
Paper CC15-2011

In Search of the LOST CARD

 Andrew T. Kuligowski

1

ABSTRACT

“Everyone who‟s not here, raise your hand.” It‟s an old joke, but it points out the difficulty of
identifying persons or things that are not present. The SAS

®
 System has its own version of this

chestnut, the SASLOG message indicating that there are one or more gaps in one‟s input data:
NOTE: LOST CARD.

This presentation will focus on the creation and use of ad hocs to explore input data, in order to
locate the positions where the input data might be incomplete. The goal will be to identify where
the missing data should be, so that you can code around the limitations of your data.

 INTRODUCTION

Anyone who has ever attempted to read an external file into SAS will most likely have
encountered the LOST CARD note in their SASLOG. So, what exactly is a LOST CARD? The

message indicates that SAS has encountered the End of File marker on the external file that was
specified for input without having been able to read all the variables specified on the current
INPUT statement. The wording of the note dates back to the early days of data processing, when
punch cards ruled the computing world. In other words, the message could be taken literally -
one or more cards must have slipped out of the deck prior to processing!

Nowadays, the message might actually indicate that the input dataset is missing one or more
lines of data – assuming that your DATA step is coded to read multiple input lines per pass. It
might also mean that SAS is attempting to read multiple lines of input data to create a single
observation – which the author of the routine may not have intended – and it slammed into the
End of File before it could complete its current observation.

The SASLOG will contain a clue as to which situation is most likely to be occurring, as described
below. Knowing that all good SAS users religiously check their SASLOG (true?), the diligent
analyst will encounter clues as to the nature of the problem.

TWO NOTES: LOST CARD with

 INPUT Statement reached past the end of a line

The first case we will examine is when LOST CARD is accompanied by another message:

NOTE: SAS went to a new line when INPUT statement reached

 past the end of a line.

This combination of messages is displayed when the INPUT statement is attempting to read more
information than is present on a line of data. Perhaps the routine has the wrong input format, and
is trying to read X bytes of data from a fixed-length file with a record length that is less than X
bytes long. Alternatively, the routine could be processing a variable length file, and incorrectly
determining the length of one or more lines.

One quick way to resolve this issue is to add some appropriate options to the INFILE statement.
The manual describes two possible scenarios. The coder can use the MISSOVER and
TRUNCOVER options to prevent SAS from reading past the end of the current line and continue
processing normally. This approach does not explain why the INPUT statement(s) are not in sync
with the actual file format. It does prevent SAS from performing its default behavior, which is
attempting to complete its INPUT by grabbing data from the next line at the cost of setting the

2

unread variables to missing values. Plus, it allows the routine to continue without setting the
ERROR flag. This combination of behaviors may or may not be acceptable to the coder. It
should be noted, however, that this solution only masks the author‟s lack of knowledge of their
input data – it does not explain and assist in correcting those discrepancies.

Alternatively, the user can incorporate the STOPOVER option to force an error condition and stop
processing. This solution does not mask the problem and it prevents the routine from a
successful conclusion. However, it does not actually resolve the situation; the coder must still
research the situation and most likely make alterations to their routine. It should be noted that
this approach avoids the possibility of a problem being missed during a routine scan of the
SASLOG and should be considered as a fail-safe method.

This condition in question can best be illustrated with an example. In this case, the input file
contains class attendance records, one record for each class for each date.

 Date Class Regist. Absent Student IDs of attendees

02/21/05 Physics 12 2 27 29 33 34 37 41 42 43 44 45

02/21/05 Botany 15 7 6 7 9 28 35 36 40 51

02/21/05 Geology 16 9 13 29 30 31 39 45 46

02/21/05 Anatomy 8 1 10 12 22 25 32 47 49

02/21/05 Zoology 10 0 1 3 7 8 9 12 18 19 22 23

02/21/05 Chemistry 9 3 10 12 22 25 32 47

The SAS routine that reads this dataset is set up to read each line of data. The first four variables
each have one occurrence and are in fixed columns at the beginning of each record. The
Student IDs of the attendees are variable in number. In order to process this varying quantity of
student IDs, the routine contains a loop based on the number of students registered.

3 DATA ATTEND;

4 ARRAY ATNDID (25) ATNDID01-ATNDID25 ;

5 INFILE 'NEXTLINE DATA A';

6 INPUT @ 1 DATE MMDDYY8.

7 @ 10 CLASS $CHAR8.

8 @ 20 REGIST 2.

9 @ 28 ABSENT 2. @ ;

10 pt = 34 ;

11 DO CNT = 1 TO REGIST;

12 INPUT @ pt ATNDID(CNT) 2. @ ;

13 pt = pt + 3 ;

14 END ;

15 RUN;

NOTE: The infile 'NEXTLINE DATA A' is:

 File Name=NEXTLINE DATA A,

 Lrecl=62,Recfm=V

NOTE: LOST CARD.

ATNDID01=10 ATNDID02=12 ATNDID03=22 ATNDID04=25 ATNDID05=32

ATNDID06=47 ATNDID07=. ATNDID08=. ATNDID09=. ATNDID10=. ATNDID11=.

ATNDID12=. ATNDID13=. ATNDID14=. ATNDID15=. ATNDID16=. ATNDID17=.

ATNDID18=. ATNDID19=. ATNDID20=. ATNDID21=. ATNDID22=. ATNDID23=.

ATNDID24=. ATNDID25=. DATE=16488 CLASS=Chemistr REGIST=9 ABSENT=3

pt=52 CNT=7 _ERROR_=1 _N_=3

NOTE: 6 records were read from the infile 'NEXTLINE DATA

A'.

 The minimum record length was 50.

 The maximum record length was 62.

NOTE: SAS went to a new line when INPUT statement reached past the

 end of a line.

NOTE: The data set WORK.ATTEND has 2 observations and 31

 variables.
Comment #1b

Comment #1a

Comment #2

3

As mentioned, this routine has some sort of logic flaw, causing both offending messages to be
displayed in the SASLOG. In addition to the two NOTEs that were referenced earlier, there are
other clues that this routine might not be doing what is expected or desired. (These comments
can be cross-referenced with “Comment 1” and “Comment 2” as labeled in the above example.)

1) One NOTE states that the routine read 6 records, which matches the record count of the
sample input file. A subsequent NOTE indicates that only 2 observations were written to
the output SASDATA file. Simple arithmetic shows that we have somehow lost over 50%
of our input data!

2) The LOST CARD note triggers a dump of the current observation to be displayed in the
SASLOG. A quick examination of the variables listed shows that _N_=3. Since it has
already been established that the routine only kept 2 observations, it can easily be
concluded that the incomplete data from this last observation has been discarded. (As if
already knowing that the routine has moved from 6 to 2 observations isn‟t enough
evidence of a problem!)

There are times where a quick examination of the routine, in conjunction with some sample input
data, might provide a quick explanation of the problem; in the process, this will lend itself to a
solution. (Given the simplistic nature of the example in this presentation, many readers may
already see the logic flaw.) In other cases, it may be desirable to write some ad hoc queries to
explore the input data and obtain more information about it.

The SAS System can be used to perform most of the analysis for us. In this case, the options
available on the INFILE statement itself will be employed to explore the data. The LENGTH=
option on the INFILE statement will define a numeric variable, which will be assigned the length of
the current input line when an INPUT statement is executed. The initial ad hoc will begin with
the assumption that the initial INPUT statement is correct as coded, but the array / loop
processing is incorrect. Therefore, the ad hoc will be coded to account for 30 bytes of “key”
values. (Please note that the LENGTH= variable is not written to the output dataset; we will store
its value in another SAS variable so that we can make further use of it in subsequent steps if
necessary.) The other critical assumption for this first pass is that the array is correctly made up
of 2 character numeric variables, delimited by a single blank character. Therefore, the routine will
be set up to divide the remaining line size by 3 to determine the number of members in the array
per line; we will add 1 to the difference under the assumption that the final numeric value is not
blank-padded.

 21 DATA LINELONG;

 22 INFILE INFILE 'NEXTLINE DATA A'

 23 MISSOVER LENGTH=LNSZ;

 24 INPUT @ 1 DATE MMDDYY8.

 25 @ 10 CLASS $CHAR8.

 26 @ 20 REGIST 2.

 27 @ 28 ABSENT 2. @ ;

 28 LINESIZE = LNSZ;

 29 STDNTCNT = (LINESIZE - 33 + 1) / 3;

 30 RUN;

 DATE CLASS REGIST. ABSENT LINESIZE STDNTCNT

 02/21/96 Physics 12 2 62 10

 02/21/96 Botany 15 7 56 8

 02/21/96 Geology 16 9 53 7

 02/21/96 Anatomy 8 1 53 7

 02/21/96 Zoology 10 0 62 10

 02/21/05 Chemistry 9 3 50 6

The results of the ad hoc are meaningless at first glance; they are meant to be tools for the
analyst for further scrutiny. Therefore, the final task – the trickiest one – is the interpretation of

4

the output. A quick scan of the output reveals that only one record has the same value – 10 – for
REGIST as for STDNTCNT; all other values of REGIST are smaller than STDNTCNT. Since
REGIST is the value that was used to determine the number of array elements to be read and
populated, it can easily be seen that the INPUT statement will overshoot the end of line almost
every time.

The record has one other oddity -- the value of "ABSENT" is 0; all other observations show a
positive non-zero integer. Going back to elementary school arithmetic, 10 - 0 = 10. Therefore, it
appears that the code ignored the fact that some students may be absent from a given lecture.
This provides a working theory that STUDENT COUNT = REGISTERED minus ABSENT is more
accurate than what was originally implied in the code; STUDENT COUNT = REGISTERED. A
quick check of the input data will show that the theory holds for every record in the dataset.
(Another ad-hoc routine could have been coded and executed to verify this assumption if the
sample data had been more complex.) Therefore, by replacing the upper bound of the DO loop
with the calculated value STDNTCNT, the data can be read without error.

44 DATA ATTEND;

45 ARRAY ATNDID (25) ATNDID01-ATNDID25 ;

46 INFILE 'NEXTLINE DATA A';

47 INPUT @ 1 DATE MMDDYY8.

48 @ 10 CLASS $CHAR8.

49 @ 20 REGIST 2.

50 @ 28 ABSENT 2. @ ;

51 STDNTCNT = REGIST - ABSENT ;

52 pt = 34 ;

53 DO CNT = 1 TO STDNTCNT;

54 INPUT @ pt ATNDID(CNT) 2. @ ;

55 pt = pt + 3 ;

56 END ;

57 RUN;

NOTE: The infile 'NEXTLINE DATA A' is:

 File Name=NEXTLINE DATA A,

 Lrecl=62,Recfm=V

NOTE: 6 records were read from the infile 'NEXTLINE DATA A'.

 The minimum record length was 50.

 The maximum record length was 62.

NOTE: The data set WORK.ATTEND has 6 observations and 31

 variables.

In the real world, the solution may not be as apparent as it was in this contrived example. It may
be necessary to review the assumptions made at the start of the analysis. The investigation may
have cast a doubt on their validity, or possibly even disproved some of them altogether. The
analyst should adjust the assumptions that are believed to be incorrect, and return to exploring
their data with a fresh angle.

It is also possible that the investigation has not been fruitful, but none of the working assumptions
have been neither proved nor disproved. The analyst has two choices at this point. One
possibility is to return to the analysis using an alternate tool. [For example, during the research
period for this paper, the author explored the use of the $VARYING. informat as a mechanism to
solve the problem. It proved to be less effective than the LENGTH= option described above, and
was omitted from the final draft in the interests of space.] The other approach is to return to the
analyst's assumptions and alter one or more of them. The analyst can then readdress the
problem from a new angle -- the worst case will be that it proves no more fertile than the
unproductive approach that the analyst had just abandoned!

5

LOST CARD ALONE

The “end of line” notice does not always accompany the LOST CARD note. It is possible for the

message to be displayed independently. This occurs when a DATA step has multiple INPUT
statements, or uses a line pointer such as “/” to read multiple input lines with the same INPUT
statement.

In the following example, an external dataset contains 3 separate lines that will be combined by
the DATA step into a single observation in a SAS dataset. The first line contains the Name, Birth,
and Death Date of a famous individual. The second line contains a text field containing a great
accomplishment by that person, and the third line contains a second accomplishment. Each line
is appropriately numbered 1, 2, or 3.

LINE 1 Franklin, Benjamin 1706 1790

LINE 2 First US Ambassador to France

LINE 3 Invented Lightning Rod

LINE 1 Truman, Harry S 1884 1972

LINE 2 33rd President of United States

LINE 3 Ordered US Troops to Korea – 1950

LINE 1 Plante, Jacques 1929 1986

LINE 2 First goaltender to regularly wear a mask

LINE 3 Won Hart Memorial Trophy (NHL MVP) 1961-62

LINE 1 Goodnight, James 1943

LINE 2 Co-founder, SAS Inc. (nee SAS Institute)

LINE 3 Perennially listed on Forbes list of 100 richest people

LINE 1 Berry, Halle 1966

LINE 2 2001 Academy Award Winner – Monster’s Ball

LINE 3 1999 - Executive Producer – Introducing Dorothy Dandridge

LINE 1 Copernicus, Nicolaus 1473 1543

LINE 3 Theorized Earth not the center of universe

120 DATA FAMOUS;

121 INFILE 'NEXTLINE DATA2 A';

122 INPUT @ 6 LINENUMA 1.

123 @ 8 NAME $CHAR32.

124 @ 41 BORN 4.

125 @ 46 DIED 4.

126 / @ 6 LINENUMB 1.

127 @ 8 ACCOMPLISH1 $CHAR66.

128 / @ 6 LINENUMC 1.

129 @ 8 ACCOMPLISH2 $CHAR66. ;

130 RUN;

NOTE: The infile 'NEXTLINE DATA2 A' is:

 File Name=NEXTLINE DATA2 A,

 Lrecl=80,Recfm=FB,Blksize=960

NOTE: LOST CARD.

LINENUMA=1 NAME=Copernicus, Nicolaus BORN=1473 DIED=1543

ACCOMPLISH1=Theorized Earth not the center of universe

LINENUMB=3 LINENUMC=. ACCOMPLISH2= _ERROR_=1 _N_=6

NOTE: 17 records were read from the infile

 'NEXTLINE DATA2 A'.

NOTE: The data set WORK.FAMOUS has 5 observations and

 8 variables.

Unfortunately, the SASLOG shows that the INPUT statement did not function as intended, since
the infamous LOST CARD message is displayed.

6

Once again, the analyst should only perform the minimum amount of investigation necessary to
resolve the problem at hand. Given the simplistic nature of the example and the minimal amount
of test data, the erroneous record(s) may be easily identified by an observant reader. For the
sake of this demonstration, it will be assumed that a visual scan was unable to isolate the
offending data.

Even a neophyte programmer can easily see that 2 of the 3 lines being combined contain
freeform text, while the first line contains freeform text as well as two numeric fields. The first
exploratory ad hoc will take advantage of that fact. The ad hoc will keep an internal line counter
loop, running from 1 to 3, then resetting the counter to 1 and repeating the process. It will
assume that the 1

st
 of each 3 line group should contain numeric fields corresponding to Birth and

Death dates, and will validate that using the VERIFY function. (Yes, there are other ways to
handle this validation; the reader can select their favorite.) Any non-numeric values found where
these two fields are expected will be captured and written to the SASLOG.

149 DATA _NULL_;

150 RETAIN LINENUM 1;

151 INFILE 'NEXTLINE DATA2 A' END=LASTREC;

152 INPUT @ 41 BORN_C $CHAR4.

153 @ 46 DIED_C $CHAR4. ;

154 BORN_V = VERIFY(BORN_C, '0123456789');

155 DIED_V = VERIFY(DIED_C, '0123456789');

156 IF LINENUM = 1 THEN DO;

157 IF BORN_V OR DIED_V THEN DO;

158 FILE LOG;

159 PUT 'Expected Birth/Death not numeric '

160 _N_= BORN_C= DIED_C= ;

161 END;

162 END;

163 IF LINENUM = 3 THEN LINENUM = 1; /*reset count*/

164 ELSE LINENUM = LINENUM + 1; /*increment count*/

165 RUN;

NOTE: The infile 'NEXTLINE DATA2 A' is:

 File Name=NEXTLINE DATA2 A,

 Lrecl=80,Recfm=FB,Blksize=960

Expected Birth/Death not numeric _N_=10 BORN_C=1943 DIED_C=

Expected Birth/Death not numeric _N_=13 BORN_C=1966 DIED_C=

NOTE: 17 records were read from the infile

 'NEXTLINE DATA2 A'.

The ad hoc displays two offending records. Unfortunately, upon further review, this first attempt
only demonstrates an error in the original assumption. The data does not contain a year of death
for those individuals who are still living, leaving the value blank. The ad hoc does not account for
this situation. The first rash solution might be to add a blank to the list of valid values that the
routine can accept in this field. However, that solution would resolve the problem at hand, while
introducing more issues. For example, it would allow two-digit years, which may not be valid for
this particular data. Worse, it would assume embedded blanks, such as “1 45”, to be acceptable.
Further thought allows a more comprehensive solution - the ad hoc will be modified to treat blank
values for this field as valid.

7

177 DATA _NULL_;

178 RETAIN LINENUM 1;

179 INFILE 'NEXTLINE DATA2 A' END=LASTREC;

180 INPUT @ 41 BORN_C $CHAR4.

181 @ 46 DIED_C $CHAR4. ;

182 BORN_V = VERIFY(BORN_C, '0123456789');

183 DIED_V = VERIFY(DIED_C, '0123456789');

184 IF LINENUM = 1 THEN DO;

185 IF BORN_V OR (DIED_V AND DIED_C¬=" ") THEN DO;

186 FILE LOG;

187 PUT 'Expected Birth/Death not numeric '

188 _N_= BORN_C= DIED_C= ;

189 END;

190 END;

191 IF LINENUM = 3 THEN LINENUM = 1;

192 ELSE LINENUM = LINENUM + 1;

193 RUN;

NOTE: The infile 'NEXTLINE DATA2 A' is:

 File Name=NEXTLINE DATA2 A,

 Lrecl=80,Recfm=FB,Blksize=960

NOTE: 17 records were read from the infile

 'NEXTLINE DATA2 A'.

This second attempt successfully eliminates the false positives from our test. Unfortunately, the
SASLOG now displays NO helpful messages! It might be assumed that all of the 1

st
 records are

present and in the correct order. Of course, it is also possible that some of the free-form text also
contain valid 4-digit numeric values in the same columns that the first record stores the two dates.
The analyst must make a decision at this point. He or she can continue on the current path and
enhance the ad hoc to verify that the other records do not, in fact, coincidentally contain valid
numeric values, or they can put this assumption aside and attempt another solution.

(As an aside, it should be noted that this ad hoc is not complex enough to handle anything other
than the first occurrence of a date-related error. The ad hoc never wavers from the assumption
that each group contains 3 and only 3 records, even after that theory is invalidated. To be truly
useful, this routine should be enhanced to check all records for occurrence of valid dates in the
proper columns, to determine if the values are coincidental or if an error has been found, and to
adjust the 3-record loop once an error is found and reported.)

The next data condition that can be verified is that each of the 3 lines has some sort of unique
identifier. In this contrived example, the records are clearly identified using numbers from 1 to 3.
The analyst will be lucky to encounter something this basic in the real world – at least when
dealing with problematic data. Often, it will take some combination of fields / values to uniquely
identify each line.

The next ad hoc will build upon the assumption that each line is sequentially numbered in a 1
through 3 looping scheme. It will start with the belief that the first line will be numbered „1‟, and
each subsequent line will follow the looping pattern, resetting itself back to “1” again after the 3

rd

line. Should a breach in that pattern be detected, the routine will display the offending record in
the SASLOG, and will reset its internal counter based on the value detected. (This ad hoc is also
coded in a manner that is too trusting of its obviously erroneous input data, since it assumes that
all fields will contain only the value „1‟, „2‟, or „3‟ – no other numeric values, and no letters or
special characters. The ad hoc author must make careful decisions as to how complex to make
each routine, remembering that the goal of the ad hoc is simply to provide information to the
analyst about their input data.)

8

235 DATA _NULL_;

236 RETAIN EXPECT_LINENUM 1;

237 INFILE 'NEXTLINE DATA2 A';

238 INPUT @ 6 LINENUM 1. ;

239 IF LINENUM ¬= EXPECT_LINENUM THEN DO;

240 FILE LOG;

241 PUT 'BADDATA: INPUT LINE=' _N_

242 'Actual Line Number=' LINENUM

243 'Expected=' EXPECT_LINENUM ;

244 END;

245 IF LINENUM = 3 THEN EXPECT_LINENUM = 1;

246 ELSE EXPECT_LINENUM = EXPECT_LINENUM + 1;

247 RUN;

NOTE: The infile 'NEXTLINE DATA2 A' is:

 File Name=NEXTLINE DATA2 A,

 Lrecl=80,Recfm=FB,Blksize=960

BADDATA: INPUT LINE=17 Actual Line Number=3 Expected=2

NOTE: 17 records were read from the infile

 'NEXTLINE DATA2 A'.

The results of this ad hoc are much more successful than the earlier attempt. Looking at the
SASLOG, it can be determined that only one line of the input data is incorrect – the 17

th
 line of the

file. Further, it can be seen that this line contains a Line Number of 3, whereas the looping
pattern would indicate that the data should contain a Record Type of 2. Further, since the
SASLOG reports that problem occurs in Line number 17, and there are only 17 lines in the file, it
can be determined that the last combination of records is missing the middle record of the triad.

In this particular example, a little extra examination of the original SASLOG could have potentially
saved us a lot of work. It could easily be assumed that the last group of 3 records is the one –
the only one – with issues. This is because, as established earlier, the variables BORN and
DIED are numeric values. However, the SASLOG never indicates that there is an issue with any
of the values used to populate those fields. If there were problems with missing or extra records
in the file, it is highly likely that the SAS routine would attempt to load non-numeric values into
these variables. This would cause additional problems and messages that would have made a
much less attractive SASLOG, but one much easier to debug. This knowledge would have saved
a great deal of time in researching the situation (but it would have made for a rather short
presentation!) Again the goal is NOT to write the prettiest, most effective ad hoc, but to spend as
little time as possible in determining the problem and therefore looking towards resolution.

The last part of the puzzle – the solution – is not as straightforward as one might initially assume.
There are several potential solutions to the puzzle; any one or several may be appropriate:

 The data sent were incorrect; the provider must recreate and resend.

 The data sent were incorrect. However, corrected data cannot be delivered in a timely
manner. The original routine must be enhanced to watch for offending data conditions,
either rejecting the offending records outright or using some intelligent assumptions to
obtain as much valid data as possible from those records.

 The data sent are correct, but the specifications delivered to the programmer were
incomplete – or the routine was not coded correctly. The original routine must be
debugged or modified to adhere to the correct conditions.

 The data are and will continue to be of inconsistent quality. The original routine must be
enhanced to assist in catching and reporting problematic data without having to take
extra time to evaluate the situation after execution.

 CONCLUSION

9

This paper addressed a message that is commonly found in a SASLOG. It discussed the use of
ad hoc routines to explore WHY the message occurred, and covered how to correct a routine to
prevent the recurrence of those messages. It is hoped that the mechanisms discussed in this
paper might be used by the readers in their daily jobs. However, this paper is a failure -- at least
in part -- if the process stops there. It is hoped, even more strongly, that the concepts of
developing and using ad hoc routines to fully understand one‟s data and make the readers‟ daily
job easier are the true lessons that the reader retains from this paper.

REFERENCES / FOR FURTHER INFORMATION

Burlew, Michele M. (2001). Debugging SAS Programs – A Handbook of Tools and Techniques.
Cary, NC: SAS Institute, Inc.

Kuligowski, Andrew T. (2003), "The BEST. Message in the SASLOG". Proceedings of the
Twenty-Eighth Annual SAS Users Group International Conference. Cary, NC: SAS Institute, Inc.

Kuligowski, Andrew T. (2000), "Pruning the SASLOG – Digging into the Roots of NOTEs,
WARNINGs, and ERRORs". Proceedings of the Twenty-Fifth Annual SAS Users Group
International Conference. Cary, NC: SAS Institute, Inc.

SAS Institute, Inc. (2000), SAS OnlineDoc, Version 8. Cary, NC: SAS Institute, Inc.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

The author can be contacted via e-mail at:

KuligowskiConference@gmail.com (preferred) or
KuligowskiAndrew@gmail.com

ACKNOWLEDGMENTS

The author wishes to offer his thanks to Debbie Buck for her assistance in getting this paper from
concept to completion. He would also like to give a nod to Justin Hayward, John Lodge, Graeme
Edge, Ray Thomas and Mike Pinder – the Moody Blues – whose 1968 album inspired the title of
this presentation. (Furthermore, he rather deviously wonders how many music fans will
accidentally stumble upon the web site containing this presentation as a result of a web search on
the band‟s or artists‟ names?)

mailto:KuligowskiConference@gmail.com
mailto:KuligowskiAndrew@gmail.com

