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ABSTRACT 
Logistic regression is widely used in analysis of categorical data especially data with variables that have binary 
responses. It can be used in many fields where discrete responses and a set of explanatory variables coexist. For 
instance, it can be used in survival analysis which often uses data with variable having values of ‘success’ and 
‘failure’. We can let logistic regression do more things for us by extending it. This paper will discuss under what 
circumstances we can extend logistic regression by using SAS.  
 

INTRODUCTION 
Logistic regression can predict a dichotomous outcome using independent variables. This dichotomous outcome can 
be anything like success or failure, life or death, presence or absence, win or lose, admission or rejection, you name 
it. But sometimes we will see that the outcome variables are not of two levels, but of more than two levels, in other 
words, polychotomous.  Polychotomy can be regarded as a generalization of dichotomy. We can use logistic 
regression to handle polychotomous outcome, which can be found in many places, like survey data. In SAS, PROC 
LOGISTIC is used to perform all these tasks. When sample size is small, we can use exact logistic regression. We 
will also see the PROC GENMOD, PROC CATMOD, PROC PROBIT used in logistic regression. Even PROC 
PHREG can be used to perform logistic regression. That’s what I mean using SAS to extend logistic regression. In 
logistic regression we are trying to estimate the probability that a given subject will fall into one outcome group or the 
other. 
 

DISCUSSION 
Before I discuss the extensions to logistic regression, let’s briefly review what is a logistic regression?  Logistic 
regression is an extension to regression. In this world we are living, one thing, to some extent, is related to another 
thing. Therefore, one thing’s change will lead to another thing’s change. For example, the amount of carbon dioxide 
released in the air will lead climate change. The temperature will affect the growth of crops. The demand will affect 
the cost etc. We try to use regression to find relationships between variables and the causal effect of one variable 
upon another and to estimate the quantitative effect of the causal variables upon the variable that they influence. The 
value of a normally distributed dependent variable can be predicted by the values of one or more independent 
variables, which can be either continuous or categorical. We can use parents’ height to predict a child’s height and 
years of education to predict income. Regression analysis helps us understand how the typical value of the 
dependent variable changes when any one of the independent variables is varied, while the other independent 
variables are held fixed.  
 
In regression analysis, a response variable Y can be predicted by a linear function of a regressor variable X. We can 
estimate β₀, the intercept, and β₁, the slope, in  

 
Yᵢ   =   β₀ +  β₁Xᵢ  +  εᵢ 

In SAS, this can be performed by 

proc reg; 
   model y = x; 
run; 
 
If the dependent variable was not a continuous variable (PSA), but instead diagnosis of a disease (yes or not), which 
is dichotomous, that is, the dependent variable can take the value 1 with a probability of success p, or the value 0 
with probability of failure 1-p. Then we cannot use the above procedure.  
 
Why? This could result in negative values or values greater than 1 for dependent variable Y, which doesn’t make any 
sense at all.  Therefore, the techniques used in linear regression to estimate the regression coefficients cannot be 
applied to the logistic regression case. Besides that, one of the assumptions of regression is that the variance of Y is 
constant across values of X (homoscedasticity), which cannot be the case with a binary variable, because the 
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variance is pq. Suppose 50 percent of the people are 1s, then the variance of .25 would be its maximum value. As we 
move to more extreme values, the variance decreases, for example when p =.10, the variance is .1*.9  = .09, so as p 
approaches 1 or 0, the variance approaches 0.  Furthermore, the significance testing of the β weights rest upon the 
assumption that errors of prediction (Y-Y') are normally distributed. Because Y now only takes the values 0 and 1, this 
assumption is very hard to justify. Therefore, the tests of the regression weights are suspect if we use linear 
regression with a binary dependent variable. This type of variable is called a Bernoulli variable. 
 
An extension of regression called logistic regression comes into being. It resorts to a transformation which makes 
sure that value of dependent variable y is 0 (no event) and 1(event). We can also call it an event variable.  How does 
a logistic regression work? Suppose p the probability of the event, then the odds of the event are Odds  =  p / (1-p). 
Take the logarithms of both sides, we have Ln (Odds) = Ln (p/1-p). The left side is a logit. Ln stands for Loge, where e 

is a mathematical expression whose numerical value is equal to 2.71828. 
Suppose we use an independent variable X to predict the probability of being an event, then the following is the 
simple logistic model. 
 

                       Ln (Odds)  =  Ln ( p / 1-p )  =  β₀ +  β₁X + e 

 
This depicts a linear relationship between the natural logarithm (ln) of the odds of an event and a continuous 
independent variable. In other words, A logistic regression model is a liner regression equation in which the response 
variable is the log odds. β₀ is the intercept and β₁ is logistic regression coefficients. By means of the logistic function, 

we find a way of relating the outcome variable to the explanatory variables. And by means of logistic transformation of 
the probability p, we get rid of the probability for the sake of analysis. The left side of equation can take on any value 
from    to  +  . 

 
The linear relationship between X and Ln (Odds) can be shown in the following graph 
 

                                                                           L = β₀ +  β₁X 

                                              

                                          L 

 

 

                                                    

 

                                                                       X 

 

But in reality, we don’t see logits in dependent variable, instead we see bunches of 1s and 0s. It’s easier to use 
probability instead of odds to relate an independent variable to dependent variable. We can convert odds to 
probability by taking the logarithms of both sides. 
 
Suppose L = Ln (Odds ) = Ln ( p / 1-p ), then it can be shown that  
 
p =  e 

L
 / ( 1 + e

L 
) 

 
And that is the logistic function and it has a graph as follows:                            
   

                                               1 
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If log odds are linearly related to X, then the relation between X and p is nonlinear, and has the form of the S-shaped 
curve you saw in the graph. Now it is not a straight line but an upward curve. We can call L as the ‘log odds’ or ‘logit’ 
of  p. 

The simple logistic model 
 
                       Ln (Odds)  =  Ln ( p / 1-p )  =  β₀ +  β₁X + e 
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can be implemented in SAS by using  
 

PROC LOGISTIC; 

MODEL Y=X; 

RUN; 

 
Usually there is more than one independent variable in the model. A typical data set for this model would look like 
this: 
 

                                 id    y    x1    x2    x3    x4 

 

                                  1    1    17    88     1    M 

                                  2    0    16    87     2    F 

                                  3    1    21    28     1    M 

                                  4    0    23    52     1    F 

                                  5    1    38    41     1    F 

                                  6    0    19    54     1    F 

                                  7    0    16    76     2    M 

                                  8    1    27    59     1    M 

                                  9    0    13    49     1    M 

                                 10    1    26    38     2    F 

 

The independent variables can be continuous variables or dichotomous variables. There is no assumption about the 
distribution of the independent variables, like normally distributed, linearly related, and of equal variance within each 
group. 
 
The above procedure is used when outcome is dichotomous. It can also be extended to the cases of polychotomous 
outcome. We can define obesity as a binary variable, marked by BMI >=30 and <30, we can also define it as: obese 
(BMI >=30) overweight (25<=BMI<30) normal weight (18<=BMI<25) . Polychotomous outcome can be ordinal 
(ordered categories) or nominal (unordered categories) A 5-point Likert scale is used to assess patient's opinion 
about a medical treatment measure in a survey. The response options are "strongly disagree", "disagree", "neutral", 
"agree" and "strongly agree". The researchers have reason to believe that the psychological "distances" between 
these points are not equal. For example, the "distance" between "strongly disagree" and "disagree" may be shorter 
than the distance between "disagree" and "neutral". This data can be treated as ordinal outcome. Nominal outcome is 
not ordered. A good example is race has values 1=White, 2=Hispanic, 3=American Indian, 4=Black, 5=Other. 
 
Suppose we have a subset data set with polychotomous outcome and it looks like this: 
 

                                 id    y    x1    x2    x3    x4 

 

                                  1    1    17    88     1    M 

                                  2    2    16    87     2    F 

                                  3    1    21    28     1    M 

                                  4    3    23    52     1    F 

                                  5    1    38    41     1    F 

                                  6    3    19    54     1    F 

                                  7    2    16    76     2    M 

                                  8    1    27    59     1    M 

                                  9    2    13    49     1    M 

                                 10    3    26    38     2    F 

 
Where y is outcome variable. 1= "disagree" 2 = "neutral" 3= "agree". 
 
We can use this SAS code to run this data. 
 
proc logistic;  

class x3 (ref='1') x4 (ref='F') /param=ref;  
model y =x1 x2 x3 x4 /rsquare;  
output out=probs predprobs=(i c);  
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run;  

 
ref allows to indicate reference category for a class variable. The quotation marks are required. The default is 
REF=LAST. 
 
param specifies the parameterization method for the classification variables. A full description can be found SAS 
Online Documentation, procedure PROC LOGISTIC under CLASS statement. There you can find some keywords. 
the default is PARAM=EFFECT.  
 
rsquare requests a generalized R

2
 measure for the fitted model 

 
predprobs=(i c) requests the predicted probability of each response level (i) and cumulative probabilities (c). In our 
example the individual probabilities (for each resopnse level) are: P(Y = 1, disagree), P(Y = 2, neutral), P(Y = 3, 
agree) and cumulative probabilities are: P(Y = 1, disagree), P(Y <= 2, disagree or neutral), and the last cumulative 
probability, P(Y <= 3, disagree or neutral or agree) which is equal to 1. 
 
For exact logistic regression, you can refer to a paper ‘Performing Exact Logistic Regression with the SAS system’ by 
Robert E. Derr (P254-25) 
 
Now I will discuss the conditional logistic regression. When we use PROC REG and PROC LOGISTIC, study 
subjects are independent of one another and any violation of this assumption result in invalid statistical inference. 
However, many clinical and epidemiologic study designs often give the researcher correlated data. We often 
encounter this kind of correlated data in study designs like: prospective study, retrospective study, and cross-
sectional study. A retrospective study is also called a case-control study. It compares a group of people with a 
disease (cases)  to another group of people without the disease (controls). It is used by researchers like 
epidemiologists to identify and assess factors that are associated with diseases or health conditions. The researchers 
try to relate their prior health habits to their current disease status and compare cases and controls with respect to 
previous exposures to factors of interest. Different diseases have different exposures. Lung cancer may have 
smoking exposure. Skin cancer may have strong sunlight exposure.  Depression may have specific diet exposure.  In 
case–control studies, information about exposure is generally collected after the disease has already occurred, that’s 
why these studies are called retrospective studies. In short, case–control studies look back retrospectively to 
compare how frequently the exposure to a risk factor is present in each group to determine the relationship between 
the risk factor and the disease. In case–control studies, the researcher often uses matching technique to make data 
analysis more efficient. In case–control studies study subjects are not independent of one another, we cannot use 
PROC LOGISTIC to analyze the data derived from case-control studies. An extension of logistic regression called 
conditional logistic regression must be used. A simple rule of thumb is use conditional logistic regression if matching 
has been done, and unconditional if there has been no matching. Unconditional logistic regression is the general 
logistic regression mentioned above. 
 
If the likelihood function for unconditional logistic regression is LU = L (β₀  β₁ …  βk) 

Then the likelihood function for conditional logistic regression is 
 
LC = LC( β₁ …  βk) = LU     ∑ (LU)                  (Summation across all strata) 

 

The intercept β₀ is dropped out of the likelihood function for conditional logistic regression. We don’t care about it 

(them). It is nuisance and is conditioned out of the analysis. 
 
It happened to be that the likelihood function of the conditional logistic regression model and the partial likelihood 
function of the Cox proportional hazard’s regression model are so similar that we can use the Cox proportional 
hazards model to do conditional logistic analysis using data from a matched case-control study. This is done by 
treating each matched set as a stratum, assuming all cases within a given matched set to have the same event time. 
In SAS the Cox proportional hazard’s regression model is implemented by PROC PHREG. 
 

proc phreg;  

      model Time*Status(0)=Var;  

   run; 

 
Where Time can take any value larger than 0 and Status takes values of 1=event and 0=censored. When it is used in 
the conditional logistic regression analysis, then Status becomes Case (1=case, 0=control) and Time becomes CSCN 
(1=for cases, 2=for controls) All cases in the same stratum should have the same time of event, i.e. time=1. For 
practical reasons it is simplest to give all cases the same time regardless of stratum. All controls in the same stratum 
should also have the same time, but greater than that of the cases, i.e. time=2. 
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With that set up, now let’s see an example: 
 

Prostate cancer patients usually have a higher level of prostate-specific antigen (PSA). Therefore, PSA levels can be 
used to predict prostate cancer. Sample sera was frozen and stored for future analyses.  We could use a case-control 
design to analyze the data. Here is a subset of data named ONETWOA.  
 
                                         ONETWOA           

 

           ID            AGE   CSCN             DX           RACE            PSA           DWDO 

 

      1799583             51     1               1              1              9             22 

      1799642             51     2               0              3              7             36 

      1799674             51     2               0              3              3             93 

      1799702             51     1               1              3             27             11 

      1799520             53     2               0              3             10             88 

      1799551             53     2               0              1              4             19 

      1799573             53     1               1              .              7             45 

      1799624             53     2               0              3              5             57 

      1799717             53     2               0              3              8             23 

      1799726             53     2               0              3              4              0 

      1799503             54     1               1              3              7             31 

      1799553             54     2               0              3              5             29 

      1799794             54     1               1              3             12             93 

      1799618             55     2               0              3              4            182 

      1799703             55     1               1              3              5             36 

      1799716             55     2               0              3              8            181 

      1799771             55     2               0              3              5             30 

      1799644             56     2               0              3              .              0 

      1799734             56     1               1              3              .            116 

      1799502             57     1               1              3              4             36 

      1799512             57     1               1              3             10             12 

      1799555             57     2               0              3              5              7 

      1799607             57     2               0              .              .             14 

      1794587             57     2               0              3              3             26 

      1794599             57     2               0              3              8            209 

      1794618             57     1               1              3              7             32 

      1794619             57     1               1              3              5             28 

      1794625             57     1               1              3              4             31 

      1794644             57     2               0              2              3            111 

      1794655             57     2               0              3              4             48 

      1794717             57     1               1              3              6             81 

      1794732             57     2               0              2              6             25 

      1799521             58     2               0              3              .              0 

      1799600             58     2               0              3              7             16 

      1799667             58     2               0              3              6            120 

      1799757             58     1               1              3              .              7 

      1799795             58     1               1              2             10             49 

 
Since age is a risk factor for prostate cancer, we could adjust for age in the model in order to the correct risk 
estimates without using matched case-control technique. But if we use a matched case-control study, then we will get 
an even better adjustment for age. We had many cases in each matching stratum, so we have n:m matching, where 
number of cases and controls vary. Total number of cases and controls also varied accordingly in all strata. 
 
Resorting to PROC PHREG, we can do conditional logistic regression on this data. 
 
proc phreg data=ONETWOA; 

      model CSCN*DX(0)= PSA DWDO / ties=discrete risklimits; 
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      strata AGE; 

run; 

 

Here is the part of the output from the PROC PHREG: 
                                                                                    

                                       Convergence Status 

 

                         Convergence criterion (GCONV=1E-8) satisfied. 

 

 

                                     Model Fit Statistics 

 

                                             Without           With 

                            Criterion     Covariates     Covariates 

 

                            -2 LOG L         200.413        191.359 

                            AIC              200.413        195.359 

                            SBC              200.413        200.424 

 

 

                            Testing Global Null Hypothesis: BETA=0 

 

                    Test                 Chi-Square       DF     Pr > ChiSq 

 

                    Likelihood Ratio         9.0544        2         0.0108 

                    Score                    2.8049        2         0.2460 

                    Wald                     6.3438        2         0.0419 

 

 

                           Analysis of Maximum Likelihood Estimates 

 

                  Parameter    Standard                            Hazard   95% Hazard Ratio 

  Parameter  DF    Estimate       Error  Chi-Square  Pr > ChiSq     Ratio   Confidence Limits 

 

  PSA         1     0.04123     0.01883      4.7959      0.0285     1.042     1.004     1.081 

  DWDO        1    -0.00350     0.00281      1.5539      0.2126     0.997     0.991     1.002 

 

We see that there is a significant association between prostate cancer incidence and PSA (p = 0.0285). The relative 
risk or hazard ratio is 1.042 (=e to the power of 0.041). This means that if we have two men of the same age in a 
matched pair with one having prostate cancer and the other not, the man with the higher PSA is 1,042 times as likely 
to be the case than the man with the lower PSA. 
 
The TIES=DISCRETE option is used replace the proportional hazards model by the discrete logistic model to get the 
conditional logistic regression. The option risklimits outputs the confidence intervals for the odds ratios. Default is 95 
%.The matching variables are specified in the STRATA statement. Here we have matched on age. 
 
We just matched age. Now if we match race, see what will happen. This is the output: 
 
 

                                       Convergence Status 

 

                         Convergence criterion (GCONV=1E-8) satisfied. 

 

 

                                     Model Fit Statistics 

 

                                             Without           With 

                            Criterion     Covariates     Covariates 
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                            -2 LOG L         259.239        244.626 

                            AIC              259.239        248.626 

                            SBC              259.239        253.626 

 

 

                            Testing Global Null Hypothesis: BETA=0 

 

                    Test                 Chi-Square       DF     Pr > ChiSq 

 

                    Likelihood Ratio        14.6130        2         0.0007 

                    Score                    8.3173        2         0.0156 

                    Wald                    10.7435        2         0.0046 

 

                                      The PHREG Procedure 

 

                           Analysis of Maximum Likelihood Estimates 

 

                  Parameter    Standard                            Hazard   95% Hazard Ratio 

  Parameter  DF    Estimate       Error  Chi-Square  Pr > ChiSq     Ratio   Confidence Limits 

 

  PSA         1     0.04503     0.01854      5.8962      0.0152     1.046     1.009     1.085 

  DWDO        1    -0.00629     0.00276      5.2070      0.0225     0.994     0.988     0.999 

 
Also we see that there is a significant association between prostate cancer incidence and PSA (p = 0.0152). The 
relative risk or hazard ratio is 1.046 (=e to the power of 0.045). This means that if we have two men of the same race 
in a matched pair with one having prostate cancer and the other not, the man with the higher PSA is 1,046 times as 
likely to be the case than the man with the lower PSA. 
 
Finally, let’s see an example using PROC GENMOD to do logistic regression. The researchers are experimenting 
with a drug to see whether it can relieve the pain for patients or not. Y is outcome variable(1=pain relieved 0=not)  x1 
is the dose of the drug, x2 is the age of the patients, and x3 is group. Suppose the subset of data set is like this: 
 
                                 id    y    x1    x2    x3     

 

                                  1    1    17    88     1     

                                  1    0    16    88     2     

                                  2    1    21    52     1     

                                  2    1    15    52     1     

                                  3    1    30    54     2     

                                  3    0    19    54     1     

                                  4    1    16    76     2     

                                  4    1    27    76     1     

                                  5    0    13    69     1     

                                  5    1    26    69     2  

 

This is a correlated data with each subject repeated once. We can use this SAS code to analyze the data: 
 

proc genmod; 

   class id;  

      model y=x1 x2 x3 / dist=bin; 

   repeated subject=id/ corr=unstr corrw; 

run; 

 
Dist=bin is specified in the model statement to conduct a logistic regression analysis. The subject=id identifies the 
clustering variable. This variable is listed in class statement. Unstr specifies the unstructured correlation structure.  
And the corrw option specifies that the final working correlation matrix be printed. 
Besides PROC GENMOD, PROC CATMOD can also be used in logistic regression analysis. 
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Please Note: The purpose of this paper is to show briefly how to use logistic regression and its extensions in data 

analysis. It does not cover all aspects of the logistic regression. In particular, it does not cover data cleaning and 
checking, verification of assumptions, model diagnostics, multicollinearity, goodness of fit and statistical power.  

CONCLUSION 
Logistic regression is derived from linear regression, but the relationship between the predictor and response 
variables is not a linear function in logistic regression, instead, the logistic regression function is used, which is the 
logit transformation of p. Logistic regression is a form of regression analysis in which the outcome variable is binary 
or dichotomous. PROC LOGISTIC is a procedure for fitting linear regression models not only for binary or 
dichotomous outcomes but also polychotomous outcome. SAS can extend logistic regression by using conditional 
regression to handle data from case-control studies by PROC PHREG procedure. SAS can also extend logistic 
regression to handle correlated data by PROC GENMOD procedure and PROC CATMOD procedure. 
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