
 1

MWSUG2011 - Paper CC06

Tracking Metadata within SAS Drug Development Using SDDPARMS

Bradford J. Danner, i3 Statprobe, Lincoln, NE

Matthew J. Wiedel, i3 Statprobe, Lincoln, NE

Katrina E. Canonizado, Celerion, Lincoln, NE

ABSTRACT

An increasingly prevalent request from our sponsors is to provide cross-referenced documentation associated with all
datasets, programs, macros, and outputs contained in an electronic submission. To accommodate these requests, without
modifying our standard processes too much, we found a valuable tool in the SDDPARMS dataset, an optional SAS

®
 file

capable of being produced with all programs in SAS Drug Development. We developed an easy-to-use, non-invasive macro to
compile and update metadata, required for the documentation package, as a SAS data table. The macro we propose requires
limited updates from users and utilizes common Base SAS procedures, macro processing, and the Data step with the Update
statement. While permanent SAS datasets are not updated instantly when programs are submitted in batch as Jobs in SAS
DD, the method we propose works similarly when submitted from both the Process and Job editors. Once all metadata has
been finalized for a submission, the resulting permanent SAS dataset may be processed as needed and produced using an
appropriate ODS destination, for example the ExcelXP tagset. Preliminary results suggest a significant reduction in the time to
produce the documentation package, and increased quality relative to early, more involved approaches employed.

INTRODUCTION

The decision was made several years ago to upgrade our instance of SAS off a non-supported operating system (VMS,
running 8.2 version SAS) over to the latest and greatest version of SAS Drug Development (SDD) at the time (SDD version
3.4, running 9.1.3 SAS). For those who are unaware of SDD, it is a SAS environment for the pharmaceutical and life science
industries designed to gracefully meet compliance standards set forth by regulatory agencies (most specifically Item 11/12
compliance), while at the same time providing one enterprise-wide global software and storage platform, and a development
and execution environment for SAS programmers, statisticians, and scientists. As one can imagine, the paradigm shift of
transitioning from VMS SAS to an entirely new platform was dramatic for our organization. In fact, it is an ever-evolving
process that has taken more than two years to accomplish, and admittedly, there are none of us that feel the application has
yet to be used to its fullest potential.

However, there have been instances where we have found great efficiencies with the use of our new SAS system, and would
like to take this opportunity to briefly discuss our experience. As a small CRO (Celerion) catering to a wide variety of
pharmaceutical and biotech customers conducting primarily first in man studies, requests for cross-referenced documentation
of programs related to electronic submissions has been limited, until recently, once certain memos/letters by the FDA and third
part oversight vendors become increasingly prevalent. At first our standard processes were not designed to gracefully collate
and present information regarding program metadata, function, and input/output without a lot of manual labor. Requests for
information, besides providing actual programs and macros to sponsors, had us tracing details regarding titles, macros called
by individual programs, permanent SAS datasets utilized by specific programs, and similar types of information. Our first such
foray into requests of this nature conservatively took greater than 200 non-billable hours, and over a month of back-and-forth
reviews and subsequent revisions.

Manual reviews by contributors to various projects were intensive, not efficient or profitable use of time, and quite often were
prone to error and several cycles of re-work. Different types of reviews were required based upon expertise – specifically
programmers, reporting associates, and report leaders were all necessary in delivering an adequate final product. Examples of
the great potential for error included, but were not limited to, spelling (major and minor), transcribed numbers, and of greatest
importance, false cross-referencing of submission components and their associated metadata and outputs.

To alleviate some of the problems, we realized several tools within SAS, and specifically SDD, were at our disposal, and would
efficiently provide the deliverable we had been struggling to produce. Given the necessary information required for the cross-
referenced documentation package, much could be gleaned from SASHelp Views or Dictionary Tables (specifically output title
names and numbering associated with a program). Much of the other information required was conveniently located in the
SDDPARMS dataset (an optional SAS table associated with a program within SDD holding information about any user-defined
parameters accessed within that run cycle). Furthermore, not wanting the end process to be too complicated, we limited our
code to take advantage of simple Base SAS tools, specifically the Data step, macro language and processing, and the SQL
procedure. And finally, we did not have the time, nor the desire, to redevelop all the standard table and figure programs
required for a submission. We wanted our approach to use the programs which were already available, and be non-invasive,
such that limited updates would be required by end users.

 2

METHODS/FRAMEWORK

The most basic information required by the documentation packages was an accurate assessment of Table and Figure titles
and numbers. Several of our programs store this information in an accessible repository, but, some programs do not, requiring
the user to enter this type of information directly within the program itself. Therefore, we knew we needed a way to track this
information as the output was being created. And since many of our applications produce multiple outputs, tracking this
information had to be accomplished dynamically within a program, regardless of how many outputs were created. Thus we
chose to us the SQL procedure to query the TITLES dictionary following every production of an output as follows:

%global mtdpnam mtdids_ mtdmcals_ mtdtit mtdts;

proc sql noprint;

select text into: mtdtit separated by '~' from dictionary.titles where(type="T");

In order to tie this in with the name of the program, runtime, various accessed datasets, and programs or macros invoked to
produce the output, information was gathered from the SDDPARMS dataset every time a program was run. Many
programmers not familiar with SAS Drug Development may wonder what this PARMS dataset is. In a nutshell, any metadata
or macro parameter used in a program may be accessed through a temporary dataset every time it is run, and some of the
information is exactly what we needed to compile our documentation package. The following screen print provides a very
simple example of some of the dynamic information available to a programmer every time he/she executes a process in SDD.

As briefly demonstrated above, the use of SQL to dynamically grab all available title information from the TITLE dictionary was
just too good to pass up. Therefore, we chose to duplicate this manner of syntax when querying the SDDPARMS dataset for
additional information. We chose to use a macro variable process so that every time the macro was compiled, the information
could easily be re-declared and initialized to null. Once the information was gathered, it was passed into both a permanent
and temporary SAS dataset, conveniently using the UPDATE function on the SAS dataset, which allows us to access a
dataset, without having to run through the entire dataset line by line. The following example code illustrates this:

select value into :mtdpnam from &SDDPARMS where (id="<process>" and valtype="filename");

*** program name ***;

select value into :mtdids_ separated by ', ' from &SDDPARMS

where ((id="SDTM" or id="INC" or id="CDASH" or id="ADAM") and (index(value,'.sas7bdat')))

order by value; *** datasets ***;

select value into :mtdmcals_ separated by ', ' from &SDDPARMS

where (index(value,'.sas') and id ne "SETUP" and index(value,'.sas7bdat')=0 and id ne

"<process>" and id ne "MNEW") order by value; *** SAS programs or macros included in a

program ***;

select put(input(scan(value,1,'T'),yymmdd10.),date9.)||" "||scan(value,-1,'T') into :mtdts

from &SDDPARMS where upcase(valtype)="DATE";

quit; *** run date and time ***;

The establishment of a permanent SAS dataset for subsequent use is obvious. Perhaps less obvious, the redundant step of
creating a temporary SAS dataset in the Work library, although the name chosen for this temporary dataset was chosen such
that the likelihood a user of the application would unintentionally overwrite it was minimized. Within the SDD system, programs
may be submitted individually within the process editor, or in sequence using what is referred to as jobs within the job editor.
Depending on which interface is used to submit code and produce output changes the functionality and operation of our
metadata tracking approach.

Within SAS DD, the process editor is a Java application that allows users to build and modify process, or programs. One of the
strengths of the process editor is programs can be designed to run automatically with no user intervention, or alternatively with
a user interface to solicit specific parameters, for example data files or variables to use or output destinations.

 3

The job editor within SAS DD is a Java application that allows users to run multiple processes sequentially. Unfortunately,
when processes are run sequentially in a job, updates made to a permanent dataset, are not updated until the end of the job.
This can often lead to misleading results, and reports generated using obsolete data.

Unfortunately, when programs are submitted in sequence using a job editor, permanent SAS datasets are not updated until
the very last process within the job. Only the entry created by the last program is reflected in the permanent metadata. Given
our approach, it is necessary to update our running log of metadata every time an output is produced. To alleviate this
difficulty, using both a permanent and temporary (with a reserved designation) dataset was required and is illustrated in the
following example code:

%let mtdexist=mnew.metadata;

%let wmtdexist=work.metadata_injob;

data work.metadata;

length runtime $30. progname $40. idata $200. macros $200. title $200.;

runtime="&mtdts.";

progname="&mtdpnam.";

idata="&mtdids_.";

macros="&mtdmcals_.";

title="&mtdtit.";

run;

data work.metadata_injob;

%if %sysfunc(exist(&wmtdexist)) %then %do;

update work.metadata_injob work.metadata;

%end;

%else %do;

set work.metadata;

%end;

by title;

run;

data mnew.metadata;

%if %sysfunc(exist(&mtdexist)) %then %do;

update mnew.metadata work.metadata_injob;

%end;

%else %do;

set work.metadata_injob;

%end;

by title;

run;

Finally, all the pieces of this process are centrally located in a macro repository, aptly named %metadata, and called/compiled

every time output is produced (Canonizado et al., 2011). Therefore, the only modification required of the individual programs
themselves is to invoke the macro – which was added during the last maintenance release of many standard programs.

RESULTS

The SDDPARMS dataset is a SAS table representation of the parameters window available with any SAS program or process.
The dataset is composed of six columns, or variables [LEVEL, ID, LABEL, PARMTYPE, VALTYPE, VALUE, and UPDATE].
Without going into too much detail, various types of information are accessible programmatically though this table and include
user id, run date and time, program name and pathway, name and pathways of all inputs, outputs, logs, and macros. While
much, if not all, of this information may be available using a combination of SASHELP or DICTIONARY tables, the really
wonderful thing about SDDPARMS is all the information is centrally located in one place!

To accommodate the initial needs of our documentation package, we selected to always associate the current run date and
time with the program name, all input datasets accessed by the program, all macros included by the program, all linked to
each individual output file identified by title and number, in our case usually LST text output, CGM, or RTF. Therefore, the
metadata dataset produced would contain one row for every individually titled output produced. Given the design of the
approach, it was very easy for new programmers to a project to implement the macro. The only direction required is to call the
macro following the production of an output!

Once all programs for a submission have been validated, and everything has ideally been finalized, we now have one SAS
dataset that has nearly all the information required most sponsors requirements for submission package documentation. The
following example briefly illustrates a subset of our submission metadata in SAS data format:

 4

Of course, many sponsors have their own preferences and ideas as to how the information is to be presented, however, since
the information is in a SAS dataset, and we are using SAS to access it, manipulation, re-arrangement, and mining of the data
to satisfy customer needs is programmatically possible with relatively little time or effort, using BASE SAS procedures, and the
DATA step.

COMPONENTS OF SUBMISSION AND DOCUMENTATION PACKAGE

Data package requests can differ from client to client. The FDA suggests attaching Table and Figure code along with other
supplemental documentation to tag along with the actual data and report submission. Clients are thus asking for asking an
increasing amount of information to demonstrate due diligence. Below is a list of items we have routinely been asked to
include in a typical Data Submission Package:

 SDTM: Study Data Tabulation Model: A database with structure readily accepted by the FDA. These standards

are created and updated by the CDISC organization.

 ADaM: Analysis Data Model: A database structure derived from the SDTM database, designed to ideally
facilitate efficient analysis.

 DEFINE.XML: Navigable documentation for SDTM and ADaM and a study’s Case Report Form with four main

parts: Table of Contents of Domains, Variable Level information, Value Level information, and Code list
information.

 ANNOTATED CRF: Annotation of the original CRF using the mapped SDTM variable names with explanation

when needed.

 DATASET, TABLE AND FIGURE PROGRAMS: The SAS programs that create all the ADaM datasets along
with all the post report Safety, PK, PD, or efficacy tables and graphs which use the ADaM data as input data.
Each of the programs should only have to input one ADaM dataset, and macros that perform statistical inference
are included.

 eCTD TOC: Electronic Common Technical Document Table of Contents: A display of contents is inside the
submission package. It displays type of item, item name, and titles. Often a SAS program will create many
different tables or figures.

 ANALYSIS PROGRAM AUDIT LIST: A list displaying the titles of each table and figure with its corresponding
table/figure number, input dataset, and program used to create the table or figure. Supplemental worksheets for
ADaM dataset creation programs and submission required macros are also included.

Now that we have our submission metadata collected, and the ability to programmatically manipulate it, the information may
be effectively directed to and presented in the eCTD TOC and Audit Program Lists. Several alternatives are possible for
delivery of this information, such as linkable PDF or HTML documents, of Word readable RTF. Perhaps one of our more
favored approaches to presenting the information makes use of the ExcelXP tagset. Our first foray into the production of a
submission package and associated documentation required the production and delivery of multi-worksheet Excel
spreadsheets and at the time were compiled manually. But with the use of the ExcelXP tagset we are able to do all production
work from within SAS. A very simple sub-setted example of an eCTD TOC, viewed in Excel is shown here:

 5

The basic method by which these multi-sheet documentation spreadsheets are produced within SAS, using only the PRINT
procedure and the ExcelXP tagset, with only a few of the many formatting options specifically determined, is illustrated here,
using an Analysis Program Audit List as an example:

ods listing close;

ods tagsets.Excelxp

file="&outfolder/ANALYSIS PROGRAM AUDIT LIST.xml" style=normal

options(

 zoom='100'

 frozen_headers='Yes'

 autofilter="All"

 absolute_column_width="40"

 sheet_interval='Proc'

 sheet_name="Analysis Dataset Programs");

proc print label data=dsets.anal_sets noobs;

label value='Dataset Name' memlabel='Title' pname='Program'

idata='Input Datasets';

var value memlabel pname idata;

run;

ods tagsets.Excelxp options(sheet_name="TFL Programs"

 absolute_column_width='15,100,40,40'

 autofit_height='Yes'

 zoom='85');

proc print label data=dsets.all_titles noobs;

var tnumber title program idata;

where index(tnumber,'Appendix')=0;

*** LISTINGS NOT REQUIRED TO BE DOCUMENTED ***;

run;

ods tagsets.Excelxp options(sheet_name="Submittable Macros" absolute_column_width="50"

zoom='100');

proc print label data=dsets.macros noobs;

var value purpose programs;

run;

ods tagsets.Excelxp close;

ods listing;

 6

As briefly mentioned before, our first such attempt to compile a documentation package was accomplished primarily through
manual means, often leading to many errors, and an intensive, or extensive, revision process, that neither we nor the client
enjoyed. Through some simple tools available in Base SAS, and the helpful session metadata provided by the SDDPARMS
dataset in SAS Drug Development, we are now capable of programmatically producing this deliverable, saving both the client
and SAS programmers time and money, not to mention frustration. An additional benefit to accomplishing this task
programmatically in SAS is the traceability that has been achieved.

DISCUSSIONS AND CONCLUSIONS

While much efficiency has been achieved through the adoption of this process, we are still continually finding areas for
improvement and further innovation. Perhaps the initial, and primary caveat we discovered, was the recommendation to run, or
activate the macro only once a program and been through validation and nearly finalized, to avoid adding false or incorrect
data to the metadata dataset. Methods are available to clean such spurious records, and innovations in process to minimize
the time necessary to make corrections.

Once the metadata is compiled, the permanent SAS dataset may be modified and updated if necessary by the submission or
reporting programmer. As stated before, should corrections to be required to outputs, extraneous or incorrect records may
become part of the metadata. Using Base SAS procedures, records can be corrected, added, or removed entirely prior to
preparing the final submission package. Alternatively, with minor updates to the macro itself, its possible post-production
modification could become unnecessary since updates are automatically incorporated by running original programs.

Accessing and compiling submission metadata through the SDDPARMS dataset using the %metadata macro (Canonizado et

al., 2011), or a similar approach, we feel is a non-invasive tool programmers may use to help document and track data about
individual programs and their outputs. However, in order to produce accurate metadata about the program, some investment
of time may be required early on during program development. The most obvious example is the declaration of data inputs in a
program. For example, when declaring libraries and locations of data, it is important to only include the datasets used by a
program, and not entire folder contents, otherwise a program will claim to use more data than it actually has. While taking such
care early on might be tedious (excessive button clicking in the Process Editor interface), it will result in cleaner programs that
run more efficiently, and does encourage a ‘best practice’ approach to programming.

In conclusion, we believe the use of the SDDPARMS dataset in SAS Drug Development proposed herein offers an efficient
programmatic approach to compiling metadata useful for documenting an electronic submission. The approach requires
minimal administrative oversight, as compared to manually tracking all components within the submission, and has great
potential to save both time and money. Although testing has been limited, we estimate at least a 90% reduction in time
necessary to compile (relative to earliest manual attempts deliver), and occurrence of errors and time to complete review
cycles has dramatically decreased. While accessing the SDDPARMS dataset as we have has offered a quick and efficient
application to compile metadata, we believe other dynamic endpoints may be accomplished through its use in SAS Drug
Development. Possible examples include document versioning, file compilations, and dynamically driven code generation.

 7

Similar to how the SASHELP and DICTIONARY libraries may be used, we believe SDDPARMS on the SAS Drug
Development platform offers an equally powerful tool to developers willing and able to access it.

REFERENCES AND RECOMMENDED READING

Canonizado, K.C., B.J. Danner and M.J. Wiedel. A Non-Invasive Macro to Track Submission Metadata in SAS® Drug
Development, SAS Global Forum, 2011.

SAS 9.1.3 Online Documentation

SAS Drug Development 3.4 User’s Guides

ACKNOWLEDGEMENTS

We would like to thank our colleagues in the Biostatistics and Pharmacokinetics groups in Clinical Pharmacological Sciences
at Celerion who provided comments on earlier drafts, and reviewers in the Statistical Programming department at i3 Statprobe.
Their insights and guidance are appreciated.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Please contact the authors at:

Bradford J. Danner
i3 Statprobe
brad.danner@i3statprobe.com

Matthew J. Wiedel
i3 Statprobe
matthew.wiedel@i3statprobe.com

Katrina E. Canonizado
Celerion
621 Rose Street
Lincoln, NE 68502
katrina.canonizado@celerion.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:brad.danner@i3statprobe.com
mailto:brad.danner@i3statprobe.com
mailto:matthew.wiedel@i3statprobe.com
mailto:katrina.canonizado@celerion.com

