
1

Paper DG-06

Using SAS® GTL to Visualize Your Data when there is Too Much of it to Visualize
Perry Watts, Stakana Analytics, Elkins Park, PA

Nate Derby, Stakana Analytics, Seattle, WA

ABSTRACT
In many of the SAS Institute publications about the new ODS statistical graphics, there is an introductory statement
that defines an “effective” graph as one that reveals “patterns, differences and uncertainty that are not readily
apparent in tabular output” (Kuhfeld, 2010; Rodriguez, 2008; Rodriguez and Cartier, 2009). Good graphs are also said to
“provoke questions that stimulate deeper investigation, and ... add visual clarity and rich content to reports and
presentations.” Developing a good graph becomes a challenge, however, when input data map to crowded displays
with overlapping points or lines. Such is the case with the Framingham Heart Study of 5209 subjects captured in the
sashelp.heart data set and a series of 100 cumulative booking curves for the airline industry. In addition, interleaving
time series plots can be difficult to interpret, and patterns can be missed when lattice plot panels are charted out-of-
order. In the paper, transparency, layering, data point rounding, median calculation, and color coding are among the
techniques that are evaluated for their effectiveness to add visual clarity to graphics output. The following Graph
Template Language (GTL) statements are referenced in the paper: ENTRY, HISTOGRAM, SCATTERPLOT, LINEPARM,
REFERENCELINE, BANDPLOT, and SERIESPLOT plus layouts OVERLAY, DATAPANEL, LATTICE, and GRIDDED. GTL is
chosen over SG PROCEDURES because of its greater graphics capability.

KEY WORDS: Graph Template Language, SG Procedures, ODS Statistical Graphics.
SAS code and data itemized at the end of the paper can be downloaded from http://nderby.org/docs/RUG11-GTL.zip.

INTRODUCTION AND DESCRIPTION OF THE DATA THAT SUPPORT THE GRAPHS
An incremental approach is taken to how the graphs are presented in this paper – going from preliminary graphs that
are less than optimal to output that conveys its message more effectively. Problems are defined along the way, and
suggestions for solving them take advantage of the new features available in ODS statistical graphics. Source code is
integrated into the discussion about the graphs; however the intention here is not to present a tutorial on the Graph
Template Language. Instead, the paper focuses on how to graph dense and challenging data sets. For a discussion
about an effective programming strategy to adopt when coding in GTL see Yang (2011).

Four data sets motivate the graphs presented in this paper. The first is the sashelp.heart data set that comes
from the Framingham Heart Study of 5,209 men and women that have been followed biennially for the development
of cardiovascular disease since 1948 (Hubert et al., 1983, p.968). The second data set from the airlines industry
contains coordinates for an ordered progression of 100 time series plots; about 97 more than are typically graphed.
The progression is ordered by date of departure which spans 100 consecutive Wednesdays between 12/10/08 and
11/3/10 (Derby and Vo, 2010). Each plot in the progression is a cumulative distribution of booking lead times measured
in days prior to the scheduled date for departure. What the graph is attempting to do is to trace the relationship, if one
exists, between booking lead times and flight departure dates.

Unlike the airlines data, there is no inherent order provided by a date variable for plotting barley yields collected from
six different sites in Minnesota during the early 1930’s. The original data was analyzed by R.A. Fisher in the 40’s, but
it took another 40 years for William S. Cleveland to invent the dot plot that revealed a serious error in the data.
Besides highlighting the data error, Cleveland demonstrates that ordering by median can reveal underlying patterns
in the data (Cleveland, 1993b, pp.328-338). In SAS, we look at the surprising challenges that arise when we attempt to
implement Cleveland’s recommendation.

With the sashelp.stocks data set we return to challenges that arise when time series plots are graphed. In this
example, only three series plots have to be accommodated. However, the visual display is still chaotic, because plot
lines overlap. Plotting them separately in a DATAPANEL plot with three panels is not satisfactory, because the
separation of plot lines makes data comparison difficult. To overcome the difficulty, we develop a new interleaving
band plot and make pair-wise comparisons sending the output to another 3-paneled display.

HEART DATA: DEALING WITH DATA POINT OVERLAY
INITIAL VERSION:
The original graph of the heart data appears in a publication that introduced Graph Template Language to attendees
at the 2009 SAS Global Forum (Mantagne et al., 2009). The graph displays heights and weights for participants in the
Framingham Heart Study as a scatter plot with marginal histograms. The graph highlights the need for dealing with
symbol overlap that hides the full data display from the viewer. Cleveland recommends combining unfilled circles as
plotting symbols with jittering to create partial overlap in a graphics display that has total overlap (Cleveland, 1994,
p.158). Unfortunately this method won’t work in Figure 1, because overlap in the raw data is both partial and

http://nderby.org/docs/RUG11-GTL.zip�

2

complete. In this situation, jittering would only move the problem slightly, elsewhere. Therefore, what the SAS
developers do is to use filled circles as plotting symbols while setting transparency, a new capability in ODS graphics,
to 95%. This method would probably work well with sparse data. Symbols would simply become progressively darker
as overlay increases. However, it doesn’t solve the problem here. Outliers are barely visible, and symbol overlay
results in a scatter plot that contains a large, undifferentiated dark “blob” in the middle. While the marginal histograms
offset the overlay in the scatter plot it is difficult to map histogram frequencies to indefinable grids in the scatter plot.
There are also additional problems with this graph that are addressed in the first revision below.

Figure 1. The original graph stretched out to increase visibility along the horizontal axis (a) and with the WALLDISPLAY=outline
option to show the four cell boundaries in the graph (b).

While source code listings are fragmentary in much of the paper, PROC TEMPLATE and PROC SGRENDER from SAS
Sample #35172 (SAS Institute, 2009a) used by Mantagne et al. (2009) are reproduced almost in full below. Graphs
produced in GTL are defined in a STATGRAPH template and generated in PROC SGRENDER where STATGRAPH template
meets input data set. Two types of templates are used in GTL: STATGRAPH and STYLE. An example of STATGRAPH is
presented below. STYLE is addressed shortly.

GTL works hierarchically and top-down in code blocks to produce a graph. In the source code that follows, the
hierarchy is outlined by rectangle overlays:

 (a)

 (b)

3

PROC TEMPLATE;

 DEFINE STATGRAPH scatterhist;
 DYNAMIC xvar yvar title;

 BEGINGRAPH / DESIGNWIDTH=600px DESIGNHEIGHT=400px BORDERATTRS=(thickness=3px);
 ENTRYTITLE title;

 LAYOUT LATTICE / ROWS=2 COLUMNS=2 ROWWEIGHTS=(.2 .8) COLUMNWEIGHTS=(.8 .2)
 ROWDATARANGE=union COLUMNDATARANGE=union
 ROWGUTTER=0 COLUMNGUTTER=0;
 /*Row#1, Column#1) HISTOGRAM at X2 axis position */
 LAYOUT OVERLAY / WALLDISPLAY=(fill) XAXISOPTS=(DISPLAY=none)
 YAXISOPTS=(DISPLAY=none OFFSETMIN=0);
 HISTOGRAM xvar / binaxis=false;
 ENDLAYOUT; /*OVERLAY*/
 /* Row#1, Column#2) TEXT ENTRY*/
 LAYOUT OVERLAY;
 ENTRY 'NOBS = ' EVAL(N(xvar));
 ENDLAYOUT; /*OVERLAY*/
 /* Row#2, Column#1) SCATTER PLOT */
 LAYOUT OVERLAY;
 SCATTERPLOT Y=yvar X=xvar / DATATRANSPARENCY=.95
 MARKERATTRS=(SYMBOL=circlefilled SIZE=11px);
 ENDLAYOUT; /*OVERLAY*/
 /* Row#2, Column#2) HISTOGRAM at Y2 axis position */
 LAYOUT OVERLAY / WALLDISPLAY=(fill)
 XAXISOPTS=(display=none offsetmin=0)
 YAXISOPTS=(display=none);
 HISTOGRAM yvar / ORIENT=horizontal BINAXIS=false;
 ENDLAYOUT; /*OVERLAY*/
 ENDLAYOUT; /*LATTICE*/

 ENDGRAPH; /*END GRAPH BLOCK*/
 END; /*END DEFINE BLOCK*/

RUN;
...
PROC SGRENDER DATA=sashelp.heart TEMPLATE=scatterhist;
 DYNAMIC yvar="Weight" xvar="Height" title="Two Continuous Variables";
RUN;

Figure 2. The code for Figure 1, from SAS Institute (2009a). Code reviewed in the next section is highlighted in blue.

Examining SAS Code at the Block Level
The outermost DEFINE block names the STATGRAPH template scatterhist. DYNAMIC variables that make the
template re-usable are declared here and assigned values in PROC SGRENDER. Next up is the GRAPH block where the
graph is sized and title is inserted.

The LAYOUT block in scatterhist supports both LATTICE and OVERLAY statements. LAYOUT LATTICE defines

a multi-cell grid of graphs that can automatically align plot areas and tick display areas across grid cells to
facilitate data comparisons among plots.... The number of cells must be predefined and you define the content
of each cell separately (SAS Institute, 2009c, p.155). (Emphasis is added for later contrast to the DATAPANEL
statement).

In scatterhist, a 2X2 matrix of cells holds four graphs in top down, left to right order. The cells are not equal in
size. Instead, row #1 with the top-most histogram and text entry is ¼ the height of the plotting region and row #2 with
the scatter plot takes up the remaining ¾ in height. Column widths also display the same ¼:¾ ratio. In this example,
axes dimensions are equalized with ROWDATARANGE and COLUMNDATARANGE options, although the equality is difficult to
see since the corresponding histogram X and Y axes are hidden.

LAYOUT OVERLAY is used to fill all four cells in the graph. LAYOUT OVERLAY “builds a 2D, single-cell graph by
overlaying the results of statements that are contained in the layout block” (SAS Institute, 2009c, p.39). If multiple
plotting statements are issued in a single OVERLAY statement, the second plot is placed over the first, the third goes
over the second and so on. While axes ranges are defined in Layout LATTICE, additional options are specified for the
histogram axes in LAYOUT OVERLAY. WALLDISPLAY= is included as an axis option in OVERLAY, because the wall or
plotting region is delimited by the rectangle that results when the four axes scale lines X1, X2, Y1 and Y2 are joined
(Cleveland, 1994, p. 33). Wall outlines are removed from both marginal histograms in first graph from Figure 1 when
WALLDISPLAY is set to FILL. By default, the plotting region is outlined in the scatter plot.

The HISTOGRAM, ENTRY and SCATTERPLOT statements are embedded in LAYOUT OVERLAY in this graph. The
HISTOGRAM statement is used to create “a univariate histogram from input data” (SAS Institute, 2009b, p.309). As
explained in many basic statistics textbooks (e.g., Siegel and Morgan (1996, p. 29), McClave and Sincich (2003, pp. 31-

4

33)), a histogram displays frequencies (or percentages) of measurements falling into specified intervals as
proportional rectangles.

The ENTRY Statement “displays a line of text in the plot area” (SAS Institute, 2009b, p.641) whereas the SCATTERPLOT
statement is used to create “a scatter plot of input data” (SAS Institute, 2009b, p.401). As explained by statistical
textbooks (e.g., Siegel and Morgan (1996, p. 517), McClave and Sincich (2003, p. 86)), a scatter plot is a two-dimensional
plot of the data points, representing two numeric variables. What we will learn when we look at dot plots is that the
SCATTERPLOT statement is expanded to accommodate nominal data in SAS. The nominal (unordered) character
values are simply arranged alphabetically along an axis.

PROBLEMS WITH THE INITIAL VERSION ARE ADDRESSED
Unfortunately the count assigned to NOBS is wrong. By definition, points graphed in a scatter plot must have values for
both X and Y coordinates that are within axes bounds. Missing values simply cannot be accommodated. When NOBS
is set to EVAL(N(height)) for the graph in Figure 1, three individuals with missing weight values are erroneously
added to the count. A simple solution to this problem involves setting NOBS equal to EVAL(N(xvar + yvar)). Using
the ‘+’ operator returns a missing value when at least xvar or yvar are missing; just what we want! This is one
instance where the SUM function would not give us the results we are looking for.

GTL summary statistic functions are always used with the EVAL function as in

number = EVAL(function-name(numeric-column)).

There are 32 summary statistic functions available in GTL: pretty much a subset of the statistics that are provided by
PROC UNIVARIATE. A full listing can be found in SAS Institute (2009c, pp. 262-263). In addition to being used for labeling
graphs, summary statistic functions can help compensate for the single data set restriction imposed upon GTL from
PROC SGRENDER. Kuhfeld (2010, pp. 30-31), for example, uses the MEAN and STDERR functions to define coordinates on
the fly for the ERRORLOWER and ERRORUPPER options in the BARCHARTPARM statement. Nevertheless, while EVAL can
often serve as a workaround, restricting GTL to a single input data set increases the complexity of the data
processing task defined as programming strategy step #2 in Yang (2011). We address this issue several more times in
the paper.

A second problem with the graph in Figure 1 involves relative bin heights in the two marginal histograms. Since all
points in a scatter plot must have values for both X and Y coordinates it follows that total counts for both histograms
should be the same. That means bin dimensions for the two histograms should be comparable, but they are not.

There are two reasons why you can’t visually compare the marginal histograms in Figure 1. First of all, the plotting
region for the scatter plot is not square, and secondly, the hidden axes maximum values are different for the two
histograms. For weight, the maximum is little less than15% whereas it is roughly 11% for height. In Figure 3, a
corrected version of the Figure 1 graph is presented along with a side-by-side version of the marginal histograms.

Figure 3. NOBS is now correct with 5,199 individuals having both heights and weights. Bin heights and widths in the two histograms
are now comparable with weight taller and slightly wider with two fewer bins than height.

5

Relevant Code Fragments for Figure 3
Style Changes are made in PROC TEMPLATE to remove all wall borders with FRAMEBORDER. With their removal, bin
ranges in both histograms become more visible.
 PROC TEMPLATE;
 DEFINE STYLE MyStyle;
 PARENT = styles.statistical;
 /*Eliminate Wall border lines */
 CLASS graphWalls /
 FRAMEBORDER=off;
 RUN;

To find out more about integrating style templates into GTL, see programming strategy step #4 in Yang (2011).

An AXIS LENGTH option does not exist in GTL that would guarantee a square plotting region. Instead the whole graph
is squared off with DESIGNWIDTH=defaultdesignheight. The vertical axis has to accommodate titles, and the
more titles, the greater the disparity between axes lengths. Nevertheless this is the best that can be done.
 PROC TEMPLATE;
 DEFINE STATGRAPH scatterhist;
 DYNAMIC xvar yvar title;
 BEGINGRAPH / DESIGNWIDTH=defaultdesignheight;
 ...
 ENDGRAPH;
 END;
 RUN;

A brief code addition to YAXISOPTS and XAXISOPTS for xvar and yvar respectively extends the maximum viewable
percent for the response axis in both histograms to 15%.
 /* For the histogram at scatter plot’s X2 axis */
 LAYOUT OVERLAY / XAXISOPTS=(DISPLAY=none)
 YAXISOPTS=(DISPLAY=none OFFSETMIN=0 LINEAROPTS=(VIEWMAX=15));
 HISTOGRAM xvar / BINAXIS=false;
 ENDLAYOUT;
 /* Histogram at scatter plot’s Y2 axis */
 LAYOUT OVERLAY / YAXISOPTS=(OFFSETMIN=0 DISPLAY=none)
 Xaxisopts=(OFFSETMIN=0 DISPLAY=none LINEAROPTS=(VIEWMAX=15));
 HISTOGRAM yvar / ORIENT=horizontal BINAXIS=false;
 ENDLAYOUT;

APPLY ROUNDING TO THE SCATTER PLOT SQUARED-OFF VERSION OF THE GRAPH
Now with a squared-off graph that has a smaller plotting region, solving the overlay problem with the scatter plot
becomes even more imperative. Instead of jittering, let’s do the opposite and round the data so that there is only full
symbol overlapping in the output. The results displayed in Figure 3 are far from satisfactory.

Figure 4. The graph on the left (a) is copied from Figure 3. In addition to rounding, the circle symbol size is reduced in the graph on
the right (b). With such small symbols, rounding does not convey additional information about the frequency distribution in the
scatter plot. To put it bluntly, we have just created a digitized blob. In addition, the marginal histogram for height in the digitized
plot is shifted slightly to the right as a result of rounding to the nearest ½ inch.

(a)

(b)

6

Despite the disappointing results in Figure 4, let’s explore rounding as a technique for managing densely packed data
displays. As hinted above, jittering and rounding are inverses of each other. The inverse relationship between these
functions is depicted in Figure 5:

Figure 5. Both (a) and (b) demonstrate the inverse relationship between rounding and jittering: In pseudo code ROUND(partial
overlay) complete overlay. JITTER(complete overlay) partial overlay. In the rounded panel for (a), it is hard to rank
frequencies with such closely related shades of blue. In (b), frequencies go from cold blue for low values to hot red for high ones.

Additional Comments about the Graph in Figure 5(a)
While jittering depends on hollow circles to promote visibility, partial overlay with transparency breaks down when
dense data sets are plotted. It doesn’t take too many partial overlays to generate dark blue regions in a graph.
Nevertheless the problem is still not solved when data points are separated by rounding. Transparency looses its
effect so that all you see are separate circles in slightly different shades of blue. In 5(a), for example, it is not possible
to rank individual points by their associated frequencies.

Long before the advent of desktop computers, Josef Albers described a study in Interaction of Color where 60% of
the adanced painting students in a basic color class were unable to distinguish lighter colors from darker ones Albers
(1975, p. 12). As Albers points out, humans are much more adept at distinguishing between higher and lower musical
tones.Therefore, when it comes to working with lightness scales in color,we are almost “tone deaf”.

Despite our lack of skill when it comes to color, Albers insists we can develop a more discriminating sensitivity by
looking at color scales Albers (1975, p.16). Color scales can be found in Watts (2002, 2003, 2004a,b) and Zdeb (2002, pp.
128-130).

APPLY A SAS COLOR “RAMP” TO THE ROUNDED SCATTER PLOT
Since we are almost “tone deaf” when it comes to distinguishing different shades of the same color, we need an
alternative color scale that will in Cleveland’s view provide us with an:

effortless perception of the order of the encoded quantities, and clearly perceived boundaries between adjacent
levels Cleveland (1994, forward). (Our emphasis added).

Brewer (1994) achieves these goals when she uses diverging sequences of lightness steps from two hues to compare
employment rates among labor forces in European countries. SAS translates Cleveland’s and Brewer’s insights into a
three-color RAMP that is applied to the scatter plot in Figure 6.

(a)

(b)

7

Figure 6. The three color ramp reflected in the legend is defined in the COLORMODEL option of the SCATTERPLOT statement.

Updates Made to the Graph in Figure 6
First noted is that the marker symbol in the graph is changed from CIRCLEFILLED to SQUAREFILLED so that histogram
bin heights can be easily aligned with scatter plot frequencies. Now it is possible to see that the tallest bins line up
with the brightest points in the data. Next, with the removal of transparency from the graph, all data points become
fully visible. Full visibility makes it easy to line up histogram end bins with data outliers. Finally, the legend text is set
off with a light blue background to distinguish it from the X-axis label and values. Adding a horizontal legend results in
a graph that is stretched out in the horizontal direction similar to the one displayed in Figure 1. Histogram response
axes are fully displayed to partially compensate for the distortion caused by the stretching. The more descriptive
COUNT is selected as the axis scale in the display.

Relevant Code Fragments for Figure 6
Below, the derived data set sCombine (sorted-Combine) is created then used to generate the output displayed in
Figure 6. New variables, colorByFreq and firstDot are discussed when the code for PROC TEMPLATE is
reviewed. Remember, more rounding leads to a greater incidence of tied observations. Less rounding means less
distortion of the original data. Tradeoffs have to be made. In this instance roundWeight, originally an integer, can be
off by 0 or 1 pounds; roundHeight recorded to the nearest ¼ inch in the raw data can be off by at most ¼ inch.

DATA roundHeart;
 SET sashelp.heart;
 roundWeight=ROUND(weight,2);
 roundHeight=ROUND(height,.5);
RUN;
PROC SUMMARY DATA=roundHeart NWAY;
 CLASS roundWeight roundHeight;
 OUTPUT OUT=TiedObs(KEEP=roundWeight roundHeight _FREQ_ RENAME=(_FREQ_=colorByFreq));
RUN;
DATA combine(KEEP=roundWeight roundHeight colorByFreq firstDot);
 MERGE roundheart tiedObs;
 BY roundWeight roundHeight;
 IF first.roundHeight THEN firstDot=1; ELSE firstDot=.;
RUN;
PROC SORT DATA=combine OUT=sCombine;
 BY colorByFreq;
RUN;

8

In Figure 1, we saw how the presence of missing Y values for weight caught us off-guard when NOBS was
calculated. In combine, the merged data set created above, missing values are deliberately introduced into the data
with firstDot so that each point will be plotted only once in the scatter plot, but all the data will continue to be
available when histogram bin heights are tallied. In this version roundWeight at two pounds creates a slight partial
overlap in the vertical direction. An ascending sort is applied to the data so that coordinates with the highest
frequencies will be fully visible, since they are plotted last. The code fragment for PROC TEMPLATE below shows how
the newly created variables are used to create the desired graphics results.

PROC TEMPLATE;
 DEFINE STATGRAPH scatterhist;
 ...
 /* histogram at X2 axis position */
 LAYOUT OVERLAY / ...;
 HISTOGRAM roundHeight / BINAXIS=false;
 ENDLAYOUT;
 /* scatter plot: */
 LAYOUT OVERLAY / ...;
 SCATTERPLOT
 Y=EVAL(roundWeight*firstDot)
 X=EVAL(roundHeight*firstDot) / MARKERCOLORGRADIENT = colorByFreq;
 ENDLAYOUT;
 /* histogram at Y2 axis position */
 LAYOUT OVERLAY / ...;
 HISTOGRAM RoundWeight / ORIENT=horizontal BINAXIS=false;
 ENDLAYOUT;
 ...
 END;
RUN;

MARKERCOLORGRADIENT is the option in the SCATTERPLOT statement that specifies the column (variable) used for
mapping marker colors to a continuous gradient. Complete source code for the Figure 6 graph can be downloaded
from http://nderby.org/docs/RUG11-GTL.zip.

USE PROC KDE TO ADD A THIRD DIMENSION TO DENSELY PACKED DATA
A slightly modified version of the plot in Figure 7(a) can be found in the GTL Reference Manual where the
CONTINUOUSLEGEND statement is discussed (SAS Institute, 2009b, pp. 609-610). While sashelp.gridded is sent to
PROC SGRENDER in the example from the manual, we reproduce the gridded data set from scratch in PROC KDE so that
digitized contour plots can be generated from any data set that contains two continuous numeric variables.

Figure7. PROC KDE is used to generate digitized contour plots from two different input data sets. X and Y variables are identified in
the input data set, and PROC KDE generates density that becomes the Z variable. The line plotted at a 45˚ angle with the
LINEPARM statement in the EPA graph (b) shows where the plot would be positioned if the two ozone estimates were equal. The
origin for LINEPARM is (0,0) and the slope is 1.

While the plots in Figures 6 and 7 have a similar appearance, their construction is very different. In Figure 6, X and Y
variables are rounded, and Z is calculated as the frequency of tied observations at a given point. Probability estimates
play no role here. In Figure 7, on the other hand, the plotting region is divided into a 60X60 grid of cells. This means

(a)

(b)

http://nderby.org/docs/RUG11-GTL.zip�

9

that there are always 3,600 observations in any output data set from PROC KDE. Cell assignment is based on the
kernel density estimate where “a known density function (the kernel) is averaged across observed data points to
create a smooth approximation (SAS Institute, 2008, p.3460). In the digitized contour plot, color is assigned by the
value for density at the intersection of horizontal and vertical grid points.

Relevant Code Fragments for Figure 7
A density variable KDEdensity is assigned to MARKERCOLORGRADIENT in the STATGRAPH template for Figure 5.
height and weight become gridHeight and gridWeight to reflect the data transformations that occur in PROC
KDE. COUNT, also supplied by PROC KDE, contains the number of observations at a given grid point. COUNT predictably
sums to 5,199. Only those observations where COUNT is greater than zero are passed through to PROC TEMPLATE from
PROC SGRENDER. Otherwise white spaces in the graphics output area where zero counts have been excluded would
be changed to dark blue to indicate low density.

PROC TEMPLATE;
 DEFINE STATGRAPH digitizedKDE;
 BEGINGRAPH /...;
 LAYOUT OVERLAY / ...;
 SCATTERPLOT
 Y=gridWeight X=gridHeight / MARKERCOLORGRADIENT=KDEdensity ...;
 ENDLAYOUT;
 ENDGRAPH;
 END;
RUN;
PROC KDE DATA=sashelp.heart;
 BIVAR height weight / PLOTS=NONE OUT=KDEGridded(KEEP=VALUE1 VALUE2 DENSITY COUNT
 RENAME=(VALUE1=gridHeight VALUE2=gridWeight DENSITY=KDEdensity));
RUN;
PROC SGRENDER DATA=KDEGridded(WHERE=(COUNT>0)) TEMPLATE=digitizedKDE; ...;
RUN;

ADD THE BODY MASS INDEX TO THE DIGITIZED CONTOUR PLOT AND GROUP BY GENDER
An article published by the American Heart Association describes what happens over a 26 year period to subjects
who participated in the Framingham Heart Study. Those studied had to be free of cardiovascular disease at their first
medical examination. The paper concludes that “obesity, measured by Metropolitan Relative Weight, was a
significant independent predictor of CVD, particularly among women” (Hubert et al., 1983, p.968), p.968).

Unfortunately we are unable to underscore the study’s findings graphically, because we lack complete information,
and some of what we have is inconsistent. First off, there is no way to identify the 5,070 out of 5,209 men and women
who were disease free at the beginning of the study. Also we cannot duplicate the SAS column MRW calculated as
(Actual Weight Desirable Weight) 100 by using an adjusted value for Desirable Weight supplied from Table 1 in
the publication. We assume a different table with an unadjusted desirable weight was used to calculate MRW in the
sashelp.heart data set. What we can do, however, is to categorize study subjects by their BMI scores to confirm that
as a group they were considerably overweight especially by standards for the 1950’s. The categorization is done
graphically by plotting BMI curves over the familiar digitized contour plot. The output is displayed in Figure 8.

Figure 8. All the components of the graph are nested within a single LAYOUT OVERLAY statement. The boxed inset is constructed
from a GRIDDED layout. SERIESPLOT statements are used to get BMI boundary lines, and the digitized contour plot is generated
with a SCATTERPLOT statement. Stretching the graph along the horizontal axis increases readability and does not compromise the
results, since there are no marginal histograms in the display.

10

Due to paper-length restrictions, source code is not being reviewed in this section. The complete SAS program is can
be downloaded from http://nderby.org/docs/RUG11-GTL.zip. When looking at the source code it is important to keep
in mind that only a single data set can be processed in PROC TEMPLATE. Three would be preferable: one for the
scatter plot, a second for the BMI boundary lines, and a third that captures the statistics reported in the inset.

The only way around this restriction is to concatenate multiple data sets with a SET statement. With concatenation,
different variables can be constructed independently for exclusive assignment to the various plotting statements. For
example, height_BMI and weight_BMI are assigned to X and Y in the SERIESPLOT statement whereas X and Y
point to gridHeight and gridWeight in the SCATTERPLOT statement. When SAS is plotting height_BMI, the value
for gridHeight in the same observation is missing, since it is not defined prior to concatenation. In this instance, the
missing value is our friend; nothing is plotted by mistake.

Concatenation rather than any form of merging or joining greatly simplifies the data processing often required for
constructing complicated graphs. It can also be used to extend the reach of an ANNOTATE data set. To our knowledge,
this technique has not been described elsewhere in the SAS literature.

AIRLINES DATA: WORKING WITH A PROGRESSION OF TIME SERIES PLOTS
In this section, we work with a time series plot that incorporates the requirement for pre-sorted data into its definition.
As defined in many statistics textbooks (e.g., Brockwell and Davis (1996, p. 1)), a time series is simply a set of
observations indexed by time – usually within a set of uniform time intervals. In other words, the data from the airlines
industry presented in this section needs to be “indexed by time, where the order of the observations matters” (Derby
and Vo, 2010).

Unfortunately there is no direct connection between a time series and the SERIESPLOT statement used in SAS. The
complete description of the SERIESPLOT statement taken verbatim from the manual is that it “displays a series of line
segments that connect observations of input data” (SAS Institute, 2009b, p.437). Missing is the key word “sorted” as in
“sorted observations”. Calling a series plot or a time series plot a line plot (Holland, 2009) does not help either, since
again nothing is mentioned about the need for pre-ordered input data in most definitions of the line plot.

Kuhfeld comes to the rescue when he says (our emphasis added)

A series plot is a graphical display of two quantitative variables where the points are connected by straight line segments
and are otherwise typically not displayed. When the points are close together, the results can appear to be a smooth
curve Kuhfeld (2010, p.49).

You can’t have a smooth curve unless your data are sorted. Time provides an automatic sort for the time series plots
displayed in this section, just as height_BMI was the sorting variable for the BMI curves displayed with the
SERIESPLOT statement in the previous section.

A time series progression involves the manipulation of two ordered time dimensions. In the case of the Airlines data,
the input data have to be sorted first by departure date and then within each departure date by the number of days
before departure that a passenger books a flight.

http://nderby.org/docs/RUG11-GTL.zip�

11

GRAPHING THE AIRLINES DATA IN A SINGLE CELL
From the graph in Figure 9(a), there is no way to account for departure date. Color assignments have no order. In the
Figure 9(b) graph, color is used as a third dimension to code series plots by their departure date range.

Figure 9. In (a), there is no way to connect a series plot to its departure date. In (b), color is used systematically so that departure
dates can be inferred. Hot red shows that in 2008-2009 passengers rushed out early to purchase their tickets. More recent flights
are booked at a leisurely pace. The slowdown is depicted in cold blue.

Relevant Code Fragments for Figure 9
A single SERIESPLOT statement is used in PROC TEMPLATE to create the 100 lines in Figure 9(a). In the brief code
fragment listed below, the three dimensions from the input data can easily be identified by variable name. They are
daysLeft, bookings and DDate (for departure date). Color is assigned by DDate on a cyclical basis from the
GRAPHDATA1 – GRAPHDATA12 style elements in the styles.default template. All the time series plots have solid lines
with PATTERN=1.

LAYOUT OVERLAY / ...;
 SERIESPLOT X=daysLeft Y=bookings / GROUP=DDate LINEATTRS=(PATTERN=1);
ENDLAYOUT;

Code for the graph in Figure 9(b) is a little more involved. This time six SERIESPLOT statements are issued; one each
for the six 116-day ranges in the data. While DDate continues to define a time series plot, the variable no longer
determines color assignment. Instead, color changes only when a new SERIESPLOT statement is issued. Also,
LAYOUT GRIDDED is used to create an inset as a table of text. It is nested within LAYOUT OVERLAY along with the
SERIESPLOT statements. Each ENTRY statement in the GRIDDED layout becomes a row in the one-column table (SAS
Institute, 2009c, p.273). An inset is used in preference to a legend in this graph, because a line width of 1 pixel for the
series plots is too thin in a legend. Color washes out. Text with a bold weight is thicker and more visible.

LAYOUT OVERLAY / ...;
 %do i= 1 %to 6;
 SERIESPLOT Y=y&i X=x&i / GROUP=ddate LINEATTRS=(COLOR=&&color&i PATTERN=1);
 %end;
 LAYOUT GRIDDED / COLUMNS=1 ...;
 ENTRY HALIGN=center TEXTATTRS=(WEIGHT=bold) "Departure Date Range";
 %do j = 1 %to 6;
 ENTRY HALIGN=center TEXTATTRs=(WEIGHT=bold COLOR=&&color&j) "&&Range&j";
 %end;
 ENDLAYOUT;

ENDLAYOUT;

Whereas new rows (observations) are created via data set concatenation to accommodate different data sources in
the Figure 8 graph for the Framingham Heart Study, new data columns (variables) x1-x6 and y1-y6 are derived
from X-variable daysLeft and Y-variable bookings in the graph from Figure 9(b). Initially x1-x6 and y1-y6 are

 (a)

 (b)

12

set to missing. When DDate is between 12/10/08 and 04/04/09 then x1 is set to daysLeft and y1 is set to
bookings. Similarly when DDate is between 04/05/09 and 07/29/09 then x2 is set to daysLeft and y2 is set to
bookings. The same process is followed to create the additional new variables x3-x6 and y3-y6.

GRAPHING THE AIRLINES DATA MULTI-CELL LAYOUT
While the graph in Figure 9(b) confirms the existence of a relationship between booking lead times and flight
departure dates, line overlay can be significantly reduced if the date range groups are displayed separately in a
LATTICE layout. Group comparisons can also be facilitated if the output is arranged in a 6(row) X 1(column) grid of
graphs. Another way to improve the graph is to reverse the direction of the X axis so that the cumulative distributions
adhere to convention by going from left to right. The modified graph is displayed in Figure 10.

Figure 10. The six time series graphs are more visible with a LATTICE overlay. Color becomes an enhancement (or distraction)
rather than a necessity, since each group is displayed separately. The X-axis is reversed to accommodate cumulative distributions
that now go from left to right.

Relevant Code Fragments for Figure 10
Assigning different colors to the panels in the Figure 10 graph is only possible with LAYOUT LATTICE where the
content of each cell is defined separately. The other multi-cell layouts, DATALATTICE and DATAPANEL do not define
content at the cell level. Instead, all cells have a uniform definition that is specified in a single LAYOUT PROTOTYPE
statement. Output displayed at the cell level in DATALATTICE and DATAPANEL is based solely “on data subsetted by
classification variable(s)” (SAS Institute, 2009b, p.35). To validate that color assignments are the same for each cell in
a multi-cell graph generated from DATALATTICE or DATAPANEL check out (SAS Institute, 2009c, pp. 185-223). The
manual is printed in color.

LAYOUT LATTICE is the most versatile and complex layout system in GTL. Its versatility can be attributed to the fact
that plot format and appearance can be defined for either the entire graph or for single cells within a graph. In the
code fragment below, origins of graphics components are highlighted by rectangular overlays. By looking at the
overlays, it can be determined that X-axis definitions are specified in LAYOUT LATTICE whereas definitions for the Y-
axis are shared between LAYOUT LATTICE and LAYOUT OVERLAY.

13

PROC TEMPLATE;
 DEFINE STATGRAPH seriesplt;
 BEGINGRAPH / ...;
 LAYOUT LATTICE / ROWS=6 COLUMNS=1
 COLUMNDATARANGE=union;
 COLUMNAXES;
 COLUMNAXIS / LABEL="Days Before Departure" LABELATTRS=(size=8pt)
 lINEAROPTS=(TICKVALUEFORMAT=reversFm.
 TICKVALUESEQUENCE=(start=0 end=60 increment=10));
 ENDCOLUMNAXES;
 SIDEBAR / ALIGN=right;
 LAYOUT GRIDDED / BORDER=false;
 ENTRY "Bookings" / ROTATE=90 TEXTATTRs=(SIZE=8pt WEIGHT=bold);
 ENDLAYOUT;
 ENDSIDEBAR;
 %do i= 1 %to 6;
 LAYOUT OVERLAY / Y2AXISOPTS=(GRIDDISPLAY=ON label=" " ...
 LINEAROPTS=(TICKVALUELIST=(0 90 180) VIEWMIN=0 VIEWMAX=180));
 SERIESPLOT Y=y&i X=x&i / GROUP=DDate YAXIS=y2
 LINEATTRS=(COLOR=&&color&i PATTERN=1);
 ENDLAYOUT; /*overlay*/
 %end;
 ENDLAYOUT; /*lattice */
 ENDGRAPH;
END;
RUN;

By moving X-axis definitions to LAYOUT LATTICE, a common axis can be conveniently displayed at the base of a
column of cells. However, unlike XAXISOPTS in LAYOUT OVERLAY, COLUMNAXIS in LAYOUT LATTICE does not support
the REVERSE option. That means the variable daysLeft in the input data set that drives the definition of x1-x6 has
to be reassigned to rDaysLeft as rDaysLeft=abs(daysLeft-60). The reassignment points the cumulative
distributions in the right direction, and the tick marks reflect the change in direction with the use of the
TICKVALUEFORMAT option.

Most of the definitions for the Y-axis, or in this instance the Y2-axis, stay with LAYOUT OVERLAY where the content of
each cell is defined separately. From the Y2AXISOPTS statement it can be seen that the Y2-axes labels are blanked
out for all six graphs in the display. They are replaced with a single axis label that is inserted from the SIDEBAR
statement in the LAYOUT LATTICE region. The label is centered and rotated 90˚ along the right side of the graph for
proper alignment in the display. Text rotation only works when the label is embedded in a GRIDDED layout. Finally,
color assignments are made by issuing multiple SERIESPLOT statements; one for each of the six different departure
date ranges in the data. Complete source code for the Figure 11 graph can be downloaded from
http://nderby.org/docs/RUG11-GTL.zip.

BARLEY DATA: WORKING WITH MULTIWAY DOT PLOTS THAT LACK AN IMPLICIT
ORDERING VARIABLE
Unlike all other plot types presented in the paper, dot plots have a named inventor; William S. Cleveland. As early as
1984, Cleveland describes their structure and demonstrates convincingly why they are superior to horizontal bar
charts:

Dot charts can be used when the values in a data set have names that one wants to convey. When there are many
values, the light dotted lines on the graph enable the visual connection of a plotted point with its name. ... The dotted lines
on the dot chart have been made light to keep them from visually imposing and obscuring the large dots that portray the
data (Cleveland,1984, p. 271). (Our emphasis added).

By 1994, Cleveland changes the name dot chart to dot plot adding that “the dot plot has several different forms
depending on the nature of the data and the structure of the labels” (Cleveland, 1994, p.17). One such form is the
multiway dot plot where panels contain the individual dot plots and levels reference the rows in a single plot
(Cleveland, 1993b, p. 303). With the multiway dot plot, 3-D is fixed from the outset: panel and level require two
categorical variables whereas the third numeric response variable is reserved for the horizontal axis.

Probably Cleveland’s most famous multiway dot plot is the one that displays barley yields collected from six different
sites in Minnesota during the early 1930’s. In Visualizing Data, Cleveland states that the barley study is significant,
because R. A. Fisher used it early on to illustrate his ANOVA method of experimental design (Cleveland, 1993b, pp.
328-329]. Unfortunately, however, the original data contained a serious error that Cleveland discovered years later
when he graphed the results. It turns out that yearly barley yields were reversed at the Morris site.

http://nderby.org/docs/RUG11-GTL.zip�

14

The version of Cleveland’s multiway dot plot reproduced in Figure 11 comes from Rodriguez and Cartier (2009, p. 3-
10).1 Cleveland The source code is taken from the SAS publication, but the input data are from (1993a). The example
was presented at a SAS Global Forum Conference to show how easy it is to use the DOT statement in PROC SGPANEL.
SAS automatically generates a 2X3 paneled display. Cleveland’s original, however, is a 6X1 trellis plot.

Figure 11. Only two lines of SAS code are needed to produce the multiway dot plot that is displayed here. The Morris site aberration
is easily identified by the symbol reversal. However, for some unfathomable reason the graph is mislabeled. Also by ordering
alphabetically and presenting the output in a 2X3 matrix of panels, the graph fails to reveal a second important pattern in the data. A
hint of what that pattern is can be found by examining site barley yield ranks in the map of Minnesota on the right. The map is
generated using an algorithm adapted from Zdeb (2002, pp.70-74].

ORDERING BY MEDIAN
In The Elements of Graphing Data, Cleveland addresses the problem of categorical variables where there is no
intrinsic order. He suggests ordering categories by median (Cleveland, 1994, p. 153). Therefore, in this example the
medians are calculated separately for categorical variables site and variety on the response variable yield.
Source code from PROC UNIVARIATE is listed below:

PROC UNIVARIATE NOPRINT DATA=barley;
 VAR yield;
 CLASS site;
 OUTPUT OUT=mdnbysite MEDIAN=mdnSiteYield;
RUN;
PROC UNIVARIATE NOPRINT DATA=barley;
 VAR yield;
 CLASS variety;
 OUTPUT OUT=mdnbyVariety MEDIAN=mdnVarietyYield;
RUN;

Three formats are created with a CNTLIN= option applied to the PROC UNIVARIATE output data sets. Variables
siteMdnNum and varietyMdnNum are derived from two of the formats. The two variables are then used for sorting
the final data set sent to PROC SGRENDER. A third format, varMdnf, is applied to varietyMdnNum in PROC TEMPLATE
to identify the variety of barely by name.

Ordering by median only uncovers patterns if they are present in the data. In Figure 12 below two dot plots are
presented. The first is an enlargement of the Crookston site with variety listed on the Y axis in overall median
order. No pattern can be detected. Instead the ‘+’ and ‘o’ symbols weave back and forth as the plot is scanned from
top to bottom. In the second dot plot, the median number of days before departure is calculated at the 90th booking
for each departure date category. Results reflect the same pattern expressed in the Figure 10 Lattice plot.

1 Reproduced with permission of SAS Institute Inc., SAS Institute Inc., Cary NC, USA. All Rights Reserved.

15

Figure 12. Barley varieties are ordered by median for Crookston, MN in (a). No pattern can be detected by looking at the dot plot.
On the other hand, the medians calculated for the airlines data (b) repeat the pattern observed earlier: In 2010, people wait longer to
book their flights meaning that they have the lowest median number of days before departure.

CREATING DOT PLOTS IN GTL
What is needed for showing how site affects yield is a multiway dot plot ordered by median. To reorder the dot
plot from Figure 11, we need to switch from PROC SGPANEL to GTL. However, when we go to make the switch we
learn that there is no DOTPLOT statement in GTL. A work-around can be found by adding a TMPLOUT option to PROC
SGPANEL:

PROC SGPANEL DATA=r11.barley TMPLOUT='C:\R11\PGM\Barley\sgpanelDotPlot.tpl';
 TITLE1 "Canadian Barley Production";
 PANELBY site;
 DOT variety / RESPONSE=yield GROUP=year;
RUN;

TMPLOUT stores a copy of the GTL template that is generated behind the scenes when PROC SGPANEL is executed
(SAS Institute, 2009d, p.129). To get a listing of the template, click on File Open in the SAS program window. Then
from the folder of interest, scroll down to Files of type and with All Files(*.*) select the TPL file. Abbreviated output is
shown below:

PROC TEMPLATE;
 DEFINE STATGRAPH sgpanel; ...;
 BEGINGRAPH /;
 ENTRYTITLE "Canadian Barley Production" /;
 LAYOUT GRIDDED / ROWGUTTER=5;
 LAYOUT DATAPANEL CLASSVARS=(site) / ...;
 LAYOUT PROTOTYPE / __SGPROC;
 SCATTERPLOT Y=variety X=_Sum1_yield_ / GROUP=year ...;
 ENDLAYOUT;
 ENDLAYOUT;
 ENDLAYOUT;
 ENDGRAPH;
 END;
RUN;

From sgpanelDotPlot.tpl we learn that dot plots are created with the SCATTERPLOT statement in GTL. This
means that the definition for scatter plot is extended in SAS to include nominal character variables where axes values
are assigned to tick marks in alphabetical order. As you can see by looking at Figure 13(a), character data has the
capability of wrecking havoc on the output from a SCATTERPLOT statement. Below is the code listing for Figure 13(a).

PROC TEMPLATE;
 DEFINE STATGRAPH barleyPanel6x1;
 BEGINGRAPH / ...;
 LAYOUT DATAPANEL CLASSVARS=(site) / COLUMNS=1 ROWS=6
 ROWAXISOPTS=(DISPLAY=(line tickvalues) GRIDDISPLAY=on
 LINEAROPTS=(TICKVALUELIST=(1 2 3 4 5 6 7 8 9 10)
 TICKVALUEFORMAT=VarMdnf.))
 COLUMNAXISOPTS=(label="Barley Yield (bushels/acre)");
 LAYOUT PROTOTYPE;
 SCATTERPLOT X=yield Y=varietyMdnNum/GROUP=year NAME="year";
 ENDLAYOUT;
 ENDLAYOUT;
 ENDGRAPH;
END;
RUN;

(a)

(b)

16

Two formats are needed for variety so that ROWAXISOPTS will work as intended. varietyMdnNum, mentioned
earlier, matches TICKVALUELIST, and varMdnf is applied to the numeric list so numbers are translated into barley
varieties listed along the Y axis. Unfortunately, the list viewed in Figure 13(a) is not complete. What SAS has done is
to remove intermediate tick values from the axis (SAS Institute, 2009c, p.71). Unlike data symbol overlay, SAS does not
permit text collision when it comes to labeling axes.

Figure 13. In both paneled graphs it is possible the see that barley yields gradually increase when sites are sorted by median. Note
that every other variety and its associated grid line are missing from the SAS GTL version (a), whereas Cleveland (b) is able to list
all 10 VARIETY values in his 6X1 trellis plot (Cleveland, 1994, p.225).2

 Zoom in for a better view of both (a) and (b).

The graph displayed in Figure 13(a) confirms that axis thinning should only be applied to numeric data. When
numbers are deleted, the viewer typically has no trouble filling in the missing values. However, there is no way to
know that variety No. 457 is greater than Glabron and less than Wisconsin No. 38 in Figure 13(a). Thus at 120
observations, it could be argued that there is too much data in the barley data set to visualize it adequately in SAS.

2 Reproduced with permission from Hobart Press, Summit, NJ.

(b)

(a)

17

A NEW LAYOUT: DATAPANEL
The LAYOUT block in the barleyPanel6x1 template above supports a DATAPANEL statement that:

creates a grid of graphs based on one or more classification variables and a graphical prototype. By default, a
separate instance of the prototype (a data cell) is created for each actual combination of classification variables
(SAS Institute, 2009b, p.59).

DATAPANEL is easier to work with than LATTICE. With a LATTICE layout, each cell in a grid of cells has to be defined
separately, whereas cell definitions are determined automatically by classification variable affiliation in DATAPANEL. In
a DATAPANEL layout a single ROWAXISOPTS option replaces multiple YAXISOPTS whereas one COLUMNAXISOPTS
replaces multiple XAXISOPTS. Likewise a single LAYOUT PROTOTYPE replaces multiple LAYOUT OVERLAY statements in
LAYOUT LATTICE. With a simplified DATAPANEL structure, all panels in a graph have an identical appearance. In the
Figure 12 and 14 graphs, for example, identical grid lines are added to all the panels and the same two symbols are
used to represent barley yields for 1931 and 1932.

STOCK DATA: WORKING WITH INTERLEAVING TIME SERIES PLOTS
Warren Kuhfeld uses the sashelp.stocks data set to illustrate how time series plots are constructed in GTL and PROC
SGPLOT Kuhfeld (2010, p.49). His GTL graph is reproduced in Figure 14(a) and updated in Figure 14(b). The graph in
Figure 14(b) does not fully resolve issues raised in Figure 14(a). Unlike the 100 plot lines in the Airlines Data, the
three lines in the Stock data are interleaved, and interleaving creates its own unique set of challenges that are
addressed in this section.

Figure 14. With interleaving lines, it is still difficult to see what happens between 1996 and 2000 in the improved graph (b).

A number of changes are made to the graph in Figure 14(b). To start, the STATISTICAL style is replaced by the
DEFAULT style so that the plotting region is set off from the rest of the graph. Next, the plotting region is extended
slightly by reformatting the Y-axis values. Solid lines then replace dashed ones, because dashes interfere with line
tracking. Finally, anti-aliasing is applied to improve resolution, and different line widths and colors make it easier but
not completely possible to identify each series plot in the display.

It should be mentioned at this point that generating a single graph with multiple line widths and symbol sizes is not
easy to do in SAS. These attributes are fixed in the GRAPHDATADEFAULT style element, so changes cannot be made to
GRAPHDATA1-GRAPHDATA12 where customization occurs. A macro that generates multiple line widths is available upon
request.

Robbins (2005, pp.172-173) recommends placing each plot line into a separate panel of a multi-paneled display. Her
trellis plot is similar in structure to the graph generated with a DATAPANEL layout in Figure 15(a). Now the time series
plots are completely distinguishable, but their comparability diminishes with the increased distance between them.
Robbins, in fact, hints that visibility and comparability have a conflicting relationship when she discusses the role
between distance and detection in decoding a graph Robbins (2005, p. 63).

Results from an initial effort to increase comparability while maintaining visibility are displayed in Figure 15(b). Overall
and individual average stock closings are added to the three plots with LINEPARM statements. Since each panel
requires customization in the graph, LAYOUT DATAPANEL is replaced by LAYOUT LATTICE. Unfortunately, however, line
labels shorten the widths of the plotting regions in each panel.

(a)

(b)

18

Figure 15. Comparability is compromised in (a), but partially restored in (b) with the addition of individual and overall average plot
lines. Now individual variations around the plot lines of averages can be compared.

Another way to increase comparability while maintaining visibility is to graph pair-wise comparisons. Initial versions of
the comparisons are displayed in Figure 16. In graph (a) two SERIESPLOT statements are issued for each panel, and
in graph (b), transparent bands are added to emphasize differences in stock closings between two corporations that
are being compared.

...

Figure 16. The area under the curve (AUC) becomes the focus of attention when transparent bands are added to the graph in (b).
Observe that the larger area between the minimum of the two series plots and zero dollars is also shaded. This area is of no
interest. However, with the double overlay it is the most emphasized region in the graph.

WORKING WITH BAND PLOTS IN A CELL BLOCK OF A LATTICE LAYOUT
Before getting too involved with band plots, let’s review the relatively simple code for the latticeSeriesPlt
template that is used to generate the graph in Figure 16(b). While LAYOUT LATTICE has been discussed before, the
subordinate CELL block is new. When cell contents are specified in a CELL block, customized headers can then
become an integral part of the specification (SAS Institute, 2009b, p.92). Since the headers of both graphs in Figure 16
serve as “quasi-legends” with identifying colors, their customization requires a CELL block within LAYOUT LATTICE.

PROC TEMPLATE;
 DEFINE STATGRAPH latticeSeriesPlt;
 BEGINGRAPH;
 LAYOUT LATTICE / ...;
 /* Show code for first plot only */
 CELL;
 CELLHEADER;
 ENTRY TEXTATTRS=(COLOR=CX404040 WEIGHT=bold) "IBM"
 TEXTATTRS=(COLOR=black) " vs. "
 TEXTATTRS=(COLOR=graphdata2:CONTRASTCOLOR WEIGHT=bold) "Intel";
 ENDCELLHEADER;
 LAYOUT OVERLAY / ...;

(a)

(b)

(a)

(b)

19

 BANDPLOT X=x1 LIMITUPPER=y1 LIMITLOWER=0 /
 FILLATTRS=(COLOR=graphdata&i:CONTRASTCOLOR) DATATRANSPARENCY=0.8;
 BANDPLOT X=x2 LIMITUPPER=y2 lIMITLOWER=0 /
 FILLATTRS=(COLOR=graphdata&j:CONTRASTCOLOR) DATATRANSPARENCY=0.8;
 SERIESPLOT Y=y1 X=x1 / LINEATTRS=graphData1;
 SERIESPLOT Y=y2 X=x2 / LINEATTRS=graphData2;
 ENDLAYOUT; /*overlay*/
 ENDCELL;
 ENDLAYOUT; /*lattice */
 ENDGRAPH;
 END;
RUN;

Band plots are not explicitly defined anywhere in the SAS literature. All that is said in the Language Reference
manual is that the BANDPLOT statement is typically used to show “confidence or prediction limits” (SAS Institute, 2009b,
p.157). In addition, when X is specified, as it is in the code fragment above, LIMITUPPER and LIMITLOWER expect
references by variable or constant to a Y value. What is left unsaid is that LIMITUPPER can never go below
LIMITLOWER. When that occurs, the “band” is completely erased from the output. What is needed in this situation is
fake interleaving where LIMITUPPER looks like it can go below LIMITLOWER and conversely LIMITLOWER looks like it
can go above LIMITUPPER. Such flexibility is reflected in the final version of the time series graph for the
sashelp.stocks data set in Figure 17.

Figure 17. This time the area between the curves becomes the focus of attention. Now the two series plots in each panel are fully
visible and comparable.

To see how it is possible to construct an interleaving band plot, compare Figures 17 and 18 for Intel vs. Microsoft.
On January 4, 1988, the value for close is $55.75 for Microsoft and $25.50 for Intel. With these numbers, the first
band plot in light red extends from $55.75 down to $25.50. A second virtually invisible band in Figure 17 extends from
$25.50 to $25.49; a difference of one cent! One cent is still greater than zero, so LIMITUPPER continues to be greater
than LIMITLOWER. How interleaving works is expressed visually in Figure 18 by increasing the lower boundary drop
from one cent to $10.00.
The REFERENCELINE statement is used for the first time in Figure 18 to mark January 4, 1988 on the graph. The code
for the statement is as follows:

REFERENCELINE X='04Jan1988'D / LINEATTRS=(THICKNESS=4 COLOR=CX505050)
 CURVELABEL="January 4, 1988"
 DATATRANSPARENCY=0.5;

REFERENCELINE differs from LINEPARM in that only an X or Y coordinate has to be specified. Both coordinates are
required for LINEPARM along with a value for SLOPE. Here is the corresponding code fragment for LINEPARM used in
Figure 15(b):

LINEPARM X=EVAL(MIN(date)) Y=EVAL(MEAN(close)) SLOPE=0/ CURVELABEL="Overall Avg";

20

Figure 18. Two distinct continuous bands each with LIMITUPPER and LIMITLOWER values become visible when the lower
boundary drop is increased from 1 cent to $10.00 in the stock data.

SUMMARY AND CONCLUSIONS
An incremental approach has been taken in this paper to address issues associated with input data that translate into
graphs with overlapping points and lines. With the Framingham Heart Study we started with a scatter plot with
marginal histograms that has a large undifferentiated “blob” of overlapping data points in the center. The graph was
squared off so that the two histograms with uniform response axes specifications could be compared. Next rounding,
the inverse of Cleveland’s jittering, was applied so that the “blob” could be color-coded by frequency. The digitized
KDE contour plot was also color coded, but this time the coding was based on density, not frequency. In both
updated plots, color became an important third dimension in the output.

Color was also used as a third dimension in the progression of time series plots for the airlines data. Again, as with
the heart data, information about the impact of a departure date on booking lead times could only be discerned when
color was systematically applied to ranges of departure dates. Unlike the heart data the airlines data could also be
transformed into a more readable six-panel lattice plot.

Lattice plots were also used to promote readability with the stock data. Unlike the airlines data where the time series
plot lines share the same S-curve that characterize cumulative distributions, the stock plot lines were uncoordinated,
jagged and interleaved. Several display formats were presented as improvements over the original display. We favor
the new interleaving band plot where the area between two curves becomes the focus of attention.

What surprised us the most is that we were not able to replicate Cleveland’s 6X1 multiway dot plot in SAS. The
“before” SAS plot showed a 2X3 matrix with the data listed in alphabetical order. What we wanted is a 6X1 matrix
where the data are sorted by median. Having such a format would have made it possible to show in SAS how barley
yields differ by site. Possibly a work-around proved to be so elusive, because three dimensions, each with their own
separate domains, were explicitly defined in the data from the outset.

A lot of ground has been covered in this paper, and if you are not familiar with GTL you may become frustrated when
you try to figure out how the SAS code works. One suggestion is to focus on the graphics output and then return to
the paper at a later date if you need to generate something similar in your own work. In the meantime, read the SAS
literature. The two GTL manuals are particularly helpful. They are in color, motivated by example, and have complete
listings of available options. To make the paper more accessible on a return visit, the following table lists GTL
statements and layouts plus special features presented by Figure Number.

Figure Data GTL Statements GTL Layouts Additional Features

1, 3 Heart HISTOGRAM, SCATTERPLOT LATTICE, OVERLAY Marginal histograms
EVAL= option

4 ,5, 6 Heart HISTOGRAM, SCATTERPLOT LATTICE, OVERLAY “Rounding”

7 Heart SCATTERPLOT, LINEPARM OVERLAY PROC KDE data set

8 Heart SERIESPLOT, SCATTERPLOT GRIDDED, OVERLAY Concatenate to add ROWS
from different data sets.

21

9 Airlines SERIESPLOT GRIDDED, OVERLAY Add COLUMNS from the
same source to input data

10 Airlines SERIESPLOT LATTICE, OVERLAY Axis Reversal

11 Barley NA NA DOT statement in PROC
SGPanel

12 Barley SCATTERPLOT OVERLAY Ordering by median

13 Barley SCATTERPLOT DATAPANEL, PROTOTYPE TMPLOUT=option

14 Stock SERIESPLOT OVERLAY Statistical v. Default Style
Varying line widths

15 Stock SERIESPLOT, LINEPARM DATAPANEL, LATTICE Make comparable with
LINEPARM

16 Stock SERIESPLOT, BANDPLOT LATTICE, OVERLAY CELL block

17 Stock SERIESPLOT, BANDPLOT LATTICE, OVERLAY Interleaving band plots

18 Stock SERIESPLOT, BANDPLOT,
REFERENCELINE

LATTICE, GRIDDED Explain interleaving band
plots

REFERENCES
Albers, J. (1975), Interaction of Color, revised edn, Yale University Press, Westford, MA.
Brewer, C. A. (1994), Color use guidelines for mapping and visualization, in A. M. MacEachren and D. E. F. Taylor

(eds),Visualization in Modern Cartography, Vol. 2, Elsevier Science, Inc., New York, pp. 123–147.
Brockwell, P. J. and Davis, R. A. (1996), Introduction to Time Series and Forecasting, Springer Verlag, New York.
Cleveland, W. S. (1984), Graphical Methods for Data Presentation: Full Scale Breaks, Dot Charts, and Multibased

Logging, The American Statistician, 38(4), 270–280.
Cleveland, W. S. (1993a), Data from his Visualizing Data book.

http://lib.stat.cmu.edu/datasets/visualizing.data.zip
Cleveland, W. S. (1993b), Visualizing Data, Hobart Press, Summit, NJ.
Cleveland, W. S. (1994), The Elements of Graphing Data, revised edn, Hobart Press, Summit, NJ.
Derby, N. and Vo, L. (2010), Graphing a progression of time series plots, Proceedings of the 2010 Western Users of SAS

Software Conference.
http://www.wuss.org/proceedings10/analy/2954_6_ANL-Derby.pdf

Holland, P. R. (2009), Gtl (Graphics Template Language) in SAS 9.2, Proceedings of the 2009 SAS® Global Forum, paper
218-2009.
http://support.sas.com/resources/papers/proceedings09/218-2009.pdf

Hubert, H. B., Feinleib, M., McNamara, P. M. and Castelli, W. P. (1983), Obesity as an independent risk factor for
cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study, Circulation, 67, 968–977.

Kuhfeld, W. F. (2010), Statistical Graphics in SAS®: An Introduction to the Graph Template Language and the Statistical
Graphics Procedures, SAS Institute, Inc., Cary, NC.

Mantange, S., Cartier, J. and Heath. D. (2009) SAS/GRAPH®: Graph Template Language distributed as a SAS Institute
handout at SAS Global Forum, 2009. Code for SCATTERHIST.SAS from the handout can be found at SAS Institute
(2009a).

McClave, J. T. and Sincich, T. (2003), Statistics, ninth edn, Prentice-Hall, Inc., Upper Saddle River, NJ.
Robbins, N. B. (2005), Creating More Effective Graphs, John Wiley and Sons, Inc., Hoboken, NJ.
Rodriguez, R. N. (2008), Getting started with ODS statistical graphics in SAS 9.2, Proceedings of the 2008 SAS®

Global Forum, paper 305-2008.
http://www2.sas.com/proceedings/forum2008/305-2008.pdf

Rodriguez, R. N. and Cartier, J. (2009), Creating Statistical Graphics with ODS in SAS 9.2, Seminar notes.
SAS Institute (2008), SAS/STAT® 9.2 User’s Guide, SAS Institute, Inc., Cary, NC.
SAS Institute (2009a), Sample 35172: Distribution plot.

http://support.sas.com/kb/35/172.html
SAS Institute (2009b), SAS/GRAPH® 9.2 Graph Template Language Reference, SAS Institute, Inc., Cary, NC.
SAS Institute (2009c), SAS/GRAPH® 9.2 Graph Template Language User’s Guide, SAS Institute, Inc., Cary, NC.
SAS Institute (2009d), SAS/GRAPH® 9.2 Statistical Graphics Procedures Guide, SAS Institute, Inc., Cary, NC.

http://lib.stat.cmu.edu/datasets/visualizing.data.zip�
http://www.wuss.org/proceedings10/analy/2954_6_ANL-Derby.pdf�
http://support.sas.com/resources/papers/proceedings09/218-2009.pdf�
http://www2.sas.com/proceedings/forum2008/305-2008.pdf�
http://support.sas.com/kb/35/172.html�

22

Siegel, A. F. and Morgan, C. J. (1996), Statistics and Data Analysis: An Introduction, second edn, John Wiley and Sons,
Inc.,New York.

Watts, P. (2002), Using ODS and the Macro Facility to Construct Color Charts and Scales for SAS Software
Applications, Proceedings of the Twenty-Seventh SAS Users Group International Conference, paper 125-27.
http://www2.sas.com/proceedings/sugi27/p125-27.pdf

Watts, P. (2003), Working with RGB and HLS Color Coding Systems in SAS® Software, Proceedings of the Twenty-
Eighth SAS® Users Group International Conference, paper 136-28.
http://www2.sas.com/proceedings/sugi28/136-28.pdf

Watts, P. (2004a), Advanced Programming Techniques for Working with Color in SAS® Software, Proceedings of the
Twenty-Ninth SAS Users Group International Conference, paper 091-29.
http://www2.sas.com/proceedings/sugi29/091-29.pdf

Watts, P. (2004b), New Palettes for SAS® Color Utility Macros, Proceedings of the Twenty-Ninth SAS® Users Group
International Conference, paper 162-29.
http://www2.sas.com/proceedings/sugi29/162-29.pdf

Yang, D. (2011), Creating a half error bar using Graph Template Language, Proceedings of the 2011 SAS® Global
Forum, paper 284-2011.
http://support.sas.com/resources/papers/proceedings11/284-2011.pdf

Zdeb, M. (2002), Maps Made Easy Using SAS®, SAS Institute, Inc., Cary, NC.

WHAT'S IN RUG11-GTL.ZIP:
1) SAS Data Sets

•HeartBMI_MRW
•groupedReverseAirData

2) SAS Programs
•Figure6.sas
•Figure8.sas
•Figure10.sas

To request additional source code, send e-mail to Perry Watts with the Figure Number in the subject line.

ACKNOWLEDGEMENTS
The authors thank Jean-Jacques Dubois from the US Environmental Protection Agency for sharing the data set that is
graphed in Figure 7(b). We also wish to express our gratitude to William S. Cleveland for his seminal contributions to
the field of statistical graphics. His two books, Visualizing Data and The Elements of Graphing Data are gems of
clarity. They inspired a lot of what appears in this paper.

TRADEMARK CITATION
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their respective companies.

CONTACT INFORMATION
Comments and questions are valued and encouraged. Contact one of the authors:

Perry Watts Nate Derby
Stakana Analytics Stakana Analytics
pwatts@stakana.com nderby@stakana.com
www.PerryWatts.org www.NDerby.org

http://www2.sas.com/proceedings/sugi27/p125-27.pdf�
http://www2.sas.com/proceedings/sugi28/136-28.pdf�
http://www2.sas.com/proceedings/sugi29/091-29.pdf�
http://www2.sas.com/proceedings/sugi29/162-29.pdf�
http://support.sas.com/resources/papers/proceedings11/284-2011.pdf�
mailto:pwatts@stakana.com�
mailto:nderby@stakana.com�
http://www.perrywatts.org/�
http://www.nderby.org/�

	REFERENCES
	ACKNOWLEDGEMENTS
	TRADEMARK CITATION
	CONTACT INFORMATION

