Paper AD08-2011

Leveraging the SAS® Open Metadata Architecture
Ray Helm & Yolanda Howard, University of Kansas, Lawrence, KS

Abstract

In the SAS Enterprise Bl and Data Integration environments, the SAS Metadata Model contains a wealth of
information about system configuration, data objects, report metadata, users, groups, and security authorizations.
The ability to query the metadata adds a powerful tool to the SAS inventory and can be used for a wide range of
purposes including surfacing metadata related to the data delivered to end users, adding relevant information to
metadata objects, and performing bulk alterations to the metadata itself. This paper will provide an overview of the
key tools for leveraging the Open Metadata Architecture including: the PROC METDATA procedure, the Metadata
Browser utility, and the SAS XML Mapper. We will present examples of how we have employed these tools for bulk
modifications of stored processes/application server associations and for generating a Data Elements Dictionary for
use by our Data Warehouse consumers.

Introduction

The SAS Metadata Server is a crucial component of the SAS Enterprise Bl Server, Enterprise Data Integration
Server, and many of the industry specific solutions offered by SAS. The SAS metadata holds virtually all of the
critical information including: system architecture; user authentication and authorization; data storage locations and
table structure. The SAS Open Metadata Architecture provides the capacity to extract this information into reports or
other data systems, generate reports on specific aspects of the system (such as user authorizations), and integrate
the metadata with data from other enterprise systems to create a comprehensive view of the relationship between the
business intelligence data and ERP data.

Additionally, the Open Metadata Architecture allows metadata to be updated programmatically. This can be a
powerful tool for the system administrator. Routine tasks can be automated, and large, complex administrative
operations can be performed in a structured manner with minimal risk of errors due to operator oversight.

This paper will provide two examples that take advantage of the SAS Open Metadata Architecture. The first example
demonstrates a system administration task performed programmatically as part of a system migration. The second
shows how the metadata from an Enterprise Data Integration system can be combined with metadata from the
source ERP systems to provide a comprehensive Data Elements Dictionary.

Useful Tools

There are a few useful tools for working with the SAS Open Metadata Interface. The Metadata Browser feature of the
SAS Foundation software is essential for visualizing the metadata objects, identifying attributes and associations, and
finding specific objects of interest. Our methods rely heavily on the PROC METADATA procedure which sends
requests and receives responses using XML. The SAS XML Mapper is extremely useful in generating XML map files
and SAS code for reading the XML response files into SAS data sets. It should be noted that it is also possible to
perform the operations described here using SAS DATA step functions which do not require any XML knowledge or
tools.

Using the Open Metadata Architecture in System Administration

As part of our migration from a SAS 9.1.3 Business Intelligence Platform to SAS 9.2, we were also upgrading our
hardware architecture from a two server (one mid-tier and a combined metadata/application server) to a three server
design. In order to employ the SAS Migration Utility, the first step required a migration from the two server
architecture to an identical two server environment. This created a 9.2 system with a single server running both the
Metadata Server and Application Server (SASMain) components. The installation and configuration of the new
Application Server (SASApp) was independent of the migration. Rather than manually reassign over 150 stored
processes from the old SASMain Application Server to the new SASApp Application Server, the SAS Open Metadata
Interface tools were used to identify the stored processes in the metadata and reassign them to the new application
server. Additionally, the directory metadata objects that stored the paths of the SAS programs executed by the
stored processes were also reassigned to SASApp (the actual program files were moved manually). While this saved
us quite a bit of tedious work reassigning stored processes to servers using the SAS Management Console, more
importantly, it retained the associations between the stored processes and their links in the Information Delivery
Portal. Exporting the stored processes from one application server and importing them into the other would have
broken the association between the portal content and the stored process, requiring these associations to be rebuilt
manually.

For the purposes of this paper, this migration scenario was recreated on a test Enterprise Bl Server installation on a
Windows workstation with a metadata instance containing just a few stored processes all linked to a single
application server (SASAppl). A second application server (SASApp2) was also installed on the same workstation.
Figure 1 shows the Metadata Browser view of the stored processes associated with the SASAppl — Logical Stored
Process Server. The Financials_STP_1 stored process has been expanded to show the ComputeLocations
association and displays the attributes and associations pane for the SP Source Directory. The directory shows that
the physical location of the SAS program associated with the stored process is also under the SASApp1 installation
directory.

[7] Metadata Browser El@
SAS Environmert Attributes and Associations of "SP Source Directory™ Directony
i---a;l SASApp] - Logical Stored Process Server + | | Name Value
T !;) Ejmpmq“ks UsageVersion 0

Zray Financials STP.L B AS0Z1MA48 B1000009
=% Computelocations — o
T . DES(Financials 5TPs
+---ﬂ:| SASApp] - Logical Stored Process Server . X
+'\? Notes DirectoryMame CASAS\EBL AppServerl\Levl\SASAppl\SASEnvirenment\SASCode\StoredP
0. Prompts ED IsRelative 0
—'\? SourceCode etadataCreated(GMT) 015ep11:05:19:07
< _J SP Source File MetadataUpdated(GM'l'J 075ep11:01:21:14
: +'\? AssociatedTransformation £ Name 5P Source Directory

1% Directories ** DeployedCompenents Association

- SP Source Directary % Files Association
+'\? Trees % Properties Association

+:‘§ Financials_5TP_2

¥4 HR_STP1

3% HR_STP_2

139 Student STP_2

3% Student_STP_1 Nk T v

Figure 1. A Metadata Browser view of the SASAppl - Logical Stored Process Server showing the stored
processes under the ComputeTasks and the Attributes and Associations of the "SP Source Directory"
Directory for the Financials_STP_1 stored process

Identifying Metadata to be Updated

Before you can perform any updates on a metadata object, the unique identifier of the object must be obtained. In
this case, the metadata identity of all stored processes associated with the SASApp1 - Logical Stored Process Server
need to be determined. One method for obtaining this is to create an XML input file with the appropriate request
syntax and submit this using the PROC METADATA procedure. The XML below returns the Id and Name attributes
for all ClassifierMaps (stored processes are ClassifierMap metadata objects) associated with the SASApp1 — Logical
Stored Process Server:

<GetMetadataObjects>
<Reposid>$METAREPOSITORY</Reposid>
<Type>LogicalServer</Type>
<Objects/>
<NS>SAS</NS>
<!-- set Flags for OMI_XMLSELECT(128)+0OM1_GET_METADATA(256)+0OM1_TEMPLATE(4) -->
<Flags>388</Flags>
<Options>
<XMLSELECT search="*[@Name="SASAppl - Logical Stored Process Server®"]" />
<Templates>
<LogicalServer 1d=""" Name="" >
<ComputeTasks />
</LogicalServer >
<ComputeTasks >
<ClassifierMap />
</ComputeTasks >
<ClassifierMap Id="" Name=""' />
</Templates>
</Options>
</GetMetadataObjects>

The above XML was saved to “C:\sasfiles\SASApp_STPSvr_Request.xml” and sent to the metadata server as
shown here:

/* Set Metadata Connectiion */

options metaserver="Mymetaserver' metaport=8563 metaprotocol=bridge
metauser="mrhelm” metapass=""*****"
metarepository="Foundation";

/* GetMetadataObject request Tfile */

filename request “C:\sasfiles\SASApp_STPSvr_Request._xml” Irecl=1024;
/* Metadata response output file */

Ffilename response "'C:\sasfiles\SASApp_STPSvr_Response.xml" lrecl=1024;
proc metadata in=request out=response;

run;

This generates an XML file, "C:\sasfiles\SASApp_STPSvr_Response.xml" containing the results of the
GetMetadataObjects query.

Loading the XML Response File into SAS

The next step is to convert the XML response into a SAS data set for use in constructing a set of instructions to
update the metadata. The SAS XML Mapper software makes short work of constructing the necessary SAS code to
read the response XML data into SAS data sets. All that needs to be done is to open the XML response file and use
the “Automap using XML" tool to generate an XML Map. Then save the XML Map file. Once this is complete, go to
the SAS Code Example tab and uncheck all of the “Show” options except for “Copy to WORK” and either save the
code as a separate SAS program or copy and paste it into the SAS Program Editor. The code generated will create
SAS data sets based on the response XML in the session WORK library:

/*************************7\'**

* Generated by XML Mapper, 902000.3.6.20090116170000_v920

**/

/*
* Environment
*/
filename SASApp "C:\sasfiles\SASApp_STPSvr_Response.xml";
Ffilename SXLEMAP "C:\sasfiles\SASApp_STPSrv._map"”;
libname SASApp xml xmImap=SXLEMAP access=READONLY;

/*
* Local Extraction
*/

DATA GetMetadataObjects; SET SASApp-GetMetadataObjects; run;
DATA Objects; SET SASApp.Objects; run;

DATA LogicalServer; SET SASApp.LogicalServer; run;
DATA ComputeTasks; SET SASApp.ComputeTasks; run;

DATA ClassifierMap; SET SASApp.ClassifierMap; run;
DATA Options; SET SASApp.Options; run;

DATA XMLSELECT; SET SASApp.XMLSELECT; run;

DATA Templates; SET SASApp.Templates; run;

DATA LogicalServerl; SET SASApplS.LogicalServerl; run;
DATA ComputeTasksl; SET SASApplS.ComputeTasksl; run;
DATA ClassifierMapl; SET SASApplS.ClassifierMapl; run;

Building and submitting the UpdateMetadata request

The data set ClassifierMap contains the necessary metadata information (specifically, the metadata Id) to build
metadata update statements to re-associate each stored process to the SASApp2 — Logical Stored Process Server.

Figh VIEWTABLE: Work.Classifiermap
Compute Tasks_ORDINAL | ClassfierMap_ORDINAL | Id | Name

1 1 1 A50Z1M48.B5000012 Financials_STP_1

7 1 2 A50Z1M45.BE000013 Financials_STF_2

3 1 3 A50Z1M48.B5000014 HR_STP_1

4 1 4 AS0Z1M48.BE000015 HR_STF_2

5 1 5 AS0Z1M48.B5000011 Studert_STP_2

5 1 & A5071M48.B500000Y Studert_STP_1

Figure 2. The ClassifierMap Data Set

The following code uses the ClassifierMap data set to build an UpdateMetadata XML file which is then submitted
using the PROC METADATA procedure. The ObjRef and Name values for the SASApp2 — Logical Stored Process
Server were obtained using the Copy URI to Clipboard and Copy features of the Metadata Browser tool:

filename InReq "C:\sasfiles\UpdateClassifierMaps.xml'" lrecl=1024;
data _null_;

set ClassifierMap END=OVER;

file InReq;

if _n_=1 then put

"<Multiple_Requests>" /
"<UpdateMetadata >" /
" <Metadata >";

put

" <ClassifierMap Id="" Id """ >" /

- <ComputeLocations Function="Replace'> * /

" <LogicalServer ObjRef="A50Z1M48.ATO0000B" Name="'SASApp2 - Logical
Stored Process Server™ /> * /

" </ComputelLocations >" /

" </ClassifierMap > *;

if Over then put
" </Metadata >" /
" <Reposid >$METAREPOSITORY</Reposid >"/
" <NS>SAS</NS>" /
" <I-- OMI_TRUSTED_CLIENT (268435456) OMI_RETURN_LIST (1024) -->"/
" <Flags>268436480</Flags>" /
" <Options /> "/
"</UpdateMetadata >"
"</Multiple_Requests >"

run;

filename result "C:\sasfiles\UpdateClassifierMaps_result_.xml" lrecl=1024;
proc metadata in=InReq out=result;
run;

Figure 3 shows the stored processes associated to the SASApp2 — Logical Stored Process Server after the PROC
METADATA execution. Note that the directory location of the SP Source Directory still points to the SASAppl
Application Server installation path and is still associated with the SASApp1 server. At this point, the stored
processes have one foot in the SASApp2 server and one in SASApp1 and execution would be problematic. Another
set of metadata queries and updates is necessary to fully disassociate the stored processes from the SASAppl
Application Server.

[7] Metadata Browser EI@
SAS Environmert Attributes and Associations of "SP Source Directory™ Directory
l---g;l SASApp? - Logical Stored Process Server + | Mame Value
_!:) Ezom.pute'ljasks UsageVersion 0
% Financial STRL B AS0Z1M48.B1000009
—'? ComputeLocatlons. [Desc Financials STPs
i@ L“J SASApp2 - Logical Stored Process Server . X
+'\? Noutes DirectoryMame CASAS\EBL AppServerlLevl\5ASAppl\SASEnvironment\SASCode!\StoredProce
+'\? Prompts [IsRelative 0
_? SourceCode MetadataCreated(GMT) 015ep11:05:19:07
P _J SP Source File Metadatallpdated{(GMT) 075ep11:06:00:35
+'x? AzzociatedTransformation Name 5P Source Directory
5.} Directories % DeployedComponents Association
__‘| SP Source Directory " Files Association
=% DeployedComponents 21| | = Properties Association
+53 SASAppl
< %* Files
+.-%* Properties
5 % Trees
+-3% Financials_STP_2
i 3% HR_STPL
453 HR_STP2
1. 3% Student STP_2
3% Student STP_L ~ [0] v

Figure 3. A Metadata Browser view of the SASApp2 - Logical Stored Process Server with the newly
associated stored processes

Updating the Stored Process Source Code Directory Metadata

Updating the server and directory for each of the stored process source directories follows the same basic steps that
were used in updating the server associations. An XML file is created containing a GetMetadataObjects request to
retrieve the metadata Id of all Directory objects having a Name attribute of “SP Source Directory”. In addition to the
Id, the DirectoryName attribute is also requested as this is the physical path on the application server where the SAS
code resides:

<GetMetadataObjects>
<Reposid>$METAREPOSITORY</Reposid>
<Type>Directory</Type>
<Objects/>
<NS>SAS</NS>
<l-- OMI_XMLSELECT(128)+OMI_GET_METADATA(256)+OMI_TEMPLATE(4) -->
<Flags>388</Flags>
<Options>
<XMLSELECT search="*[@Name="SP Source Directory"]" />
<Templates>
<Directory Id=""" Name=""'" DirectoryName=""" />
</Templates>
</Options>
</GetMetadataObjects>

This XML file is submitted using the PROC METADATA procedure in the same fashion as previously described to
obtain an XML response file from the metadata server. The methods for converting the XML response into a SAS
data set using the SAS XML Mapper are also the same as those used for identifying the stored processes and will not
be described in detail here. The end result of the process is a SAS data set WORK.DIRECTORY containing the Id,
Name, and DirectoryName for each of the stored process directories (Figure 4).

gk VIEWTABLE: Work.Directory Ellj
Objects_OR_ | Directory_ORDINA| Id | Name | DirectoryName
1 1 1 ABDZ1M48.B1000008 5P Source Directory CASAS\EBI_AppServer1:Lev1\SASApp1%5ASEnvironment . SASCode" Stored Processes' Student
2 1 2 ABDZ1M48.B1000005% 5P Source Directory CASAS\EBI_AppServer1:Lev1\SASApp1%5ASEnvironment . SASCode" Stored Processes' Financials
3 1 3 AS0Z1M48.8100000A SP Source Directory C:ASASMEBI_AppServer1'Lev1%.5AS5App 185 ASEnvironmert .SASCode"\StoredProcesses HR

Figure 4. The Directory Data Set

Using the data contained in WORK.DIRECTORY, the following code can be submitted to build an UpdateMetadata
request which changes the server association for the directories to SASApp2 and alters the physical path in the
DirectoryName attribute to the appropriate path for the SASApp2 installation path:

filename InReq2 “C:\sasfiles\UpdateSTPDirectories.xml" lrecl=1024;

data _null_;
set Directory END=0OVER;

/* Modify DirectoryName to point to ...\EBI_AppServer2\Lev1\SASApp2\... */

IF INDEX(DIRECTORYNAME, "EBI_AppServerl®) gt O THEN DO;
DirectoryName=TRANWRD(DirectoryName, “EBI_AppServerl®, “EBI_AppServer2T);
DirectoryName=TRANWRD(DirectoryName, "SASAppl®, "SASApp2);

END;

file InReqg2;

if _n_=1 then put

"<Multiple_Requests>" /
"<UpdateMetadata > /
" <Metadata >";

put

"<Directory Id="" Id """ " “"Name="" Name """ *

> /

</Directory > °;

if Over then put
" </Metadata >" /

" <Reposid >$METAREPOSITORY</Reposid >"/

" <NS>SAS</NS>" /

" <!-- OMI_TRUSTED_CLIENT (268435456) OMI_RETURN_LIST (1024) -->"/
" <Flags>268436480</Flags>" /

" <Options /> "/
"</UpdateMetadata >"
"</Multiple_Requests >"

run;

"DirectoryName=""" DirectoryName ""

<DeployedComponents Function="Replace'> " /
<ServerContext ObjRef="A50Z1M48.AQ000003" Name=''SASApp2" /> " /
</DeployedComponents >" /

After submitting the generated file, UpdateSTPDirectories.xml, via PROC METADATA, the source directories for the
stored processes are now associated with the SASApp2 application server with an appropriate physical path defined
(Figure 5). The process is now complete and the stored processes are ready for executing using the new application

server.

E Metadata Browser
SAS Environment

Attributes and Associations of "SP Source Directory™ Directory

E=8 (B =

i..Bﬂ SASApp? - Logical Stored Process Server
5o ComputeTasks

—}{ Financials_STP_1

-V Computelocations

+V MNotes
4% Prompts
—V SourceCode
_J SP Source File
+ %} AssociatedTransformation
=-%* Directories
—_\| SP Source Directory

| 87 SASApp2
%5 Files
4% Properties

+!;) Trees
+] :{ Financials_STP_2
%% HR_STPL
4-%% HR_STP_2
3% Student STP_2
3% Student STP1

+5:| SASApp2 - Logical Stored Process Server

-V DeployedComponents

Name

UsageVersion

Ed

Desc

DirectoryMame
IsREIative
MetadataCreated (GMT)
MetadataUpdated(GMT)
Name

%} DeployedComponents
% Files

% Properties

4

Value

0
A5071M48.81000009
Financials 5TPs

CASAS\EBL AppServer2\Lev1\SASApp2\ SASEnvirenment\SASCode\StoredPro

0

015ep11:05:19:07
075ep11:06:15:18

5P Source Directory
Association
Association

Association

m

Figure 5. Metadata Browser view of Stored Processes associated with SASApp2 - Logical Stored Process
Server with correct "SP Source Directory" locations.

Data Elements Dictionary (DED) — A Practical Example

Our data warehouse is comprised of elements from various enterprise systems across campus. Primarily, the data is
built from PeopleSoft/Oracle tables and documentation is sparse. Table/ field definitions and relationships between
source data and data warehouse tables can be tedious to document and difficult to maintain. Our goal is to have
Business Analysts/Subject Matter Experts provide business logic and definitions for source tables and fields while
developers add metadata as they create new target objects. Using the SAS Open Metadata Interface we extract and
combine this metadata to create a robust data dictionary.

Step 1 - Create XML File:

The following code creates an XML file that queries the metadata using the GetMetadataObjects method. In this
step, we are returning all metadata objects with a type of PhysicalTable. We then further specify the associations we
would like to see returned in the XML hierarchy by identifying the templates to use. These include: Columns,
Documents, Trees, TablePackage, and ResponsibleParties.

FILENAME TBLREQ “U:\ETL 9.2\YDH_TABLEQRY.QXML";
FILENAME TBLRESP "U:\ETL 9.2\DITABLES_&SYSDATE. .XML"™ LRECL=1024;

DATA _NULL_;
FILE TBLREQ;
INFILE CARDS4;
LENGTH LONG $256;
INPUT ;
LONG=_INFILE_;
PUT LONG * *;
CARDS4 ;
<GETMETADATAOBJECTS>
<REPOSI1D>$METAREPOSITORY</REPOSID>
<TYPE>PHYSICALTABLE</TYPE>
<OBJECTS/>
<NS>SAS</NS>
<FLAGS>388</FLAGS><!-OMI_XMLSELECT(128)+0OMI_GET_METADATA(256)+OMI_TEMPLATE(4) -->
<OPTIONS>
<TEMPLATES>
<PHYSICALTABLE I1D=""" COLUMNNAME=""" DESC=""" DBMSTYPE=""" NUMROWS="""'>
<COLUMNS/>
<DOCUMENTS/>
<TREES/>
<TABLEPACKAGE/>
<RESPONSIBLEPARTIES/>
</PHYSICALTABLE>
<COLUMN ID=""" NAME=""" COLUMNLENGTH=""" SASFORMAT="""'SASINFORMAT="""/>
<DOCUMENT ID = """ NAME=""" >
<NOTES/>
</DOCUMENT>
<NOTE NAME=""">
<TEXTSTORE/>
</NOTE>
<TEXTSTORE NAME="'" STOREDTEXT=""' />
<TREE ID=""" NAME=""">
<PARENTTREE ID=""" NAME=""" />
</TREE>
<DATABASESCHEMA ID=""" NAME=""" SCHEMANAME="""">
<USEDBYPACKAGES/>
</DATABASESCHEMA>
<SASLIBRARY ID=""" NAME=""'/>
<RESPONSIBLEPARTY ID=""" NAME=""" ROLE=""">
<PERSONS/>
</RESPONSIBLEPARTY>
<PERSON ID=""" DISPLAYNAME=""" />
</TEMPLATES>
</OPTIONS>
</GETMETADATAOBJECTS>;;;;
RUN;

PROC METADATA IN=TBLREQ OUT=TBLRESP;
RUN;

Step 2 - Build XML Map:

Using SAS XMLMapper, we open the XML file created in the previous step and create a map to read the results into

SAS datasets. Navigating through the XML hierarchy is straightforward and this tool allows us to browse the object
then drag and drop to create custom data sets. Figure 6.a below illustrates how we’ve mapped the PhysicalTable

metadata object along with its related associations and attributes into our core tables. Figure 6.b shows the resulting

XMLMap.

File Tools Help

|t g 6t @ | =

U Condensed | g Full| T Sehers |

= ,] GetetadataObjects (1)

[] Reposid (1)

<[1 Tyme)

2+,] Objects (13

o{])

B4 Attributes (514)

& ldEa

* Mame (514)

¥ Desc(814)

4% DBMSType (514)

% MumRows (514)

e+,] Columns (514)

E[*] Column ¢18827)
-8 Attributes (18827

&+,] Documents (514)

B ,] Trees (514)

&[] TablePackage (514)

&[] ResponsibleParties (514)

NS

<[] Flags (1)

#-{] Options (13

PFUDEftiESI 34 Format I [?] Gondition I E{} Enumeration I 5 Ordinal I ¥ ¥MLMap Settings

Hame |DI_TABLES

Description I

Path |

End Patf |

I~ | Retain

=B PhysicalTable
----- B Tableld

----- H DBMSType

----- ‘E TahleTreeMame1

----- B TableTreeMame2

----- B TableTreeMames

----- ? TableTreeMamed
% MumPuows

=-E TahlePackage

----- H Tableld

----- ‘E TahleMame

----- ‘E SchemalD

----- ‘E Schemakame

----- & Libraryld

----- B LibraryNarme

- TableMotes

- Documents

BB Column

B ResponsibleParties

Figure 6.a: A custom map “DI_TABLES” is created that will create in the following tables: PhysicalTable,
TablePackage, TableNotes, Documents, Column and ResponsibleParties.

=ML sourcel [

¥MLMap: LEAETL 9.2\DI_Table.map

[®MLMap I Bl A5 Code Example I @ Table wigw I Contents I «F Yalidate I

=7txmlversion="1.0" encoding="windows-1252"7=

=|—

=l— 2011-09-08T09:533:33 —=
=l—SAS XML Libname Engine Map —=
=l— Generated by XML Mapper, 9.1.0300.20040709.2028 —=

=l—

-

=SXLEMAP xminsxsi="httpisnee w3, orgi2001 XML Schema-instance” name="DI_TAELES" version="1.2" xsi:noMa

=l—

=TAEBELE name="PhysicalTahle"=

=TABLE-PATH syntax="xPath"=IGettvetadataObjectsiChjectsiPhysicalTable=ITABLE-PATH=

=COLURMMN name="Tableld"=

=FATH syntax="XFPath"=/GetietadataCbjectsiObjectsiPhysical Tablef@ d=/PATH=

=TYFE=character=iTyFE=

=DATATYPE=string=/DATATYPE=

=LEMGTH=17=/LEMNGTH=
=HCOLLUIRM=

=COLURMMN name="Mame"=

=PATH syntax="XxPath"=IGethietadataObjectsiObjectsiPhysical Tablef@Mame=/PATH=

=TvYFPE=character=imyPE=

=DATATYPE=string=/DATATYPE=

=LEMGTH=E0=/LEMGTH=
=HCOLURE=

=COLURMM name="Dasc"=

=PATH syntax="XPath"=IGettetadataObjects/ObjectsiPhysicalTablef@Desc=PATH=

=Tv¥PE=character=TvPE=

=DATATYPE=string=/DATATYFPE=

=LEMGTH=2858=/LEMNZTH=
=ICOLLIRE=

Figure 6.b: A portion of the XMLMap generated by SAS XMLMapper

We then bring the XML data into SAS datasets using the XML engine in a libname statement with the following:

FILENAME DI_TBL “U:\ETL 9.2\DI_TABLE.MAP";

LIBNAME TBLRESP XML XMLMAP=DI_TBL ACCESS=READONLY;

Step 3 - Create DED Tables:

The following data step creates one of the core dictionary tables.

DATA DITABLES;
LENGTH FOLDERPATH $200;
SET TBLRESP._PHYSICALTABLE;

FOLDERPATH=CATX(*/”’, TABLETREENAME1 , TABLETREENAME2 , TABLETREENAME3, TABLETREENAME4) ;

DROP TABLETREENAME: ;
RUN;

¥ VIEWTABLE: Work.Ditables =10

folderpath | Tableld |

Desc | CDBMSType |NumF

2220 | #/DATA_UMI/RDSCen/REC ABRYPYE_BFOOOTPY REC_ACAD_STRUCTURE_DIM_KU

2221 | #/DATA_UMI/RDSCen/REC ABRYPYE_BFOO0TR: REC_ENROLLMENT_FACT_KU

2222 | A/DATA_UMI/RDSCen/REC ABRP7K.BFOOOTRY REC_STUDEMNT_TERM_DIM_KU

Student Acadernic: Program, Flan, and Sub-Plan: This table iz uzed

ta record the Programs, Planz, and Sub-Flans to which a student | Qracle
is admitted, and initial data of persons admitted to any Academic

Frog

Student Enrollment Table: This table containzg student enrollment Qracle
infarmation by term for the student.

Student Career Term Table: This table containg student information

by Academic Carzer, Institution and Tem. To have an entry in thiz | Oracle
table, the student must have at least one entry in the Academic Pr

Figure 7: A sample of PhysicalTable metadata

Each step above is repeated for the core sections of our data dictionary and run routinely to keep the dictionary

current.

Putting It All Together

Using Microsoft Access as a user interface, the Data Elements Dictionary (or DED) becomes an interactive tool for

both end users and developers.

Tables are organized into subject areas that have their own data steward and data warehouse manager (developer).

Al "

File Home

B¢t

Create External Data Database Tools

New Tab

Data Element Defintions

Add-Ins

» | 22| Main Menu (master form)

Data Element Definitions

Quick Links:

View Subjects

View Tables

[Subjects

ment &

ACAD_AMUDE_INST_DIM - UMIARC

- BCAD_ENRLCNTS_FACT - UMIARC
ACAD_ENRLCMNTS_FACT - UMIDAY

~ ACAD_EMRLCMTS_FORMATS_TBL - UMIART

- BCAD_ENRLCNTE_FORMATS _TEL - UMIDAY

- BCAD_ENRLCNTS_SCHL_FACT - UMIARC
ACAD_ENRLCMTS_SCHL_FACT - UMIDAY

~ ACAD_FACSALCOMP_DETAIL_FACT - UMIARC

- BCAD_FACSALCOMP_ORG_DiM - UMIARC

- BCAD_FACSALCOMP_SUMMARY _FACT - UMIARC
ACAD_INSTR_WORKLOAD_FACT - UMIARC

~ ACAD_INSTR_WWORKLOAD_FACT - UMDAY

- BCAD_MAJOR_FIVEYR_FACT - UMIARC

- BCAD_SCHMART_FACT - UMIARC
ACAD_SCHMART_FACT - UMIDAY

~ ACAD_SUBJECT _DiM - UMIARC

ADM - Admissions tables

AIME - KU Identity Management table

CC - SIS Campus Community

CENS - SIS RDS Setup

DED - Data Elements Dictionary

ENDWY - SIS Endowment

F& - Stucent Financial &id

FINA - KU Firnancials (PeopleSoft Yersion 9.00

FSKUTS - KU Finsncials (PeopleSoft version 7.5)

i3F - Gross and Fringe

GWAP - LIMI Lttility - SAS GMAP resources

GRAD -

HRED - Human Resources and Egual Opportunity

HREX -

IR - SIS Cross-system s

J3 - Jay Space

KEPSD - CIRP Historic datafesds to the KS Postsecondary Database

Figure 8: Data warehouse subject areas

Navigation Pane

View Libraries

View Fields

Subject#

Itern Key:

Itern Descr.

Itermn Group:

Dept. Owner Cd:
Dept. Name
Admin Steward Cd:
Steward Name
DW Visibility Level
Visibility:

DW Manager Cd:

Manager Name

View Jobs view Notes Reports Del Elements

m| Data Warehouse Subjects

1 Established 11112000

ACAD

Academic department analyses data for DEMIS and trend reports.

OIRP Analytical Data marts |
1516000 |

Office of Institutional Research and Planning
Teeter, Deborah J. (Inst. Research & Planning)
1

|
Mot Restricted
B

Cherland, Ryan M.

O Review Needed

Comments:

For each target table, we maintain description, data steward, fields, table type, data library, and schema information.
Each column (field) is displayed along with its source information and description. We also are able to link into our 3"
party job scheduling tables to display information about the job that created and/or updated the table.

10

Field to Filter:

Subject Mbr:
Table Key:
Table Name:

Table Type

Visibility Lv

Library Info

Data Warehouse Tables:

Subject Admin CD

Data Custodian CD: |

New Tab

Add-Ins

Data Element Defintions

Table Name j Operand: [SGETH

j Text:

32 Subject:

348 Database

REC_ACAD_DEGREE_DIM

Schema

Subject Admin Name:

Dimension 7] LastLoad DfTm:
3 j Visiblility:
j Custadian
Library Created: Descr:

Source System Table

Aftachments:

REC_ACAD_DEGR Filter

FILTER APPLIED: Table Name Equals '‘REC_ACAD_DEGREE_DIM'

Clear All Filters

REC

SARDS
RDSSA
AMi2000

Requires Approval (by Sys Admin)

Blessing Fhillips, Sheri Ann (Student Information Systerns)

Student Degree Table: The Student Degree Table is a list of all
Academic degrees a student has earned.

PS_ACAD_DEGR

Fields Infa

2
£
g Field Name ~| | Datatype . | Length . |SASForn . |SASInforma . Source Field Name ~ | Defintions From PS Longname - PS Shortname -
'ﬁ ADEGR ACAD CARFER WARCHARZ 4 84 24 PS_ACAD_DEGR ACAD_CAREER CSPRD Academic Career Career
? ADEGR ACAD CAREER LDESC WARCHARZ 30/ 830. 530 PS_ACAD_CAR_TBL.DESCR CSPRD Academic Career Career
£ ADEGR ACAD CAREER SDESC WARCHARZ 10 310 $10. PS_ACAD CAR TBL.DESCRSHORT CSPRD Academic Career Career
ADEGR ACAD DEGR STATUS WARCHARZ 181 51 PS_ACAD_DEGR ACAD_DEGR_STATUS CSPRD Academic Degree Stat Degr Stat =
ADEGR ACAD DEGR STATUS LDES! VARCHARZ 30/ 830. 830 PSXLATITEM. XLATLONGNAME:ACAD_DEGR_S' CSPAD Academic Degree Stah Degr Stat
ADEGR ACAD DEGR STATUS SDES WARCHARZ 10/ $10. $10 PSXLATITEM. XLATSHORTNAME:ACAD_DEGR_{ CSPRD Academic Degree Stat Degr Stat
ADEGR CLASS RANK NBR NUMBER 8 8 8 P5_ACAD_DEGR.CLASS_RANK_NBR CSPRD Class Rank Nbr Class Rank
ADEGR CLASS RANK TOT NUMBER 8 8. 3 PS_ACAD_DEGR.CLASS_RANK_TOT CSPRD Clazs Rank Total of
ADEGR COMPLETION TERM WARCHARZ 434, 4, PS_ACAD_DEGR.COMPLETION_TERM CSPRD Completion Term Compl Term
ADEGR COMPLETION TERM LDESC WARCHARZ 30/ $30. $30 PS_TERM_TBL.DESCR CSPRD Completion Term Compl Term
ADEGR COMPLETION TERM SDESC WARCHARZ 10/ 510 510 PS_TERM_TBL DESCRSHORT CSPRD Completion Term Compl Term

Figure 9: Table data elements defined

At the field level, we maintain the business logic (or definition), data type and format, and the source

(tablename.fieldname). We can quickly determine what the impact will be if the structure of a single field is changed
in an underlying source system. An extremely useful feature of the DED is that end users are also able to mass

update the business logic for fields that appear in multiple tables.

File Home

Create

External Data Database Tools

New Tab

Add-Ins

» F_:S-| Main Menu (master form) ‘{::

Field name (or partial name):

Business Logic:

Data Warehouse Fields

Field:

Label {Long): Account
Label {Short): Acct
Descriong (System):. Description

UMIARC_DED _TABLES | -=| frmDW_Fields

Defined in (System).

Source System Field Mame:

UCase(UMIARC_DED_FIELDS.Field_Name) = ‘ACCOUNT'

Subject

FINA

FIPRD

Accounts, Expense Accounts and Revenue Accounts to be used by the UKANS and KURES business units.

Copy Definitions

PSTREEDEFN.ACCOUNT

Accountis used to classify all financial transactions accerding to type of accounting entry. The university has identified 3 shared list of Budget

Field

ACCOUNT
ACCOUNT
ACCOUNT
ACCOUNT
ACCOUNT
ACCOUNT
ACCOUNT
ACCOUNT
ACCOUNT
ACCOUNT
ACCOUNT
ACCOUNT

Navigation Pana

w Table Name - Database » | Schema -
EINA ACCOUNTS DIM DEMISDW UMIARC
EINA ACCOUNTS DiM TMP DEMISDW UMIARC
EINA COMPTRL ENCUMB FACT ~ DEMISDW UMIARC
FINA COMPTRL SOFAS CRFWD FA(DEMISDW UMIARC
EINA CURRENTFY NONPROJ WW DEMISDW UMIARC
EINA CURRENTPROJ FACT VI DEMISDW UMIARC
EINA FAMART FACT VW DEMISDW UMIARC
EINA FAMART FY2009 FACT DEMISDW UMIARC
FINA FAMART FY2010 FACT DEMISDW UMIARC
EINA FAMART FY2011 FACT DEMISDW UMIARC
EINA FAMART HISTFS FACT DEMISDW UMIARC
EINA MIEARS DIM DEMISDW UMIARC
EINA NONPRIDMART FY2009 FACT DEMISDW __ UMIARC

Datatype - | SASFormat - | 3AS Informat -
VARCHARZ S10. 510.
VARCHARZ $10. 510.
VARCHARZ 510. s10.
VARCHARZ 510 $10.
VARCHARZ $10. 510.
VARCHARZ 510 510,
VARCHARZ 510. 510.
VARCHARZ 510. 510.
VARCHARZ $10 $10.
VARCHARZ 510. 510.
VARCHARZ 510 510
VARCHARZ 510. 510.
VARCHAR? 510 10.

Length « |Field -

37810

216

235
269

Figure 10: Field definitions

In Data Integration Studio 4.21, developers add standardized
We extract that metadata and are able to produce a report of each job. Another very useful piece of information is

11

notes and attributes to each table and job they create.

the Process Flow Diagram created in DI Studio. The diagram can can be saved as an image file and then brought
into an Access table with an attachement field. The image can then be accessed in an Access report. This allows
end users to quickly see how a particiular table in the data warehouse was created.

{2l rptbuoes x
= : Wednesday, September 07, 2011
Data Integration Studio - Job Summary
5:25:34 AM
Job Name: REC_ADVISE_RQ ENTITY_GRP_DTL
Folder: //Users/yhoward /My Folder/SARDS
Desc Created Last Updated
Advising setup table - Entity Groups 7/5/2011 6:30:09 PM 7/13/2011 8:57:48 PM
Roles: DI Diagram: (double-click to view)
Role Mame
OWNER yhoward e —— = o
Modified By yhoward o
Job Attributes:
Date Action Type Description
05/17/11 000Created by ¥olanda Howard
Tables in Job:
Table Descr Folder Path DBMSType DED_EffDt DED_Effsta
REC ADVISE RO ENTITY GRP DTL Advisement academic entity group J/DATA_UMI/RDS/REC ORACLE v v
detail listing.
PS RQ ENT GRP DETL /fDATA_ERP/CS
PS RQ ENTITY GROUP /fDATA_ERP/CS
Page 1of1l

Figure 11: Data Integration Studio Job Summary Report

Using the FeatureMap metadata object we are able to document the job flow and identify the source/target tables.
The FeatureMap outlines each source (FeatureSource) and target (FeatureTarget).

545 Environment

M Explore From Here...

=0l x|

Aftributes and Azsociations of "RO_ENTITY_GROUP" Featureiap

=-"* Table
. -9 RO_GRP_DETAIL_S1
%% TargetFeatureMaps
 a@
-} FeatureTargets
- RQ_ENTITY_GROLP
=% Table
. - REC_ADVISE_RQ_ENTITY_GRP_DTL
%% TargetFeatureMaps
-8 RG_ENTITY_GROUP

) MetadataCreatediEMT)
(2] Metadatallpdated{GMT
@ Mame

@ TransFormRole

¥ AssociatedClassifierMap
*F Customassoriations

¥ FeatureSources

"2} FeatureTargets

[& RQ_ENTITY_GROLP Mame [walue |
IV AssociatedClassifierMap @ Usageitersion a
5% Featuresources B 1d ASRIXPTK,BNO0ZMUA
Elf RQ_EMTITY _GROUP @ Ishctive 1
'!;J' SourceFeatureMaps (=) IsUserDefined 0

05Jul11:158:30:09
05ul11:18:30:09
RG_ENTITY _GROUP
CMETOONE
Assaciation
Assaciation
Assaciation
Assaciation

Figure 12: FeatureMap Metdata Object

Using the Metadata URI as a key in our DED allows us to map a single column to its FeatureMap and then we can
determine the source. In many cases there is a work table in between so we extract the WorkTable type objects as
well. This allows us to drill through to the primary source. Figure 13 below show the final source to target mapping

table using the FeatureMaps.

12

'ﬂtﬂ rPDITABLEDETAIL ALL |] DIFM
| Fid . FlName o FMSourceld .| FMSourceName .| FMTargefid .| FMTargetMame .| FMSourceTablelD . | FMSourceTableName . FMTargefTabl . |
ASRIXPTI.BNODZMUA RQ_ENTITY_GROUP ASRSXPTKBGOO1SK RQ_ENTITY_GROUP ASRSXPTKBGOL RO_ENTITY_GROUP ASREXFTKBFO0031W PS_RQ_ENTITY_GROUF ASROXPTKBLOD
ASROXPTKBMO0ZMUZ RQ ENTITY GROUP ASROXPTK.BGO0IHIC RQ ENTTY GROUP ASROXPTKBGOL RQ ENTITY GROUP ASREXPTKEBLOD0IDH RQ GRP DETAIL S1 ASROXPTKEFOY)

| #

Figure 13: Mapping of Source/Target Tables

Il rptouoEs |15 rptDITABLEDETAIL_ALL
Data Integration Studio - Table Report Ysanessay Sepiember 0 208
9:36:55 AM
REC_ADVISE_RQ ENTITY_GRP_DTL (Physical Table)
//DATA_UMI/RDS/REC Advisement academic entity group detail listing ORACLE
Table Roles:
Name
OWNER Howard, Yolanda
ADMINISTRATOR Phillips, Sheri B,
Medified By Howard, Yolanda
Table Attributes:
DED_EffDt DED_Effstat
v v
Fields:
Field FieldLength SAS Format SAS Informat Source Source Type
RO_ENTITY_GROUP 6 S6. s6. 20 GRP DETAIL $1RQ ENTITY GROUP Work Table
EFFDT 8 DAT DAT R0__GRP DETAIL S1EFFDT Work Table
RORMNT_USEAGE a 34 34 RO _GRP DETAIL S1.RORMNT USEAGE Work Table
ENTITY_GROUP_TYPE 4 s4. s4. RO GRP DETAIL $1ENTITY GROUP TYPE Work Table
DESCR 30 530 530 R0_GRP DETAIL S1DESCR Work Table
EFF_STATUS 1 $1 $1 RO_GRP DETAIL S1.EFF STATUS Work Table
NSTITUTION H ss. ss. 20 GRP DETAIL SLINSTITUTION Work Table
ACAD_CAREER 4 54 54 R0O_GRP DETAIL S1ACAD CAREER Work Table
DESCRSHORT 10 $10 $10 RO _GRP DETAIL $1.DESCRSHORT Work Table
DESCR254A 254 25 s25 RQ GRP DETAIL 51.DESCR2544 Work Table

Figure 14: Data Integration Studio Detailed Table Report
Keeping the Metadata in Sync

The DED tables in Microsoft Access are linked to Oracle tables in our warehouse. As end users update the business
logic in the DED, the Oracles tables are directly updated. This information is then pushed back into the metadata
using XML and the UpdateMetadata method. This keeps the DED and the SAS metadata in sync.

We use PROC SQL to determine which metadata object definitions do not match and create a work table with the
object URI (in the following example, this is the field TABLEID):

PROC SQL;

CREATE TABLE MISSING_DESC AS (

SELECT A.FOLDERPATH, A.TABLEID, A.NAME, A.DESC, A.SCHEMANAME, B.TABLE_DESCR,
HTMLENCODE(B.TABLE_DESCR,'AMP LT GT APOS QUOT') AS NEWDESCR

FROM DITABLES_NEW A, DED_TABLES B

WHERE (A.TABLEID = B. TABLEID AND(A.DESC <> B.TABLE_DESCR));
QUIT;

Note: We use HTMLENCODE to return the encoded string in order to handle special characters correctly in the XML.
The work table is then used in the following code to process the metadata update:

FILENAME TDESREQ 'U:\ETL 9.2\YDH_TABLEDESCR.QXML'";
FILENAME TDESRESP "U:\ETL 9.2\TABLEDESCR&SYSDATE..XML" LRECL=1024;

DATA _NULL _;

SET MISSING_DESC END=0OVER;
FILE TDESREQ);

13

IF_N_=1THEN PUT
'SMULTIPLE_REQUESTS>'/
'<UPDATEMETADATA >' |
' <METADATA >"
PUT
' <PHYSICALTABLE ID=""TABLEID "'/
' DESC =" NEWDESCR " />';
IF OVER THEN PUT
' </METADATA >'/
' <REPOSID >$METAREPOSITORY</REPOSID >/
' <NS>SAS</NS>'/
' <l-- OMI_TRUSTED_CLIENT (268435456) OM|_RETURN_LIST (1024) -->'/
' <FLAGS>268436480</FLAGS>'/
' <OPTIONS /> /
'</UPDATEMETADATA >'
'</MULTIPLE_REQUESTS >'

)

RUN;

PROC METADATA IN=TDESREQ OUT=TDESRESP;
RUN;

Conclusion

Exploring the SAS Open Metadata Architecture can be daunting but it certainly provides an abundance of useful
information. Using tools like the SAS Metadata Browser, SAS XML Mapper and PROC Metadata to both read and
write the metadata allows us to fully take advantage of this information. These tools will be critical as we delve further
into the metadata and continue to explore ways to automate and document our work.

References

SAS 9.2 Open Metadata Interface Reference and Usage. SAS Institute Inc. 2009.

SAS Institute Inc. 2009, SAS 9.2 Metadata Model: Reference
http://support.sas.com/documentation/cdl/en/omamodref/61849/HTML/default/viewer.htm#titlepage.htm

Recommended Reading

SAS Institute Inc. 2010, SAS 9.2 XML LIBNAME Engine: User’s Guide, Second Edition. Cary, NC: SAS Institute
Inc.

SAS Institute Inc. 2009, SAS 9.2 Language Interfaces to Metadata. Cary, NC: SAS Institute Inc.

Contact Information

Your comments and questions are valued and encouraged. Contact the authors at:

Ray Helm Yolanda Howard

The University of Kansas The University of Kansas

Office of Institutional Research and Planning Office of Institutional Research and Planning
1246 W. Campus Rd., Room 339 1246 W. Campus Rd, Room 339

(785) 864-4412 (785) 864-4412

ray-helm@ku.edu yolanda-howard@ku.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies.

14

