
1

Paper 76505-2011

“Compare Me” a SAS® Datasets Comparison Tool

Anurag Katare, Lake Hiawatha, NJ
Jayesh Soneji, Princeton, NJ

Abstract

SAS® Datasets comparison tool called “Compare-Me” is a tool built to facilitate programmers to compare „n‟ pairs of
datasets located in two different directory locations. The comparison differences between the datasets are then
documented and are presented in an excel sheet. This tool helps compare CSV and EXCEL files using the Proc
Compare SAS procedures. This tool also gives the user a feature to provide all the „by‟ variables as keys that would
be used for comparison of two datasets.

Introduction

This paper provides details of initial setup that is required for the tool and also goes through a step by step process
on how to utilize the SAS Compare Me tool. This tool had been created during the testing phase of a large Life
Sciences and Commercial operations project at one of the top pharmaceutical company. The tool was created with a
view to support the comparison of the datasets in the old vs. the new environments, during an upgrade project and
was heavily utilized during the System Integration testing (SIT) and User acceptance testing (UAT) phase of the
project. It greatly helped in reducing the SIT and UAT testing times, and assisting the testing team to test
approximately 2300 SAS datasets thereby resulting in huge time savings of at lest ~40 person days during the course
of the project.

The tool is automated to an extent that once it is setup correctly, there is no manual intervention required. Behind the
scenes, “Compare Me” tool runs the Proc Compare SAS procedure. It reduces the unnecessary overhead of writing
a comparison code every time some datasets needs to be compared.

With this tool two output files are obtained. The first output file, a CSV file contains brief description about comparison
results for:

 Datasets completely matched

 Data mismatch

 Format mismatch

 Data type mismatch etc.

The second output file, a PDF file contains detailed comparison result that are generated by Proc Compare.

Benefits of “Compare Me” Tool

 Easy to use. The user of the tool needs to enter the details in .CSV file. These details are passed as a
parameter to the SAS Code.

 Required “by variables” used as keys to compare the datasets are driven from a metadata table.

 Can compare „n‟ pairs of SAS datasets at a time. (any number of SAS datasets depending on the server
capacity)

 Limited user intervention is required. “Compare Me” tool is executed in the background on the UNIX server
and requires minimal user intervention.

 Generates the result of comparison of datasets in .CSV file format and the sequence of SAS datasets
compared is maintained. Results sheet provides brief result of comparison, such as “matched”, “un-match”,
“Data type mismatch” , “Length mismatch” etc.

 The tool also generates detailed outputs of each pair of datasets comparison in separate PDF file

 No knowledge of SAS is required for using this tool.

 The tool uses PROC COMPARE procedure to compare datasets.

Initial Setup

This package has been designed primarily for SAS on a UNIX environment. The same SAS programs can be used
with SAS on Windows with minor tweaks in the code.

To use the SAS code in UNIX, one needs to follow the following instructions:

 Store the below listed SAS code and Shell Scripts in the same Unix directory path:
o Get_Metadata.sas (details below)

2

o Get_Metadata.sh
o Dataset_Comparison.sh &
o Dataset_Comparison.sas
o The Get_Metadata.sas SAS code can be very useful if you are not going for full dataset

comparisons. The only update required is in the shell script providing input file path and path to
store temporary SAS dataset.

o Get_metadata.sas provides metadata information to users if they need information about the

datasets being compared. For example, it gives information about record count, variable names,
data type, etc.

o Get_metadata.sas facilitates users when they want to customize their data comparison. The user
can have the capability to compare only some selective columns then it can be directly copied from
the output.csv file of get_metadata.sas.

o Next step is to keep “Input.csv” file in one directory. It can be the same directory where codes are
present but a separate Input/output is preferable. This is the input file that we need to fill before
comparison starts.

Get Metadata Information

The purpose of getting the Metadata information is to help the user access all the variables that are available in both
the datasets that is required to be compared. The user can then decide the variables he would like to compare and
select those variables for comparison.

The user can see some key metadata information of the SAS datasets like the variable names, data type, and label of
the datasets that is required for comparison. The user can also find out the by variables required for sorting the
dataset before comparing.

The metadata information is also used to update parameters in get_metadata.sh shell script. Some of the parameters
are:

 Path of the datasets

 Output Path and file name of metadata .csv

Syntax:
-sysparm <dataset location>~<metadata CSV file name with location>~<Columns CSV files with location>

The first output file which details the metadata information of the datasets is shown below with the columns:

First output file is metadata file will list out details of datasets shown below.

MEMNAME NAME TYPE LENGTH VARNUM LABEL NOBS

MEMNAME: Provides the dataset name
NAME: Provides the variable name
TYPE: Provides the data type of the variable
VARNUM: Provides the variable number for number type of variables
NOBS: - Provides the count of number of observations in the SAS dataset

Second output file is column CSV file will list out 1 row for each dataset and all the variable names in one row
separated by space.

MEMNAME COLUMN_NAME DATASET_PATH

MEMNAME: Provides the dataset name
COLUMN_NAMES: Provides variable name
DATASET_PATH: Provides the dataset path

Required Inputs for tool

This tool requires the Input.csv file to be filled to start comparing the two datasets. Following list of columns are
available in the Input.csv with details.

1. CMP_FORMAT:
Allows the user to provide file format (e.g SAS, CSV, XLS).

2. CMP_COLUMN:

3

Allows the user to provide value as “ALL” or allows users to provide list of SAS Dataset variable name
separated by space. “ALL” will by default take all the SAS Dataset variables for comparison

3. CMP_ROWS:
Allows the user to provide “ALL” or allow entering number of rows to be compared. “ALL” will by default
compare all the rows. For example if the number 100 is given, only the first 100 records of both datasets will
be compared.

4. CMP_FILE1:
Allows the user to provide path of the first dataset that is required to be compared.

5. CMP_FILE2:
Allows the user to provide path of the second dataset that is required to be compared.

6. CMP_FILENM1:
Allows the user to provide name of first dataset that is required to be compared.

7. CMP_FILENM2:
Allows the user to provide name of second dataset that is required to be compared.

8. CMP_OUTPUT:
Allows the user to provide the output PDF file name with location. This output is the one that we get as an
output of PROC COMPARE.

9. Sort_Required:
Allows the user to provide either “YES” or “NO”. “Yes”, if the user wants to sort datasets else specify “NO”.

10. Sort_Columns1:
Allows the user to provide preference of sorting the dataset. Leave blank if sorting is not required else give
variable name that can be used as BY Variable for the first dataset.

11. Sort_Columns2:
Allows the user to provide preference of sorting the dataset. Leave blank if sorting is not required else give
variable name that can be used as BY Variable for second dataset.

12. Temp_area:
Give a path to be used as a temporary area to create temporary datasets. Program itself deletes all the
datasets created in temp area before completion.

13. Filter_Required:
Allows the user to provide either “YES” or “NO”. “YES”, if you want to compare filtered data of both datasets
else specify “NO”

14. Where:
Allows the user to specify a filter condition for example EMP_ID = 10234 AND EMP_NAME = „ANURAG‟.
Leave it blank if value of “Filter_Required” field is NO.

15. Colum_map_required:
Allows the user to provide ether “YES” or “NO”. “YES”, if variable names of both the datasets are not same
else specify “NO”.
Note: If variable names are not same then give the variable names of first dataset in “CMP_COLUMN” field
and second dataset in the following field.

16. Mapping_colums_of_DS2:
If “colum_map_required” is “NO” then leave blank else give variable names in second datasets separated by
space. Note: Variable order plays a key role here because order specified here maps the variable order
specified in “CMP_COLUMN” field for first dataset.

17. No_of_differences_printed:
This field is to limit number of differences listed in CSV file (i.e. detailed_differences_1.csv).

Details of Output

Outputs are categorized as Metadata Output and Comparison Output. Metadata Output is the output of
get_metadata.sas program and Comparison Output is the output of Dataset_Comparison.sas program.

4

Metadata Output

Following are two outputs of metadata program to provide users information about datasets if required before they
compare it. It can be very useful when you want to compare datasets having different variable names. In this case
user can easily copy the variable names to fill main input file for comparison.

1. Columns.csv: This output file name can be different as specified in get_metadata.sh script. Each row of this

file gives dataset name in first column, all the variable name separated by space in second column and data
location in third column. It lists all the datasets available in the path specified in shell script before execution.

2. Metadata.csv: This output file name can be different as specified in get_metadata.sh script. Instead of

giving one row for each dataset this file gives one row for each variable of dataset and provides more details
of that variable. First column specifies dataset name, second column specifies variable, name third column
specifies data type 1 for numeric 2 for character, forth column is length, fifth is variable number as per the
order in dataset, sixth is label and seventh column specifies number of observation in the dataset. This
output file lists details of all the datasets available in the path specified in shell script before execution.

Comparison Output

1. Result (.csv file)

The result file provides the result of the SAS dataset compared. It provides the location of the compared
files, file name and the result of the two datasets compared.

5

2. Proc Compare Output (In PDF):

The result of the PROC COMPARE details the compared results between the two dataset. Following is the
screen shot of the output.

 Figure: SAS Compare Output

 Figure: SAS Compare Output

3. Detailed Difference (detailed difference in .csv file)

The detailed difference .csv file captures all the differences between the columns that are being compared.
The .csv file lists down all the differences between the columns being compared of the two datasets.

6

Programming Details (Sample Code)
There are two SAS programs written for this tool Get_metadata.sas and Dataset_Comparison.sas.
Basic SAS procedures are used in these programs, below are the brief details of those procedures used.

Get_metadata.sas

PROC CONTENTS is used to extract details of datasets like variable names, data type, length etc.

PROC CONTENTS DATA=SASDATA._ALL_ MEMTYPE=DATA
OUT= REF (KEEP=MEMNAME NAME TYPE LENGTH VARNUM LABEL NOBS) NOPRINT;
RUN;

PROC SQL is used to extract variable names of datasets to fill entries in Column.csv file mentioned earlier.
Each row of Column.csv file contains dataset name, variable names separated by space.

PROC SQL;
SELECT Name INTO: colum_names SEPARATED BY " " FROM ref WHERE MEMNAME="&&ds_name_&i.";
QUIT;

Dataset_Comparison.sas

PROC COMPARE has been used to compare datasets and output dataset of this procedure will be printed on
Detailed Difference output file (CSV file) and the comparison result displays in output window (.lst file) is redirected to
PDF output file using ODS.

PROC COMPARE BASE = &ds1. (obs=&CMP_ROWS)
COMPARE=&ds2. (OBS = &CMP_ROWS) OUT=detailed_diff outnoequal outbase outcomp outdif
MAXPRINT = &No_of_differences_printed.;
%if %UPCASE(&Sort_Required)=YES %then %do;
BY &Sort_Columns1;
%END;
%IF %UPCASE(&Filter_Required)=YES %then %do;
WHERE &Where;
%END;
RUN;

Return code of PROC COMPARE has been used to identify exact section of datasets cause mismatches.
In code return code has been converted into 16 digit binary code and there is a different meaning of different position
in binary code e.g. Data mismatch, data type mismatch, length mismatch etc. and those were assigned in macro
variables result1 – result9 as shown in below code. These details will be printed on Result output file (CSV file).

Compare Me Utility Package

Get_Metadata.sh:

#!/bin/ksh

7

###

Please keep correct parameter first parm is datasets location second parm is matadata csv file with its location third
is colums csv file with location#
so it would look like -sysparm <dataset location>~<matadata csv file name with location>~<Colums csv files with
location> #
###

sas get_metadata.sas -noterminal -noprint -sysparm <dataset’s path>~<path>/<metadata file
name>.csv~<path>/<file name for columns>.csv

Get_Metadata.sas:

%MACRO Metadata(ds_path, op_csv, col_csv);

LIBNAME sasdata &ds_path;
PROC CONTENTS DATA=sasdata._ALL_ MEMTYPE=data
OUT= ref(keep=MEMNAME NAME TYPE LENGTH VARNUM LABEL NOBS) NOPRINT ;
RUN;

PROC SORT data=ref ;
by MEMNAME VARNUM;
RUN;

PROC EXPORT DATA= ref
 OUTFILE= &op_csv
 DBMS=CSV REPLACE;
RUN;

PROC SQL ;
SELECT DISTINCT MEMNAME INTO: dataset_name SEPARATED BY " " FROM ref;
CREATE TABLE ref1 as SELECT DISTINCT MEMNAME FROM ref;
QUIT;

%LET i=1;
%DO %UNTIL (%SYSFUNC (COMPRESS ("%SCAN(&dataset_name., &i)")) = "");
%LET ds_name_&i. = %SCAN(&dataset_name., &i);
PROC SQL ;
SELECT Name INTO: colum_names SEPARATED BY " " FROM ref WHERE MEMNAME="&&ds_name_&i.";
QUIT;

DATA ref1;
LENGTH MEMNAME $50. colum_names $12000.;
SET ref1;
IF MEMNAME = "&&ds_name_&i." THEN colum_names = "&colum_names";
dataset_path=&ds_path.;
RUN;

%LET i = %EVAL(&i.+1);
%END;

PROC EXPORT DATA= ref1
 OUTFILE= &col_csv
 DBMS=CSV REPLACE;
RUN;
%MEND;

OPTIONS noquotelenmax;

%LET a = %SCAN(&sysparm.,1,~);
%LET b = %SCAN(&sysparm.,2,~);
%LET c = %SCAN(&sysparm.,3,~);

8

%metadata("&a." , "&b." , "&c.");

Dataset_Comparison.sh:

#!/bin/ksh

Please keep correct parameter that is the location of Input.csv file so parameter would looks like -sysparm
<Location of Input.csv #
Input.csv name is hardcoded in program so never change this file name #

sas Dataset_Comparison.sas -noterminal -noprint -sysparm <Path of input file Input.csv>

Dataset_Comparison.sas:

OPTIONS noquotelenmax mlogic mprint;

%MACRO compare_data(ip_op_path);

PROC IMPORT OUT= input DATAFILE= "&ip_op_path/Input.csv"
DBMS=CSV REPLACE; GETNAMES=YES; DATAROW=2;
RUN;

DATA _null_;
SET input nobs=noobs;
CALL SYMPUT("obs_cnt", compress(noobs));
RUN;

%PUT No of records in input xls sheet is &obs_cnt;

%DO i=1 %TO &obs_cnt;
DATA _null_;
SET input;
IF _N_ = &i THEN DO;
CALL SYMPUT("CMP_FORMAT",CMP_FORMAT);
CALL SYMPUT("CMP_COLUMN",CMP_COLUMN);
CALL SYMPUT("CMP_ROWS",CMP_ROWS);
CALL SYMPUT("CMP_FILE1",CMP_FILE1);
CALL SYMPUT("CMP_FILE2",CMP_FILE2);
CALL SYMPUT("CMP_FILENM1",CMP_FILENM1);
CALL SYMPUT("CMP_FILENM2",CMP_FILENM2);
CALL SYMPUT("CMP_OUTPUT",CMP_OUTPUT);
CALL SYMPUT("Sort_Required",Sort_Required);
CALL SYMPUT("Sort_Columns1",Sort_Columns1);
CALL SYMPUT("Sort_Columns2",Sort_Columns2);
CALL SYMPUT("Temp_area",Temp_area);
CALL SYMPUT("Filter_Required",Filter_Required);
CALL SYMPUT("Where",Where);
CALL SYMPUT("colum_map_required",colum_map_required);
CALL SYMPUT("Mapping_colums_of_DS2",Mapping_colums_of_DS2);
CALL SYMPUT("No_of_differences_printed",No_of_differences_printed);
END;
RUN;

%LET diff_in_op_dataset=%EVAL(3*&No_of_differences_printed);

LIBNAME lib1 "&CMP_FILE1";
LIBNAME lib2 "&CMP_FILE2";

%LET result1=;
%LET result2=;
%LET result3=;
%LET result4=;
%LET result5=;
%LET result6=;
%LET result7=;

9

%LET result8=;
%LET result9=;

%IF %UPCASE(&CMP_FORMAT)=XLS %THEN %DO;
PROC IMPORT OUT= lib1.&CMP_FILENM1.
 DATAFILE= "&CMP_FILE1/&CMP_FILENM1."
 DBMS=EXCEL REPLACE;

RUN;

PROC IMPORT OUT= lib2.&CMP_FILENM2.
 DATAFILE= "&CMP_FILE2/&CMP_FILENM2."
 DBMS=EXCEL REPLACE;

RUN;

%END;

%IF %UPCASE(&CMP_FORMAT)=CSV %THEN %DO;
PROC IMPORT OUT= lib1.&CMP_FILENM1.
 DATAFILE= "&CMP_FILE1/&CMP_FILENM1..csv"
 DBMS=CSV REPLACE; GETNAMES=YES; DATAROW=2;
RUN;

PROC IMPORT OUT= lib2.&CMP_FILENM2.
 DATAFILE= "&CMP_FILE2/&CMP_FILENM2..csv"
 DBMS=CSV REPLACE;
 GETNAMES=YES; DATAROW=2;
RUN;

%END;

%LET ds2 = lib2.&CMP_FILENM2.;

%IF %UPCASE(&Sort_Required)=YES %THEN %DO;

LIBNAME temp "&Temp_area";
%LET temp_ds_1 = %sysfunc(compress(&CMP_FILENM1.))_1;
%LET temp_ds_2 = %sysfunc(compress(&CMP_FILENM2.))_2;

PROC sort DATA=lib1.&CMP_FILENM1. OUT=temp.&temp_ds_1;
BY &Sort_Columns1;
RUN;

PROC sort DATA=lib2.&CMP_FILENM2. OUT=temp.&temp_ds_2;
BY &Sort_Columns2;
RUN;

%LET ds1 = temp.&temp_ds_1;
%LET ds2 = temp.&temp_ds_2;

%END;
ods pdf file="&CMP_OUTPUT.";

%IF %UPCASE(&CMP_ROWS)=ALL %THEN %LET CMP_ROWS=MAX;
%IF %UPCASE(&CMP_COLUMN)=ALL %THEN %DO;

PROC COMPARE BASE=&ds1. (obs=&CMP_ROWS)
COMPARE=&ds2. (obs=&CMP_ROWS) OUT=detailed_diff outnoequal outbase outcomp outdif
maxprint=&No_of_differences_printed.;
%IF %UPCASE(&Sort_Required)=YES %THEN %DO;
BY &Sort_Columns1;
%END;
%IF %UPCASE(&Filter_Required)=YES %THEN %DO;
WHERE &Where;

10

%END;
RUN;

%IF &sysinfo=0 %THEN %DO;
%LET result="Matched successfully";
%END;
%ELSE %DO;
%LET comprc=&sysinfo;
DATA _null_;
comprc=&comprc;
comprcbin=put(comprc,binary16.);
CALL SYMPUT("comprcbin",comprcbin);
RUN;
%PUT The Return Code is : &comprcbin;
%IF %SUBSTR(&comprcbin,01,1)=1 %THEN %LET result1=Error: comparison is not DOne check the SAS log.;
%IF %SUBSTR(&comprcbin,03,1)=1 %THEN %LET result2=Conflicting column datatype.;
%IF %SUBSTR(&comprcbin,04,1)=1 %THEN %LET result3=Data not matched.;
%IF %SUBSTR(&comprcbin,05,1)=1 %THEN %LET result4=Column of second dataset is not in first.;
%IF %SUBSTR(&comprcbin,06,1)=1 %THEN %LET result5=Column of first dataset is not in second.;
%IF %SUBSTR(&comprcbin,09,1)=1 %THEN %LET result6=Second dataset has more rows than first.;
%IF %SUBSTR(&comprcbin,10,1)=1 %THEN %LET result7=first dataset has more rows than Second.;
%IF %SUBSTR(&comprcbin,11,1)=1 %THEN %LET result8=column levels are different.;
%IF %SUBSTR(&comprcbin,12,1)=1 %THEN %LET result9=column lengths are different.;
%LET result="&result3. &result1. &result2. &result4. &result5. &result6. &result7. &result8. &result9.";
%END;
%END;
%ELSE %DO;

%IF %UPCASE(&colum_map_required)=YES %THEN %DO;
DATA &ds2.;
SET &ds2.;
rename
%LET i=1;
%DO %until %SCAN(&Mapping_colums_of_DS2,&i) = "" ;
%SCAN(&Mapping_colums_of_DS2,&i) = %SCAN(&CMP_COLUMN, &i.)
%LET i = %EVAL(&i.+1);
%END;
;
RUN;

PROC COMPARE BASE=&ds1. (obs=&CMP_ROWS)
COMPARE=&ds2. (obs=&CMP_ROWS) OUT=detailed_diff outnoequal outbase outcomp outdif
maxprint=&No_of_differences_printed.;
%IF %UPCASE(&Sort_Required)=YES %THEN %DO;
BY &Sort_Columns1;
%END;
VAR &CMP_COLUMN;
%IF %UPCASE(&Filter_Required)=YES %THEN %DO;
WHERE &Where;
%END;
RUN;

%IF &sysinfo=0 %THEN %DO;
%LET result="Matched successfully";
%END;
%ELSE %DO;
%LET comprc=&sysinfo;
DATA _null_;
comprc=&comprc;
comprcbin=put(comprc,binary16.);
CALL SYMPUT("comprcbin",comprcbin);
RUN;
%PUT The Return Code is : &comprcbin;
%IF %SUBSTR(&comprcbin,01,1)=1 %THEN %LET result1=Error: comparison is not done check the SAS log.;
%IF %SUBSTR(&comprcbin,03,1)=1 %THEN %LET result2=Conflicting column datatype.;

11

%IF %SUBSTR(&comprcbin,04,1)=1 %THEN %LET result3=Data not matched.;
%IF %SUBSTR(&comprcbin,05,1)=1 %THEN %LET result4=Column of second dataset is not in first.;
%IF %SUBSTR(&comprcbin,06,1)=1 %THEN %LET result5=Column of first dataset is not in second.;
%IF %SUBSTR(&comprcbin,09,1)=1 %THEN %LET result6=Second dataset has more rows than first.;
%IF %SUBSTR(&comprcbin,10,1)=1 %THEN %LET result7=first dataset has more rows than Second.;
%IF %SUBSTR(&comprcbin,11,1)=1 %THEN %LET result8=column levels are different.;
%IF %SUBSTR(&comprcbin,12,1)=1 %THEN %LET result9=column length are different.;
%LET result="&result3. &result1. &result2. &result4. &result5. &result6. &result7. &result8. &result9.";
%END;

%PUT &result.;

%END;
ods pdf close;

DATA temp_&i.;
SET input;
RESULT=&result;
IF _N_ = &i THEN output;
RUN;

%IF &i=&obs_cnt %THEN %DO;
DATA result (Keep=CMP_FILE1 CMP_FILENM1 CMP_FILE2 CMP_FILENM2 RESULT);
SET
%DO j=1 %TO &obs_cnt;
temp_&j.
%END;
;
RUN;

PROC EXPORT DATA=result
 OUTFILE="&ip_op_path/Result.csv"
 DBMS=CSV REPLACE;
RUN;

%END;

DATA detailed_diff; SET detailed_diff (obs=&diff_in_op_dataset.);RUN;

PROC EXPORT DATA=detailed_diff
 OUTFILE="&ip_op_path/detailed_differences_&i..csv"
 DBMS=CSV REPLACE;
RUN;

 PROC DATASETS nolist library = temp;
 delete &temp_ds_1 &temp_ds_2;

 RUN;

%END;
%MEND;

%compare_data(&sysparm.);

Input.csv:

Create a CSV file give following column names in first row.
CMP_FORMAT, CMP_COLUMN, CMP_ROWS, CMP_FILE1, CMP_FILE2, CMP_FILENM1, CMP_FILENM2,
CMP_OUTPUT, Sort_Required, Sort_Columns1, Sort_Columns2, Temp_area, Filter_Required, Where,
colum_map_required, Mapping_colums_of_DS2, No_of_differences_printed

12

Conclusion
This tool is very easy to use and reduces the effort required to write a code for data comparison every time when
comparison of two or more SAS datasets is required. It could be useful during the testing phase of any application
migration or application development projects, where there is a need to compare the datasets of a legacy application
prior to migration/upgrade against the datsets of the migrated application post migration/upgrade. The tool can be
easily configured across different environments such as multiple operating systems and platforms without having to
update or enhance the code by a huge measure. This tool can be also be easily used by a testers or developers
having limited SAS knowledge.

References
http://support.sas.com/documentation/cdl/en/proc/61895/HTML/default/viewer.htm#a000057814.htm

Acknowledgements

We would also like to thank our Cognizant managers Subburaj Krishnasamy, Dhananjay Kelkar & Prakash
Pothemsetti for encouraging our efforts to document our research and present a paper. We would also like to thank
Neelakandan Vishwanathan who was actively involved in suggesting the requirements for creation of such a tool and
was also heavily involved in validating the comparison results.

Contact Information

Your comments and questions are valued and encouraged. Contact the author at:

Name : Anurag Katare Name: Jayesh Soneji
Address : 56A Van Wyk Road Address: 465 Meadow Rd,
City, State ZIP : Lake Hiawatha, 07034 City, State, Zip: Princeton, NJ, 08650
Phone: 862-579-7988 Phone: 201-682-5909
E-mail: er.anuragkatare@gmail.com E-mail: jayssoneji@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies.

http://support.sas.com/documentation/cdl/en/proc/61895/HTML/default/viewer.htm#a000057814.htm
mailto:er.anuragkatare@gmail.com
mailto:jayssoneji@gmail.com

