LEADING

 FROM MOVIES M, ACTORS A

 WHERE M.TITLE = A.TITLE;

QUIT;

Introduction to Outer Joins

A typical join is a process of relating rows in one table with rows in another symmetrically. But occasionally, you may
want to include rows from one or both tables that have no related rows. This approach is sometimes referred to as an
asymmetric type of join because its basic purpose is row preservation. This type of processing is a significant feature
offered by the outer join construct.

There are syntax and operational differences between inner (natural) and outer joins. The obvious difference between
an outer and inner join is the way the syntax is constructed. Outer joins use keywords such as LEFT JOIN, RIGHT
JOIN, and FULL JOIN, and has the WHERE clause replaced with an ON clause. These distinctions help identify outer
joins from inner joins. But, there are operational differences as well.

Unlike an inner join, the maximum number of tables that can be specified in an outer join construct is two. Similar to
an inner join, an outer join relates rows in both tables. But this is where the similarities end since the resulting set of
data also includes rows with no related rows from one or both of the tables. This special handling of “matched” and
“unmatched” rows of data is what differentiates an outer join from an inner join. Essentially the resulting set of data
from an outer join process contains rows that “match” the ON-clause plus any “unmatched” rows from the left, right,
or both tables.

An outer join can accomplish a variety of tasks that would require a great deal of effort using other methods. This is
not to say that a process similar to an outer join can not be programmed – it would probably just require more work.
Let‟s take a look at a few hypothetical tasks that are possible using outer joins:

 List all customer accounts with rentals during the month, including customer accounts with no purchase activity.

 Compute the number of rentals placed by each customer, including customers who have not rented.

 Identify movie renters who rented a movie last month, and those who did not.

 Identify a list of movie titles that an actor/actress appeared in, and movies they did not appear in.

Finally, specifying a left or right outer join is a matter of choice. Simply put, the only difference between a left and right
join is the order of the tables they use to relate rows of data. As such, you can use the two types of outer joins
interchangeably and is one based on convenience.

Exploring Outer Joins
Outer joins process data relationships from two tables differently than inner joins. In this section a different type of
join, known as an outer join, will be illustrated. The following code illustrates a left outer join that selects “matched”
movie titles from both the MOVIES and ACTORS tables, plus all “unmatched” rows from the MOVIES table. The
resulting output would contain all rows for which the SQL expression, referenced in the ON clause, matches both
tables and all rows from the left table (MOVIES) that did not match any row in the right (ACTORS) table. Essentially
the rows from the left table are preserved and captured exactly as they are stored in the table itself.

14

SQL Code

PROC SQL;

 SELECT movies.title,

 actor_leading,

 rating

 FROM MOVIES

 LEFT JOIN

 ACTORS

 ON movies.title = actors.title;

QUIT;

The next example illustrates the result of using a right outer join to identify and match movie titles from the MOVIES
and ACTORS tables. The resulting output would contain all rows for which the SQL expression, referenced in the ON
clause, matches in both tables (is true) and all rows from the right table (ACTORS) that did not match any row in the
left (MOVIES) table.

SQL Code

PROC SQL;

 SELECT movies.title,

 actor_leading,

 rating

 FROM MOVIES

 RIGHT JOIN

 ACTORS

 ON movies.title = actors.title;

QUIT;

Debugging SQL Processing
The SQL procedure offers a couple new options in the debugging process. Two options of critical importance are
_METHOD and _TREE. By specifying a _METHOD option on the SQL statement, it displays the hierarchy of

processing that occurs. Results are displayed on the Log using a variety of codes (see table).

Codes Description

sqxcrta Create table as Select

Sqxslct Select

sqxjsl Step loop join (Cartesian)

sqxjm Merge join

sqxjndx Index join

sqxjhsh Hash join

sqxsort Sort

sqxsrc Source rows from table

sqxfil Filter rows

sqxsumg Summary stats with GROUP BY

sqxsumn Summary stats with no GROUP BY

In the next example a _METHOD option is specified to show the processing hierarchy in a two-way equi-join.

PROC SQL Code

PROC SQL _METHOD;

 SELECT MOVIES.TITLE,
 RATING,
 ACTOR_LEADING
 FROM MOVIES,
 ACTORS
 WHERE MOVIES.TITLE = ACTORS.TITLE;
QUIT;

15

Results

NOTE: SQL execution methods chosen are:

 sqxslct

 sqxjhsh

 sqxsrc(MOVIES)

 sqxsrc(ACTORS)

Another option that is useful for debugging purposes is the _TREE option. In the next example the SQL statements

are transformed into an internal form showing a hierarchical layout with objects and a variety of symbols. This internal
layout representation illustrates the converted PROC SQL code as a pseudo-code. Inspecting the tree output can
frequently provide a greater level of understanding of what happens during SQL processing.

PROC SQL Code

PROC SQL _TREE;

 SELECT MOVIES.TITLE, RATING, ACTOR_LEADING
 FROM MOVIES, ACTORS
 WHERE MOVIES.TITLE = ACTORS.TITLE;
QUIT;

Results

NOTE: SQL execution methods chosen are:

Tree as planned.

 /-SYM-V-(MOVIES.Title:1 flag=0001)

 /-OBJ----|

 | |--SYM-V-(MOVIES.Rating:6 flag=0001)

 | |--SYM-V-(MOVIES.Length:2 flag=0001)

 | \-SYM-V-(ACTORS.Actor_Leading:2 flag=0001)

 /-JOIN---|

 | | /-SYM-V-(MOVIES.Title:1 flag=0001)

 | | /-OBJ----|

 | | | |--SYM-V-(MOVIES.Rating:6 flag=0001)

 | | | \-SYM-V-(MOVIES.Length:2 flag=0001)

 | | /-SRC----|

 | | | \-TABL[WORK].MOVIES opt=''

 | |--FROM---|

 | | | /-SYM-V-(ACTORS.Title:1 flag=0001)

 | | | /-OBJ----|

 | | | | \-SYM-V-(ACTORS.Actor_Leading:2

flag=0001)

 | | \-SRC----|

 | | \-TABL[WORK].ACTORS opt=''

 | |--empty-

 | | /-SYM-V-(MOVIES.Title:1)

 | \-CEQ----|

 | \-SYM-V-(ACTORS.Title:1)

 --SSEL---|

16

If you have surplus virtual memory, you can achieve faster access to matching rows from one or more small input
data sets by using Hash techniques. The BUFFERSIZE= option can be used to let the SQL procedure take

advantage of hash techniques on larger join tables. The default BUFFERSIZE=n option is 64000 when not specified.
In the next example, an increase in the buffer size is specified using a BUFFERSIZE=256000 to utilize available
memory to load rows. Since memory speeds are significantly faster (nanoseconds) than secondary storage
(milliseconds), the result is faster performance because additional memory is available to conduct the join which also
reduces the number of data swaps that the SAS System has to perform from the slower secondary storage.

PROC SQL Code

PROC SQL _method BUFFERSIZE=256000;

 SELECT MOVIES.TITLE, RATING, ACTOR_LEADING

 FROM MOVIES, ACTORS

 WHERE MOVIES.TITLE = ACTORS.TITLE;

QUIT;

Results

NOTE: SQL execution methods chosen are:

 sqxslct

 sqxjhsh

 sqxsrc(MOVIES)

 sqxsrc(ACTORS)

Conclusion
The SQL procedure is a wonderful tool for SAS users to explore and use in a variety of application situations. This
paper has presented a few of the most exciting features found in PROC SQL. You are encouraged to explore PROC
SQL‟s powerful capabilities as it relates to querying and subsetting data; restructuring data by constructing case
expressions; constructing and using views; accessing the contents from Dictionary tables; and joining two or more
tables to explore data relationships.

References
Lafler, Kirk Paul (2011), “Quick Results with PROC SQL,” Western Users of SAS Software (WUSS) 2011

Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2011), “Quick Results with PROC SQL,” MidWest SAS Users Group (MWSUG) 2011 Conference,

Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2011), “Powerful and Sometimes Hard-to-find PROC SQL Features,” PharmaSUG 2011
Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2010), “Exploring DATA Step Merges and PROC SQL Joins,” South Central SAS Users Group
(SCSUG) 2010 Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2009), “Exploring DICTIONARY Tables and SASHELP Views,” South Central SAS Users Group
(SCSUG) Conference (November 8

th
 – November 10

th
, 2009), Software Intelligence Corporation, Spring Valley,

CA, USA.

Lafler, Kirk Paul (2009), “Exploring DICTIONARY Tables and SASHELP Views,” Western Users of SAS Software
(WUSS) Conference (September 1

st
 – September 4

th
, 2009), Software Intelligence Corporation, Spring Valley, CA,

USA.

Lafler, Kirk Paul (2009), “Exploring DICTIONARY Tables and SASHELP Views,” PharmaSUG SAS Users Group
Conference (May 31

st
 – June 3

rd
, 2009), Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2008), “Kirk’s Top Ten Best PROC SQL Tips and Techniques,” Wisconsin Illinois SAS Users
Conference (June 26

th
, 2008), Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2008), “Undocumented and Hard-to-find PROC SQL Features,” Greater Atlanta SAS Users Group
(GASUG) Meeting (June 11

th
, 2008), Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2008), “Undocumented and Hard-to-find PROC SQL Features,” PharmaSUG SAS Users Group

Conference (June 1
st
 - 4

th
, 2008), Software Intelligence Corporation, Spring Valley, CA, USA.

17

Lafler, Kirk Paul (2008), “Undocumented and Hard-to-find PROC SQL Features,” Michigan SAS Users Group
(MSUG) Meeting (May 29

th
, 2008), Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2008), “Undocumented and Hard-to-find PROC SQL Features,” Vancouver SAS Users Group
Meeting (April 23

rd
, 2008), Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2008), “Undocumented and Hard-to-find PROC SQL Features,” Philadelphia SAS Users Group
(PhilaSUG) Meeting (March 13

th
, 2008), Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2007), “Undocumented and Hard-to-find PROC SQL Features,” Proceedings of the PharmaSUG

2007 Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul and Ben Cochran (2007), “A Hands-on Tour Inside the World of PROC SQL Features,” Proceedings

of the SAS Global Forum (SGF) 2007 Conference, Software Intelligence Corporation, Spring Valley, CA, and The
Bedford Group, USA.

Lafler, Kirk Paul (2006), “A Hands-on Tour Inside the World of PROC SQL,” Proceedings of the Thirty-first Annual

SAS Users Group International (SUGI) Conference.

Lafler, Kirk Paul (2005), “A Hands-on Tour of the 5 Most Exciting Features Found in PROC SQL,” Proceedings of the

Thirteenth Annual Western Users of SAS Software Conference.

Lafler, Kirk Paul (2005), “Manipulating Data with PROC SQL,” Proceedings of the Thirtieth Annual SAS Users Group

International (SUGI) Conference.

Lafler, Kirk Paul (2004). PROC SQL: Beyond the Basics Using SAS, SAS Institute Inc., Cary, NC, USA.

Lafler, Kirk Paul (2003), “Undocumented and Hard-to-find PROC SQL Features,” Proceedings of the Eleventh Annual
Western Users of SAS Software Conference.

Lafler, Kirk Paul (1992-2008). PROC SQL for Beginners; Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (1998-2008). Intermediate PROC SQL; Software Intelligence Corporation, Spring Valley, CA, USA.

SAS
®
 Guide to the SQL Procedure: Usage and Reference, Version 6, First Edition (1990). SAS Institute, Cary, NC.

SAS
®
 SQL Procedure User’s Guide, Version 8 (2000). SAS Institute Inc., Cary, NC, USA.

Acknowledgments
I would like to thank Joe Novotny, MWSUG 2011 Hands-On Workshops Section Chair, for accepting my abstract and
paper. I‟d also like to thank Kelley Weston, Conference Academic Chair and Debbi Scheufler, Conference
Operations Chair for their leadership and a great MWSUG 2011 conference.

Trademark Citations
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies.

Author Information
Kirk Paul Lafler is consultant and founder of Software Intelligence Corporation and has been using SAS since 1979.
He is a SAS Certified Professional, provider of IT consulting services, trainer to SAS users around the world, and
sasCommunity.org Advisory Board member. As the author of four books including PROC SQL: Beyond the Basics
Using SAS, Kirk has written more than four hundred peer-reviewed papers, been an Invited speaker and trainer at
more than three hundred SAS International, regional, local, and special-interest user group conferences and
meetings throughout North America, and is the recipient of 17 “Best” contributed paper awards. His popular SAS Tips
column, “Kirk‟s Korner of Quick and Simple Tips”, appears regularly in several SAS User Group newsletters and Web
sites, and his fun-filled SASword Puzzles is featured in SAScommunity.org.

Comments and suggestions can be sent to:

Kirk Paul Lafler
Software Intelligence Corporation

World Headquarters
P.O. Box 1390

Spring Valley, California 91979-1390
E-mail: KirkLafler@cs.com

