Paper 76490-2011

SAS® Bl Content Syndication with the REST Framework
Mike Vanderlinden, Experis, Portage, Ml

Abstract

This paper discusses a method to make the SAS® Bl content available to other parts of your organization through the
HTTP protocol. Data, Information Maps, Metadata, Reports, Stored Processes can be made available to any system
that can talk HTTP, whether it's a browser on your desktop, a SharePoint website, a mobile device or anything else
including a competitor's portlet. The REST framework is leveraged to provide the ability to reach SAS® content with a
zero-footprint client, as well as a powerful set of APIs to allow non-SAS developers to create rich interfaces.

Introduction

A few months ago, | was tasked to figure out a mechanism to execute SAS models from the Cognos software as a
proof-of-concept for a potential customer. The solution needed to include a rich user interface to modify the model
parameters and could not use the SAS EBI platform since it was not licensed by the customer. However, they did
license SAS Integration Technologies.

Needless to say that the first thought that came through my mind was: “Why not use SAS as the reporting platform?”
After all, SAS is at least as good as the other BI products for pure reporting and the complexity of integrating
disparate systems is often under-estimated. But because | believe there is an architect in me, | decided to take on the
challenge. Years of experience and “added wisdom” made me realize that while I'm a great fan of the SAS platform,
others prefer to go with the best-of-breed approach and use SAS for what it does best, namely analytics, and leave
other activities to systems they gauge superior in functionalities.

| started researching potential solutions that would include Web Services, SOA, and other established or emerging
technologies that would allow me to make the SAS BI content accessible by other systems. | figured if | could find a
solution for Cognos, it would most likely generalize easily to other similar platforms.

| had tinkered around with the SAS Java API to access the SAS Metadata, connect to a workspace server and launch
a SAS program from a Java interface. | knew | could build an application or in this case a Cognos portlet (or
whatever the equivalent of it is), that would do the job. This seemed like a solution that would entail a lot of
development on the client side and would not be generic enough for my ultimate goal, which was to design and
develop a simple mechanism to surface any SAS Bl content from various platforms/systems.

| then stumbled upon Dr. Roy Fielding’s dissertation which, at a high level, describes why and how the Web became
so popular. The REST framework and its various implementations followed soon after as a means to simplify and
standardize communications with web services.

Objectives

The goal of this endeavor was to build a solution that would create a bridge between clients and the SAS system
through the SAS metadata interface. The following constraints were decided arbitrarily and included in the scope:

e Client-server communication must be through the HTTP protocol
e Server may be producing XML or HTML (HTML allows zero-footprint clients in many cases)
e Requires SAS Integration Technologies

e Client may be any electronic device that can implement the HTTP protocol

SAS Metadata Model

In a typical environment, SAS Metadata is managed through the SAS Management Console by SAS administrators.
Java APIs also allow developers to build custom applications that interface with the SAS Metadata server to query,
create, update or delete metadata definitions.

SAS Foundation Services is a set of infrastructure and services to create applications that interface with the different
components of a SAS Intelligence platform. It includes services for managing IOM server connections, locating and
binding to services, event notification, repository federation and searching, logging, publishing, authenticating and
security management, context and resource management, Stored Process retrieval and execution, and user session
management.

All these services are extensively used within the SAS Web Applications such as Web Report Studio and the SAS
Portal, but are also available to developers to design new applications or new interfaces to the SAS platform.

A simple way to figure out how metadata definitions are organized and hierarchically dependent is to use the SAS
editor and type in the ‘metabrowse’ command. You will be prompted for information to connect to a Metadata Server,
and then you will be presented with a tree structure of all metadata definitions in the repositories.

E File Ecit View Tools Solutions ‘Window Help - |E | X |
| v [rebrowss ElEEEEEE R R |
x| [FASEnvienment "Classifierhap" Metadata Objects
e S — 83 kalms-costella (Port 8561) Neme [Type Object ID [Description [Mac=
il BlLineage 37 2. Propylens hodel Classifiertap ABUNDUWHM B5000030 Program that executes the latest model on the available NA Fropy... 10h
& Foundation 3¢ 3. Generate GPLOT Classifieriap ASUNDUWM B5000042 13h
™ Fio o Y AbstractExtension 3¥ 4. Download Forecast Classifiertap ASUNDUWM B500003U Generates an Excel report with forecast data for Propylene 10M
foranes e Shortets B Abstractob 39 Actual Counts vs Percentage ClassifierMap ABUNDUYM BE00005A 08l
%% AdminGroupSharedPrompt ClassifierMs; ASUNDUM/M. BS00005B 08J
B AbstractPrompt : P i P
B AbstractP " 34 Airline Plot Classifiertap ASUNDUM. B50000TH 204
- stractTroperty ¥% CreateRsport Classifierhap ASUNDUWM B500002F 264
@ bzg M AbstractTransformation ¥ CreateFepoart Classifierhap ASUNDUWM, B500001M 148
{8 AccessControl 2% Customer_Groups_Alt_Stat . Classifieriap ASUNDUWM BS000014 08F
Favorite Folders My Computer {81 AccessControlEntry *% Customer_Groups_Stats_D... Classifierhap ABUNDUWM,.B5000013 Statistics and Frequency Counts for Custamers 03F
B AccessControlTemplate ¢ Customer_Sales_Stats_De... ClassifierMap ASUNDUWM B5000012 Surmary Statistics for Custamer Orders 03F
B Aggregation ¥ Cycle_Dates_View ClassifierMap ASUNDUWM, BS000056 08.
81 AnalyticColumn Eé DallyEnrolimentsLast80Days ClassifierMap ASUNDUWM.B5000062 08J
1 AnaiyticTable 3 Demo Classifiertap ASUNDUWM.B500001D 14F
& Applicationction ¥ DOWBUS Classifieriap ASUNDUWNM BS00007P 28J
5¥ DownloadForecast Classifiertap ASUNDUWM B5000047 18h
& ArchiveEntry 3¥ DrildownDema Classifieriap ASUNDUWM.BS00007 28l
B ArchiveFile % Execution Options Classifierhap ASUNDUWIM B5000000 204
{8 AssociationProperty 34 GeneratePLOT Classifiertap ASUNDUWYM. BS00004N 18h
B AttributeProperty 3 Import Propylene Data Classifieriap ASUNDUWM.B5000048 1Bh—
1 AuthenticationDomain 3¢ InputStep| Classifiertap ABUNDUWM BS00002G: 284
1 Calculetedeasure 3¢ InputStep1 Classifieriap ASUNDUWM.BS00001K 148
) Change 3¢ InputStep2 Classifieridap ASUNDUWM.BS00002H 268
¢ InputStep2 Classifieria) ASUNDUNM/M BSO00D 1L 144
Classifier 25 Inp P P
o . sy %% LEDASH_BY ADMGROUF... ClassifierMay ASUNDUWM BS00005! 08
F] Classifierhap : A P
WO P I Model H LEDASH_BY_ADMGROUF... ClassifierMap ASUNDUM. B500005H 08J
:‘ ropylene Vode *% LEDASH_CYCLE_DATES_ .. Classifierhap ASUNDUWM, B500006K 104
39 3 Generate GPLOT 3¢ LEDASH_CYCLE_DATES_.. ClassifierMap ASUNDUWM, B500006J 10J
3% 4. Download Forecast *% LEDASH_CYCLE_DATES_.. ClassifierMap ASUNDUWM BS00005G 08J
3% Actual Counts vs Percentage *% LEDASH_CYCLE_DATES_.. Classifierhap ASUNDUWM,. BS00005F 08J
3% AdminGroupSharedPrompt %% LEDASH_CYCLE_DATES_.. ClassifierMap ASUNDUWM. BS000053 08J
3¢ Airline Plat 3% LEDASH_CYCLE_DATES Classifierhsy ASUNDUWM, BS000056 08.
3 R il B p
3% CreateReport *# LEDASH_CYCLE_DATES_.. ClassifierMap ASUNDUWM.B5000057 08J
X 3¢ le_byadmingroup Classifiertap ASUNDIUWM BS00005E 08J
3¥ CreateReport
3¢ Customer Grouns Al Stats D |3 le_bysshool Classifieriap ASUNDUWM B500005C 08J
22 Customor o P e Do ¥ Load Map Classifieridap ASUNDUWM.BS000075 24J
:6 ustomer_roups_stats_Dema 3¢ firstap Classifierhap ABUNDUWM,BS00001Q iy first sp1 284
#% Customer_Sales_Stats_Demo2 | ¢ o socondep Classifierhap ABUNDUWM B500001X 258
¥ Cytle_Dates_View 3¥ ODS Styles - Dynamic ClassifierMap ASUNDUYYM. BSOO00DON 204
3¢ DailyE astA00ays 3 Classifiertap ASUNDIUWM.B500000X 200
3% Demo 3¢ Parameters Classifieriap ASUNDUWM.B500000% 20J
3% DOWBUS 3¢ Parameters Classifiertap ASUNDUWM.BS00000V 20J
3¢ DownloadForecast ¥ Parameters Classifieridap ASUNDUWM.BS00000U 20J
3¢ MrilrirmmNorm, = ||| 3% Parameters Classifierhap ABUNDUWM, B500000T 204
» <] | »
& Peesus (2 Explorer rl Output - (Untitlsd) | El Log - (Untitled) | #] Editor - Untitled 1 | [Z] Metadata Browser |
96 *Classifierhap” objeci(s) displayed. S CiDocuments and Settingsimvanderlinden ‘

For instance, retrieving a list of Stored Processes entails retrieving ClassifierMap objects which have a public type of
“StoredProcess”. The different Associations objects allow us to retrieve additional information about a specific Stored
Process.

SAS Environment Attributes and Associations of "Analytical Madel 7" ClassifierMap
- CalculatedMeasure 3 Name I Value
#-@) Change B UsageVersion 1000000
@ Classifier Eid ABWDBBK3.B5000016
=@ ClassifierMap am7.jpg This is the description of the analytical model number 7.
®-3% Analytical Madel 2 BisActive 1
#-3% Analytical Model 3 lSUSBrDEmed o
¢ Analytical Model 4 EA MetadataCreated(GMT) 11Feb11:18:44:45
oS ; B MetadatalUpdated(GMT) 11Feh11:18:44:57
o "t Analytical Model 5 B Name Analytical Model 7
-39 Analytical Model B 3 PublicType StoredProcess
E-3¥ B TransformRole StoredProcess
#-% ComputeLocations %’ ComputelLocations Association
5% Nates % Notes Association
5% Prompts % Prompts Association
B-% ResponsibleParties %’ ResponsibleParties Association
% SourceCods % SourceCode Association
i % Trees Association
&% Trees

If we wanted to retrieve the prompts defined for this Stored Process, we could query the Prompts Association object
which conveniently returns XML with all prompt definitions.

ISAS Environment Attributes and Assaciations of "Parameters" PromptGroup
#-@) CalculatedMeasure :I Name | Value
{1l Change B Usageversion 1000000
&) Classifier Bid ASWDBBK3.B600001E
=@l ClassifierMap [Grouplinfo <PromptGroup version="1.0"><Label><Text xml:lang="en-US">Parameters</Text></Label></Prompt...
3% Analytical Madel 2 BA GroupType 2
B MetadataCreated(GMT) 11Feb11:18:44:45

X% Analytical Model 3

®-3% Analytical Model 4 %m:::maupda@d(@w) '1:;'::233'1;58144:45
yg :
2§ Anchticalbadzl B PublicType Embedded:PromptGroup

®-3% Analytical Model 6 % PromptEnabledOhject Association
E-3% Analytical Model 7

#-% ComputelLocations
#-% Notes
=% Prompts

@0
#-% ResponsibleParties
#-% SourceCode
% Trees

These APIs thus allow us to create a custom application to query the SAS Metadata to retrieve definitions. Other
APIs and services are designed to use these definitions in the context of a user session and so we could execute a
Stored Process, prompt the users for parameters... all while leveraging the security framework from SAS Integration
Technologies.

However, in my quest for absolute simplicity (meaning | don’t expect anyone to become a Java developer and start
building complex applications overnight) | needed to find a way to make the same capabilities and features available
through a zero-footprint client.

By using Web Services, | could easily provide a set of services on top of the SAS APIs to provide such functionalities
as retrieving metadata objects and performing actions on them based on their type. In order to implement clients that
interface with these Web Services, | would have to develop code for each of those services.

A simple mechanism for exchanging information such as the HTTP protocol is the most intuitive choice. REST-based
Web Services provide just that; they function just like ordinary Web Services and while they do not need to use the
HTTP protocol, they are mainly designed on the very same premises that made HTTP and the Web so popular.

RESTful Framework

The REST (Representational State Transfer) architectural style is a software architecture for distributed hypermedia.
It was introduced by Dr. Roy Fielding in his doctoral dissertation which proposes a simpler-than-before client-server
architecture based on the success of the World Wide Web.

| prefer the term “framework” because in order to fully take advantage of the benefits of developing REST-based Web
Services, best practices/constraints must be respected by the developer.

REST Constraints

In order to be RESTful, an architecture must abide several constraints. There must be a clear separation between the
client and the server as they communicate through a uniform interface. This allows clients and servers to be
developed independently and generally promotes higher portability.

Sessions between a client and a server are stateless. This means the client context is never stored on the server,
unless the state is addressable as a resource on the server. This provides better reliability and scalability on the
server side.

Server responses must clearly define themselves as cacheable (or not) to ensure clients are always aware whether
the information they receive is up-to-date. This also improves scalability and performance since it can reduce
unnecessary interactions between the client and the server.

Intermediaries between the client and the server provide scalability, performance and sometimes enforce security
constraints. Clients must not be able to tell whether they are connected to an end server or an intermediary, this is
referred to as a layered system.

Following these constraints promotes simplicity, portability and performance which is just what we need to build a
SAS BI Content Syndication solution.

REST Characteristics

A REST-based solution looks a lot like SOA (Service Oriented Architecture), however at the center of the REST
architecture is the resource, and so it is sometimes referred to as a Resource Oriented Architecture.

A resource is any source of information that can be referenced with a global identifier. For our implementation, which
is based on the HTTP protocol, global identifiers are URIs and resources are the SAS Bl content such as tables,
users, information maps, etc.

These URIs are highly visible and offer a great sense of addressability because each is human readable and
provides simple options for manipulating representations. For instance, the following URI requests the list of
information maps from the “Internal” folder in XML:
http://services.experis.com/SASREST/InformationMaps;folder=Internal/XML.

Resources are manipulated through a uniform interface, in our case HTTP methods such as PUT, POST, GET and
DELETE. This paper showcases a prototype that only implements GET services since we will only consume
information.

It is important to note that resources are separate from representations. For example, we can request a table which
will return the records in any selected representation such as HTML, XML or comma-separated.

Before we delve into our implementation of a prototype, another aspect of the REST architecture is Hypermedia as
the engine of application state. This simply means that transitions between resources are done through hypermedia
actions on the server, eg. Hyperlinks. This is exactly how the World Wide Web works. When passively surfing the
Web, most of us start with a search engine. We enter some keywords and from there we can easily spend hours in
front of our computer without typing anything more, just clicking links that we find interesting. This connectedness is
omni-present in the design of service responses.

When designing a set of REST-based Web Services, one must first identify the resources and design a resource
model for interacting with them. This resource model is typically documented as a table which lists resources, their
methods, representations, options and a description.

URI Method Representation Options Description
http://... GET HTML Retrieves a resource identified by [URI] in HTML format
http://... PUT XML

Design

As mentioned earlier, our first step to implement REST Web Services that interact with SAS is to define which
resources we are going to go after and how. For our prototype, we want to be able to retrieve libraries, tables, and
Stored Processes.

We need to be able to retrieve a list of libraries as defined in the metadata repository, either in HTML or XML.
Because we are concerned with connectedness, a library will have meta information such as a link to its member
tables through another URI.

URI Method Representation Description ‘

.../Libraries/html GET HTML Retrieves a collection of SAS libraries in
HTML format

.../Libraries/xml GET XML Retrieves a collection of SAS libraries in
XML format

...ILibraries/objected/html GET HTML Retrieves a SAS library identified by
object ID in HTML format

...ILibraries/objected/xml GET XML Retrieves a SAS library identified by
object ID in XML format

The object ID in the URI above represents the Metadata unique identifier assigned by the SAS system so each
resource can be uniquely identified.

For tables, we want to be able to add options on the URI to subset the query to a specific library; this is how a link
from a library to a list of tables will be implemented. Other subsetting methods could be created such as by folder or
anything else. For instance, if an application retrieved the resource at URI: .../Libraries/XGR5678/xml, it will include
an XML element that is a link and has a URI attribute with a value of .../Tables;lib=XGR5678/xml.

Method Representation Options ' Description
...ITables/html GET HTML Lib=objectID Retrieves a collection of SAS
tables in HTML format
.../Tables/xml GET XML Lib=objectID Retrieves a collection of SAS
tables in XML format
...ITables/objectID/html GET HTML Retrieves SAS table

metadata identified by object
ID in HTML format

.../Tables/objectID/xml GET XML Retrieves SAS table
metadata identified by object
ID in XML format

...ITables/objectID/data/html GET HTML Retrieves SAS table data
identified by object ID in
HTML format

.../Tables/objectID/data/xml GET XML Retrieves SAS table data
identified by object ID in XML
format

For Stored Processes, we need to be able to retrieve a list (possibly based on a folder), retrieve the input parameters

(prompts) and execute the Stored Process.

URI Method Representation Options Description

.../Models/html GET HTML Folder=Name Retrieves a collection of models
(Stored Processes) in HTML format

.../Models/xml GET XML Folder=Name Retrieves a collection of models
(Stored Processes) in XML format

.../Models/objectID/input/html GET HTML Retrieves the prompts of a Stored
Process identified by object ID and
display its HTML representation

.../Models/objectID/input/xml GET XML Retrieves the prompts of a Stored
Process identified by object ID and
display its XML representation

.../Models/objectID/output GET HTML Executes a Stored Process

identified by object ID and streams
back the results (assumed to be
HTML).

The choice of providing HTML and XML representations is obviously arbitrary. We want to provide these services for
zero-footprint clients, such as a simple Web browser, which will use the HTML representations. We also want to give
developers a simple interface to SAS using a common standard, namely XML.

We are now ready to start developing our set of REST-based Web Services to make all the resources available.

Implementation

Architecture

The application will have the following components:

e A Java class for each object defined in the SAS metadata; in our example we will have classes for libraries,
tables and Stored Processes. Each class defines attributes from the SAS metadata as class variables and

getter/setter methods for each.

e A Java class with methods to establish a connection to the SAS metadata: retrieves the repositories,
collections of objects and their attributes.

e A Java class to execute the query when the data component of a table is requested.

e A Java class to execute a Stored Process and stream back the results to the requestor.

e XSL transformations to create HTML representations from the default XML.

These components are packaged in an application that is deployed on a Web application server. As far as our
application is concerned (or from a client point of view), the client-server relation is solely between the varieties of
clients and the Web application deployed as a set of REST Web services.

Metadata Tier Compute Tier Data Tier
& g
SAS Metadata Server SAS Workspace Server Database

SAS Pooled Workspace Server
SAS Stored Process Server

Mid Tier

@ s

= Database
Custom Application
Game Console
Mobile Device
Browser
Competitor’s Portal

Web Application Server
SAS Restful APIs

SAS Object Classes

Below is a trimmed down example of a class defined for SAS libraries. As mentioned it simply declares the attributes
we are interested in, getter/setter methods and a constructor. The imported packages at the beginning of the code
are to implicitly transform our response into XML tags.

import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;
@XmlRootElement (name = "library")

@XmlType (propOrder = { "objectId", "name", "libref", "engine", "schema", "server",

b
public class Library {
private String objectId;

private String name;

public void setObjectId(String objectId) {this.objectId = objectId;}
public String getObjectId() {return this.objectId;}
public void setName (String name) {this.name = name;}

public String getName () {return this.name;}

public Library () {};

public Library(String objectlId, String name, String libref, String engine,
) A
this.objectId = objectId;
this.name = name;
}}

Metadata Utility

The Metadata Utility class provides a connection to the SAS Metadata Server and can retrieves the list of repositories
and/or a collection of objects. Retrieving a collection of tables as in the example below simply means:

e Requesting a handle on a list of PhysicalTable objects
e Getting their attributes

e Creating a new instance of the Tables class.

public Boolean connectToServer() { //refer to SAS documentation for sample code }

public CMetadata getRepositories() { //refer to SAS documentation for sample code }

public ArrayList<Table> getTables (CMetadata repository) {
ArrayList<Table> tables = new ArrayList<Table>();

try {

String reposID = repository.getFQID();

MdObjectStore store = factory.createObjectStore();

int flags = MdAOMIUtil. OMI_GET_METADATA | MdOMIUtil. OMI_ALL_SIMPLE;

List tableList = factory.getOMIUtil ().getMetadataObjectsSubset
(store, reposID, MetadataObjects.PHYSICALTABLE,
flags, "");

Iterator iter = tableList.iterator();

while(iter.hasNext()) {
PhysicalTable tableObject = (PhysicalTable)iter.next();
AssociationList alt = tableObject.getTrees (),
Tree t = ((Tree)alt.firstElement()) ;
Vector f = new Vector(),;
f.add(t.getName ()) ;
while (t.getParentTree () != null) {
t = t.getParentTree();
f.add (0, t.getName())

}
tables.add (new Table (tableObject.getId(), ..));

}

store.dispose () ;
}
catch (Exception e) { e.printStackTrace() ;}
return tables;

We have created similar methods to retrieve a list of libraries and a list of Stored Processes.

Resource Classes

Each SAS object also has a resource class which functions to parse the URI and determine which resource and in
what representation to fetch a response. For instance, the following code is “called” whenever the URI of the HTTP
request is .../Models/xml. Note that in our application, all requests are of the GET type.

@Path ("xml")

@GET

public StreamingOutput getModelsXML () {
SASMetadataConnection smdc = new SASMetadataConnection() ;
smdc.connectToServer () ;
CMetadata repository = smdc.getRepositories()
ArrayList<Model> models = smdc.getAllStoredProcesses (repository) ;
models.addAll (modelMap.values()) ;
return getListXML (models) ; }

Similarly, an annotation such as below would call the code to retrieve the input (prompts) of a Stored Process
identified by the parameter {id}, in an HTML representation.

@Path ("/{id}/input/html")
@GET
@Produces ("text/html")

XSL Transformations

Because the Java classes implicitly create an XML representation of the objects retrieved, we can re-use the same
methods when an HTML representation is requested. Simply apply an XSL transformation that converts XML tags to
HTML tags. The example below converts prompts defined for a SAS Stored Process (limited to text entry in this
example) to the appropriate HTML tags that represent a form where users can enter parameters and execute the
Stored Process.

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
<xsl:output method="html"/>
<xsl:param name="objid" />
<xsl:template match="/">
<html>
<form id="myForm" action="url" method='GET' target="view">
<input type='hidden' name="sp" value="{$objid}" />
<table>
<xsl:for-each select="PromptGroup/DefinitionsAndSubgroups/TextDefinition">
<tr><td><xsl:value-of select="Label/Text" /></td><td>
<xsl:choose>
<xsl:when test="ValueProvider/StaticValueProvider/Values'">
<xsl:choose>
<xsl:when test="@maxValueCount>0">
<input name="{@name}" id="{@name}" type="hidden" value="" />
<select name="outgraphs2'" id="outgraphs2" multiple="multiple" size="5">
<xsl:for-each select="ValueProvider/StaticValueProvider/Values/String">
<option value="{@value}" label="{@value}"></option>
</xsl:for-each>
</select>
</xsl:when>
<xsl:otherwise>
<select name="{@name}" id="{@name}">
<xsl:for-each select="ValueProvider/StaticValueProvider/Values/String">
<option value="{@value}" label="{@value}"></option>
</xsl:for-each>
</select>
</xsl:otherwise>
</xsl:choose>
</xsl1:when>
<xsl:otherwise>
<input type='text' name='"{@name}" value='"{DefaultValue/String/@value}" />
</xsl:otherwise>
</xsl:choose>
</td></tr>
</xsl:for-each>
<tr><td>Format</td><td>
<select name=" odsdest'">
<option value="HTML">HTML</option>
<option value="PDF">PDF</option>
<option value="RTf">RTF</option>
</select>
</td></tr>
<tr><td>Style</td><td><input type="text" name="_ odsStyle" value="" /></td></tr>
<tr><td colspan='2'><input type='button' value='Execute'
onClick="javascript:wdaExecuteModel (this.form) ;"/></td></tr>
</table></form>
</html>
</xsl:template>
</xsl:stylesheet>

Applications

Internet Explorer/Portals

My first test was to call the Web services from a simple browser. Not having access to a competitor’s portal, | wanted
to demonstrate that any client that can make HTTP requests and display the resulting HTML could connect to SAS

and “syndicate” its content. Most portals have the equivalent of the SAS URL Display portlet which can be used as a
client of our application.

The first screenshot shows the output of pointing the browser to http://.../Models/html. The application retrieves the

list of stored processes and presents them in an HTML list. Each list element is a link to the input page of the stored
process, which provides the connectedness attribute of REST-based Web services.

When clicking any of the Stored Processes, the HTTP call is to http://.../Models/objectid/input/html. The application
retrieves the prompts (conveniently stored as XML in the metadata repository) of the Stored Process identified as

[objected]. It then applies an XSL transformation and presents the input page of the stored process (the second
screenshot).

Users can then tweak the parameters and press the “Execute” button which makes the third HTTP request,
http://.../Models/objectid/output. In this case the Stored Process is executed on the server and its output streamed

back to the client.

7~ nup:/ocalhost:B081/MyProje. .. !Elm
gs\) - I’r‘e bt —I =N S
File Edit Wiew Fovorites Tools Help File Edit Wiew Favorites Tools Help = i I e i
The REG Procechn
L Feworites @2 httpiocalhost BOB1/MyPr | .. Favorites @B nttp:Mocalhost: BOB 1My Fr | At OELT
— — e e ey el
Sample: European Demographic Data — Transform [Ceain =] Warke Okt 0
Sample: European Demographic Data Detail Analysis Veriable [Saiery A "
Sample: Frequency Analvsis of Municipalities nelyals Veriablelsaan
Sample: Hello World Input Variables [hits runs rbi walks years e o O i g
ample: MEANS Procedure Web Service - -
Diagnostics &
Sample: Multiple Output Formats RS ttiont e
Sample: Server Test Analyses CooksD st o
le: Shoe Sales by Region Residuals Sy OF Souaes Sqan Flam ProF
Sample: Shoe Sales Graphics DFFITS = "EEEE
Sample: Stored Process Macro Variables Format A =] T
Sample: Year to Date Budget Sewl — - =
mvSample e SIS wea
mySample? Execute R
ion Demo st R 0
N 3 Deststien 270 pqRlg 065
ot 1o
Pt BT
Paravaer Saniid
Ve Lokl 06| Bsbvar B ke P
- - e IR
- = - pl e p
[[Cacal intranet S [maoos s = | [Local intranat Fa - [®oowm = [0 T

Microsoft Excel has a menu option to retrieve data over the Web. When prompted for an address, we can simply

enter one of our URIs defined in the resource template. In this example, we want the list of tables in XML format. We
choose XML because MS-Excel will convert the tags to a table automatically.

[.‘i‘ JGd 3] r\biy v New Web Query 2] x|
)

/ ‘ agiress: [nitp://acalhast:a081 MyProject/sersices tables, il = @ @ 2 @ B I optons..
 bme Bt Pagelgod fomds |0 | Reier Ve Dedpr 5K

Click [#] nextto the tables you want to select, then click Import.
hd

3) 13l Comecions y = & Cea
&l |INEI I iy

Getbtemal basing Rerh ﬂ Sot | Fiter

<?xml version="1.0" encoding="UTF-8" standalone="yes" 7>
- <tables>

- <table>
<objectld>ASWDB6K3.B7000001</objectld>
<name>0DSSTYLE</name>
<description >SAS view to list ODS styles</description>
<folder>[Products, SAS Intelligence Platform, Samples]
</folder>
<library>[Products, SAS Intelligence Platform, Samples]
</library>
<libraryLink>../libraries/html</libraryLink>
= <datalink />
E b 6 i | ! £ L <Jtable>
- <table>
From Test <objectld>A5WDBG6K3.B7000006</objectId>
<name>CITY</name>

 Ancerintion Pk fdncorintinn s

|
Irmpert Cancel

)

10

http://.../Models/html
http://.../Models/objectid/input/html
http://.../Models/objectid/output

This allows us to download data sets (SAS data sets or RDBMS tables or anything else defined in the metadata
repository) without the need for the Add-in for MS Office which requires a SAS Bl license.

(@\. [R R A Bookl [Compatibility Mode] - Microsoft Excel Table Taals - M 3

e e e eon | @ - = x

Table Mame: lill sSummarize with PivotTable @ (3 Properties ¥ Header Row [First Column

[rablet || 82 remove pupiicates ()

T Resize Table || T Convert to Range [¥] Banded Rows 7] Banded Calumns
Praperties Tools External Table Style Options

A1 ~Q fu| objectid
A B C D E F S H 1

objectid Bl clescription

ASWDBEK3.B7000001 ODSSTYLE SAS view to list ODS styles [' SAS Platform, ! SAS Platfors -/libraries/html

ASWDBEK3.B7000006 CITY City [Shared Data, Orion Detail] [Shared Data, Orion Detail] _Jlibraries/html
CONTINENT [Shared Data, Orien Detail] [Shared Data, Orion Detail] _Jlibraries/html

ASWDBEK3.B7000008 COUNTRY Country [Shared Data, Orion Detail] [Shared Data, Orion Detail] _.Jlibraries/html

wrowser || 7] Total Row 71 Last Calumn
Expart Refresh

EIICICIENENE S

51
441 | Sheet - Sheeta _Sheets) I

Ready | [[c= o i)))

Custom Web Application

Because the application is designed to send XML or HTML as an output, application developers can request XML
responses and focus their time and effort on building a rich GUI interface. With a little less than 120 lines of code (and
admittedly heavy usage of variety of JavaScript frameworks), a small footprint application presents the users with a
list of Stored Processes represented as icons with a looking-glass effect when “moused over”.

At the start of the application, a call is made to http:/.../Models/xml to retrieve the list of stored processes. Then a few
lines of code parse the XML to transform it into a list of interactive icons as below.

Analytical Model 5: This is the description of the analytical model number 5. Itis stored in the Metadata
[Repositery and can only be moedified by the SAS Administrator,

11

When an icon is clicked, a second Web service call is made to http://.../Models/objectID/input/xml. The response
contains the prompt definition from the metadata repository. A fully resizable and “draggable” window opens and the
set of XML tags is applied an XSL transformation to turn it into an HTML form to allow users to modify the parameters
of the model. The window has an input tab to present the HTML form and an output tab as a place holder for the
output.

Analytical Model 2 Parameters Results

Transform Logid [

analsis variable S92y [T

Input Variables
Diagnostics

RStudent

CooksD

Residuals

DFFITS

Here the user has requested a PDF representation of the same resource which can then be saved or emailed to a
recipient.

E Bookmarks
The REG Procedure
L Op Model: MODEL1
& The Reg Procedure Dependent Variable: logSalary Log10(Salary)

=& MODEL1
263
= logSalary -

Number of Ohservations
El Analysis of Variance
B Fit Statistics

& Parameter Estimates
=El The Reg Procedurs
=E MODEL1 19.88079 | 3.31346

1917344 | 0.07490

= El logSalary
& Number of Observations
Bl Analysis of Variance

] Fit Statistics

& Parameter Estimates
1063115

39.05423

12

http://.../Models/objectID/input/xml

Mobile Devices

My relationship with my iPhone is a “love and hate” one. Yes | love this little gadget and most likely couldn’t live
without it for more than a mere few hours, but developing an application for it entails learning yet another language,
and investing in a development platform that | don’t currently own. What's more, once | would have developed a nice
app that interfaces with SAS, it wouldn’t work on any other platform/device.

On the other hand, there is a set of RESTful Web services that returns HTML tags. This allows me to interface with
SAS from any mobile device regardless of its operating system, software, etc., all | need is a Web browser.

a1 ATET = 9:22 AM 2 55% @M . ATET = 9:22 AM = 55% @M . ATET = 9:26 AM = 54% =8

b 192.168.1.101:8081/M... &, - The REG Procsdurs
192.168.1.101:8081/M... &, - Model: MODELT

Dependent Variable: logSalary Log10(salary)
Paia Transform (K3 Number of Observations Read =
Data Detail P r Number of O Used =
Wunicipalitics Analysis Variable (5 o7 Dhear AR AR ARG VAR, =

Service Input Variables [hits runs rbi waks years ()

= " Sumof Maan :
Analyses (B ‘Boirce OF Squares Scuars FValue Pr>F
Madal @ s 3aMe M <o
R H
‘ Format | HTML == e ——
o Variables . S
Style |’ Corroctod Total 203 230043
G [Rootmse carer Rsgars o
\2xecuie. / Depindentiean >34 AGRSq 347
R, | Cootivar e
L3 Parameter Estimates
6

Al O DF Emor tValue Pr>)
Anal Model 7 OF Estimate E v
Analytical Model 2 James omvs aer e
aonw swony aw awa

ootowno oeema o o

1
1
1
1 omesiMe ootz o7 o
1
1
1

somes o3 2w oo
eonM oot z4r oo
patomna NEoms 2z 0O

Game Console

Since we’re trying to talk to SAS and syndicate its content to any “HTTP enabled” device, why not a game console? |
don’t expect any SAS user to start programming, developing and modeling on their Wii console, but one has to admit
that a PROC REG on a 46” HDTV through a Wii console is pretty cool!!!

13

Conclusion

Designing my SAS Bl Content Syndication application relied on two main concepts; technical tools that allowed me to
build a prototype that meets the challenge | set for myself. For one, the rich set of APIs that SAS offers to interact
with its servers and particularly, the openness of its metadata architecture. Anything defined in your SAS environment
can be retrieved, manipulated or removed with just a few simple API calls. Secondly, the REST architectural style
provides a much simpler alternative to the complex SOAP protocol to implement Web services. It is because of its
simplicity and the constraint of a uniform interface to interact with the Web services that the SAS Bl content can be
syndicated from any device that can communicate with them, in my case any device that implements the HTTP
protocol.

References

Architectural Styles and the Design of Network-based Software Architectures, University of California, Irvine, 2000 by
Roy Thomas Fielding, Ph.D.

Recommended Reading

SAS 9.2 Integration Technologies: Java Client Developer’s Guide, SAS Documentation
SAS 9.2 Foundation Services: Administrator's Guide, SAS Documentation

SAS AppDev Studio 3.4 Eclipse Plug-ins: User’'s Guide, SAS Documentation

RESTful Java with Jax-RS, O’Reilly, Bill Burke,

RESTful Web Services Cookbook, O’Reilly, Subbu Allamaraju

Contact Information

Mike Vanderlinden

Business Analytics, Experis
5220 Lovers Lane, Suite 200
Portage, Ml 49002

(734) 756-1083
Mike.vanderlinden@experis.com
http://www.experis.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies.

14

mailto:Mike.vanderlinden@experis.com
http://www.experis.com/

