Paper AD02-2011

Take a Fresh Look at SAS® Enterprise Guide®:

From point-and-click ad hocs to robust enterprise solutions

Chris Schacherer, Clinical Data Management Systems, LLC

ABSTRACT

Early versions of SAS Enterprise Guide (EG) met with only lukewarm acceptance among many SAS programmers.
As EG has matured, however, it has proven to be a powerful tool not only for end-users less familiar with SAS
programming constructs, but also for experienced SAS programmers performing complex ad hoc analyses and
building enterprise class solutions. Still, many experienced SAS programmers fail to add EG to their SAS toolkit.
They face the barriers of an unfamiliar interface, new nomenclature, and uncertainty that the benefits of using EG

outweigh the time spent mastering it. Especially for this group, (but also for analysts new to SAS), the present work
attempts to orient new EG users to the interface and nomenclature while teaching them how to achieve common data
management and analytic tasks they perform with ease in SAS. In addition, EG concepts and techniques that focus
on using EG as a development environment for producing end-user analytic solutions are described.

INTRODUCTION

The first reaction many SAS users have to Enterprise Guide (EG) is "l don't need a point-and-click interface; I'm a

real SAS programmer". The idea of clicking on an interface widget to perform a PROC SORT, for example, (instead

of simply typing "PROC SORT DATA=....") seems like a frivolous piece of functionality. Others, having further

considered why SAS would develop a tool like Enterprise Guide, might even become worried that their livelihoods are
being threatened—thinking "if people who do not know SAS can perform these functions on their own, why does my

organization need me?" Sitill others see the flow-diagram-inspired "Process Flows" and imagine how much faster

they might crank out the endless stream of ad hoc queries with which they are bombarded once they no longer have

to search for (and type) all of those cryptic database table and variable names. "Better yet", this group imagines,
"perhaps | could empower my users to do some of this work themselves and | could focus on creating more
advanced data management and analytic tools for my organization". SAS Enterprise Guide has something to offer

users from each of these perspectives.

Once a SAS programmer is introduced to EG and learns both
the available functionality and the limitations of "point-and-
click programming" he or she discovers a programming
environment that both (a) empowers a broader community of
end-users to transform data into information and (b) provides
new opportunities to apply their SAS knowledge to the
development of more elegant data management and analytic
tools. The problem for these programmers, however, is that
when they sit down to create their first EG "program”, they
often realize "I have no idea how this thing works." In fact,
the splash screen with which they are presented at startup
poses a question for which they are not entirely prepared—
do you want to start a new project or open an existing one?
The one option that seems manageable from this splash
screen is "New SAS Program”. After all, you know what a
SAS program is; you have written hundreds or thousands of
them over your career. But creating a new SAS program
within EG (though a very meaningful part of creating an EG
Project), just delays the inevitable, you need to understand
the interface and nomenclature used to organize your work
within Enterprise Guide.

In order to start the transition to EG, it is important to start adapting to a new nomenclature. This transition begins
with understanding that a Project in Enterprise Guide "is a collection of related data, tasks, results, programs, and

[& Welcome to SAS Enterprise Guide

Select one of these options to get started:
Dpen a project
@ C_COMSAMwSUG 20115EG Y Project 01.20p
@ C_COMSAMwSUE 20114EG Y Project 02.2gp
@ C_COMSSMWSUG 20115EGSWeekl Reports - Prompts 04.egp
@ C_COMSAMwSLG 20114EG Y Project. egp
@ C_COMSSMWSUG 20115EGSWeekl Reports - Prompts 03.egp
E Moare projects ...
New
i New Project
\3“; Mew 545 Program
_.’q MHew Data
Assistance
7l 2 Tutorial: Getting Started with 545 Enterprise Guide

™ Dont show this window again

notes" (Slaughter & Delwiche, 2010). You might wonder whether a Project is just the same as a SAS Program; after

all, a SAS program is little more than a collection of related LIBNAME statements, comments, PROC and DATA
steps, and the results of those PROC and DATA steps. Further, you can %INCLUDE SAS programs within one
another, so even the idea of having multiple, related programs referenced within a single driver program (Fecht,

2009) is not new to the SAS programmer. So, in what ways does a Project differ from a Program? First, not only can

1

EG Projects include links to an external SAS Program, but, as is demonstrated later in the paper, can contain
Embedded SAS Programs which exist solely within the confines of the project—having no external .SAS file.
Further, EG contains built-in facility for Conditional Processing to control the branching of code execution and user
interface components for presenting users with Prompts for selection or assignment of values that will drive code
execution—for example, by the assignment of macro variable values in a PROC SQL WHERE clause. Beyond these
differences, the goal of the Enterprise Guide Project and the SAS Program are the same—manipulation and
transformation of data for reporting and analysis. The main difference between the two software packages is that the
SAS System accomplishes these tasks strictly through the execution of user-written code, whereas Enterprise Guide
focuses on presenting the user with graphical user interface (GUI) components that gather the specifications for SAS
code that is then generated by the software. The first step in learning how to create these point-and-click Projects is

to gain a basic understanding of the user interface in which they are built.

ENTERPRISE GUIDE INTERFACE

After launching Enterprise Guide and choosing "New Project" to navigate past the splash-screenl, you are presented
with a screen comprised of two docked windows (Resources and Project Tree) and the Workspace—which
technically is not a "window" since it cannot be closed, minimized, etc. independently from the application.

Project Tree
e — Workspace
Resource

Pane

RESOURCES WINDOW. The Resources window is located in the lower left corner of the EG screen. This window, as
its name suggests, organizes the resources available to the user. The four main types of resources available to you

are: Servers, SAS Folders, Tasks, and Prompts.

SERVERS refers to SAS Servers to which you have access. If you are
running EG in stand-alone mode (i.e., not connected to a Workspace,
Stored Process, or other remote server), by default EG will attempt to
connect to a "Local" server that represents your local installation of the
SAS System. The fact that SAS is connecting to a SAS Server (either
your local installation or another Server installation) belies the key
characteristic describing EG; it is essentially a graphical user interface
(GUI) to the SAS System. To confirm that EG is using your local SAS
installation, Start EG and navigate to the SAS Server "Local". After

M Gi[A ® ‘

L5 Refresh | Disconnect | Skop

E| Servers
EI‘E[Local
: Libraries

él‘anes; -~ o > 4

lof course, if at some point you checked "Do not show this window again”, you will no longer see the splash-screen at start-up, but

will instead be taken directly to a new project.

"Local" is started, launch SAS. You should notice that SAS gives you a warning that "User Preferences will not be
saved". This is because your local SAS environment is already in use—as the SAS engine for Enterprise Guide.
Enterprise Guide generates SAS code necessary to execute the Tasks you have specified and uses the local SAS
engine to run that code.

In addition to LOCAL, you can connect to other SAS Servers (e.g., MetaData, Workspace, etc.) that give you access
to data sources, macros, and stored processes available throughout your organization's SAS infrastructure, but the
scope of the current paper will be limited to the LOCAL server.

SAS FOLDERS SAS Folders are directories defined in a SAS Metadata _

Server to standardize access to commonly used repositories Ry]Ei &)
throughout your organization. As they expand beyond the scope of the [na cannection

LOCAL server, they will not be discussed further here—but see SAS
BGIES

(2011) for further information about this resource.

TASKS A great deal of the work performed in an EG Project is specified by
adding Tasks to the project. As seen in the figure to the right, some of the
entries in the TASK resource have names that are remarkably similar the

names of PROCS you might use in SAS. Many of these tasks map directly to a ||Tzssty Catsgon [
SAS PROC; for example, using the "Sort Data" task sorts a dataset in the Data [
Project just as PROC SORT would in a SAS program. Similarly, just as 3 Fier and Sor |
PROCs have options and keywords that drive "how" the PROC will be Bl Query Builder

executed, so do Tasks. Each task has its own dialog window and/or wizard B Append Table

that allows the user to specify the options to apply to how the task is executed. BB son Data

This is where many experienced SAS programmers first throw up their hands in 4 Create Fomal

exasperation because they can very likely write this SAS code faster than they B Transpose _ILI
can point and click their way through the task. al |

But suppose you want to sort a dataset containing a large number of cryptically named variables associated with
(say) healthcare claims. If you do not use these data frequently and you want to sort the claims by the date on which
they were paid, you might only remember that the variable on which you want to sort probably has the word "paid"
and "date" in it, but you might not remember whether it is "paiddate”, "paid_date", or "date_paid". In SAS you would
either right-click on the dataset in the LIBRARY window and choose "View Columns", try running PROC SORT with
each derivation of the name until you hit the correct variant, or open the dataset and scroll across the screen looking

for the variable of interest.

By contrast, in the Sort Data Task, §E Sort Data for Local:WORK.MEDICAL_CLAIMS x|
you can simply click the "Name" I
heading under "Columns to Assign" Options Pata
to sort the column names in Resuits
. . Properties Data souce: Local'wORK.MEDICAL_CLAIMS

ascending or descending order, e Taskfiter: Mone e |
scroll down the list and click on the
variable of interest—in this case c S
"paiddate”. Once found, however, Mo T b T Satby N
you are confronted with another Tl g L Ccolumn requiredy
conce tthat at ﬂl’St b|USh ma @subscribar Colurnns to be diopped (Limit 4

p . y [E] service_date
seem foreign—the Role that the 2 piinds
variable is to play within the task. 5% pdamt
Intuitively, it is easy to make the %EEE? |_E-|'@ —
leap that if you want to sort the [paicdate @ Colrns tobe droppec
dataset by "paiddate" this variable %Wm:"d
is to play the "Sort by" role in the & romfolass
current task. As seen in the %Y memeopy
adjacent figure, once the variable of gmedm:a'd
. N . meddent
interested is selected, click the 2! 2 group_id = . -
button to select the Role to be R — : —I—I_
played by that Variable in the Azgigns the selected varable to the role that vou select fram the pop-up list. :l
current task. Alternatively, you can =l
drag "paiddate" to the "Sort by" r0|e |:“1Preview code | it "l Save Cancel Help |

in the Task roles list.

The "Sort by" rale must hawve at least 1 variable assigned to it.

The "Sort Data" task also has another useful x|
role, "Columns to be dropped". Together, the M paa
use of these two roles results in a very quick i
and efficient way to both sort a data set by one Properies e e Edi..
or more columns and reduce the variables in
the dataset. Although in some ways it seems e — -
like a new concept, the Task Role is really just Name = & Soiy |
an explicit name given to a concept that SAS -G 8 Caomrs oo crospad L 4|)
programmers have come to accepted implicitly e e By |
after many years of reading syntax examples S pant % memberd
like the following (SAS, 2009): p J B
[E] paiddate
N K
@ memfinclass
S memeony
PROC SORT <collating-sequence-option> %gzg‘gz“f
<other option(s)>; é/f}glfoun_ld ‘ &l 5 W]
BY <DESCENDING> variable-1 [sssigns the selected vaniable to the role that you select fom the pop-up st |
<...<DESCENDING> variable-n>; -
[] Freview code Fun |'| Save | Cancel | Help |

When executed as part of your EG Project, the preceding Sort Data task generates the following PROC SORT code:

PROC SORT DATA=WORK.MEDICAL CLAIMS
OUT=WORK.SORTSortedMEDICAL CLAIMS (
LABEL="Sorted WORK.MEDICAL CLAIMS"
DROP= oombrid nopharm memberid meddent) ;
BY paiddate;
RUN;

This example demonstrates the critical role Tasks play within EG; they assist the user in generating SAS code by
providing an intuitive interface for specifying all of the parts of the syntax that need to be understood by SAS in order
to generate and execute code that performs the transformations, analysis, and reports intended by the user. And just
as you once did not know PROC SORT from PROC TRANSPOSE, you will have to familiarize yourself with how the
different Tasks work. This time around, however, you have the advantage of already knowing how SAS performs
these operations. As a result, the time it takes to become proficient with EG is a fraction of the time you struggled
through all of the different permutations of the PROCs in your SAS lexicon.

PROMPTS Prompts play an important role in creating enterprise-level solutions for analysts and report writers. This
resource provides a flexible way to present users with interface components that they can use to indicate single or
multiple values that will drive execution of a project. The specified values can be used, for example, to value macro
variables used in the WHERE clause of a PROC SQL statement, as the conditional value in an IF/THEN statement in
a DATA step, or as a password enabling a database connection. An example of the use of Prompts is provided later
in the paper.

[545 Enterprise Guide

WORKSPACE. The workspace is the
part of the EG interface that is used to
present Process Flows, Document
Windows, SAS Code, and Logs. The
Process Flow in SAS Enterprise
Guide is a construct that helps
organize the Tasks that are being

Touls

File Edit Tasks Program Help |- 5 @ | L ow Dt 20 o0 |- | BegPracess Flow -

g Process Flow

Wigw
Process Flow -

&

Stop | Export + Schedule = | Zoom - | (5 Project Log | [A] Properties -

B Run -

performed. Although each Project, by |[®G/E &

default, has at least one Process (3 Refrech | Disconnect 1 Stan

Flow, you can have multiple Process T Gerves E

Flows in a single project—for B e i :I j
example, to organize the Tasks i

comprising "Step 1" and "Step 2" of a “MwUG 2011
complex set of data transformations.
In the following example the Excel
data file "Source Data — Excel.xIsx" is
dragged from the Local server's file

structure into the Process Flow.

L™ i PPt it ety o |

When this drag-and-drop operation is performed, EG automatically detects that what the user wants to do is IMPORT
an external, non-SAS data file into the project, and EG launches the Import Data task. This task walks the user
through a four-step wizard to (1) specify the source data file and output dataset, (2) select the Excel worksheet to
import, (3) specify data types, informats, and formats for the imported data, and (4) specify any Advanced Options

associated with the Task.

&1 Import Data from Source Data - Excel.xlsn

1 of4

x|

Gsas

Specify Data.

The Import Data task is used to convert non-5A5 data into a 345 data file which is required by other tasks for data |

analysis and reporting.

£ Import Data from Source Data - Excel.xlsx

x|

x|

Gsas

Sowcedatafle 2 aot4 SelectData Source Ssas

Location: Lacal

File path: CAMMWELG [Select range

BeblE Ercelwokbe | ' Uso a worksheet ¥ First 1ow of 1ange contain iekd names

i 2 t Data from Source Data - Excel.xlsx
DentalClaims

DOutput 545 data set Tmembers

S48 Local . .

e e 3 oi4 Define Field Atiibutes
Library: WwORK
Dats set: S oucs_ Dt

Select columns and define attrbutes:

Source Source Output Output
Inc MName Name Label |Typa Informat Len. Farmat Infarmat
= Use aspecit tange of oels i [T Mumber |BESTIZ |8 5T12. |BESTIZ
worksheet [V |service_date | service_d... | servic " = ' o P “ ‘ ''''''' =
d mport Data from Source Data - Excel.xlsk
EEReE] [[oo |dogrots_ | door =2
L -right cell:
oweright cel [[[cubscrber | suboorber | subst 4 ofd Advanced Options Ssas.
B | M |group_id aroup_id grouf
" Use a predsfined named range [| bnsii_an | bensfit s | bene
DentalClaims [DentalClaims$a1 63 [| cormpary_.. |company_.. |comp [Embed the data within the generated 545 code.
MedicalClaims (MedicalClaims$B1: 0 @) | sbsoiber.. | subscriber... | subst

<Bat

Select Al I Clear All

™ Impott the data using SAS/ACCESS Interface o PC Files whenever possible.

™ Remove characters that can causs hansmission errors fom test-based data files

Back |*| wen Help

I Finish I

Cancel |

Once all of the steps involved in this Task are specified, clicking "Finish" generates the depiction of the relationship
between the source dataset, the import task, and the output dataset in the Process Flow in the left side of the
Workspace and the output dataset is rendered in the right side of the Workspace—in a Document Window.

Process Flow ~

k] =

[+ Run = [Stop | Export = Schedule » | Zoom = |Projact Log | Propetties +

—d-—f

Source Impart Data
Data - Data[Sou... Imported ...
Excel xlsx

wnsnd = P il

Impork: Data (Source Data - Excel, xlsx[MedicalClaims]) +

El Codel I% Log Ea Output Data

&= ~

Sy Query Builder | Data - Describe ~

¥ [-]

@ claim_id | service_dale @ group_id @ henelil_am:u'l@ cor

il | 12! O7FEB2071 {LIKLLM 1.157.08: ABC Cc
2 13 O1DEC2010: JJELLM 238,97 ABC Cc
3 12 17MEY201T L LIKLLM 238,97 ABC Cc
4 19 O7FEB2017 : MMKELL 32217 Compar,
PR D?BEE}MKL‘JJ b o - J E.EP’-M

Note that the Document Window also provides tabs for the SAS code generated by EG as well as the Log entries

generated by the execution of that code.

Process Flow -

7] > Import Data (Source Data - Excel. xlsx[MedicalClaims]) « X

S

Source Import Data
Data-Ex Drata [Sou. Imported

Process Flow =

P Run -~ [Stop | Expatt ~ Schedule - | Zoom + ‘Project Log | Properties -

0 il | gy

-

| m Code ||§ Logl Ea DulputDataI
v 'ModiFy Task | Export = Send To =

eate - | Properties

=1 * Import Data (Source Data - Excel.dlsx[MedicalClaims]) = *

£

Source Import Data
[rata-Ex. Drata [Sou... Imparted ..

[Run -~ [Stap | Expart = Schedule - | Zoom - |Project Log ‘ Propetties

15 This DATA step reads the data values from a t.EI’I;I
16 created hy the Import Data task. The wvalues wit
17 text file were extracted from the Excel source
15

19

Z0CIDATA WORE.Source Data Exceld;

z1 LENGTH

2 claim id 8

23 service_date 8

24 diagnosis_code $ 6

ﬁu—a‘.syacgl r‘_’-&-ir rlvﬁ"‘"' ‘_J_

w Code % Log |Ea Olutput Datal

reake - |Pruiect Log | Properties

-~
:T MNOTE: The infile 'C:iDocuments and SectingshChrish
52 Excel-873fc6a 534c47Ld93 1bPeatabnbada£0. txt!
53
54 Filename=C:%Docwwents and Settings' ChrishLoc
55 Excel-874fcoai 534c47Ld93 1b%eaTabiada £0. oxt,
e RECFM=V,LEECL=63,File Size (bytes)=1723,
57 Last Modified=0935ep2011:00:20:50,
S5 Create Time=09%ep2011:00:20:50
59
5o MOTE: 28 records were read from the infile 'CihDoo
61 Zettings) Tenph 3EGE012Y Source Data - Excel-8%
62 The minimum record length was 57.

O Y L N I T L o

To summarize the purpose of the Workspace, then, Process Flows are used to organize Tasks, and Document
Windows are used to view output datasets that are generated by the Tasks as well as the Code and Log entries

associated with execution of those tasks.

PROJECT TREE. The Project Tree serves to
organize the project by providing quick
reference to the lineage of datasets, the Tasks
that use and generate those datasets, and the
Process Flows used to organize the tasks in
logically meaningful groupings within the
project. In the adjacent Project Tree, we see
that the Tasks "Import Med" and "Import
Dental" are both part of "Process Flow A".

The output datasets "Medical" and "Dental"
are used in "Process Flow B" as inputs to the
Task "Combine Medical and Dental". Through
careful naming of Tasks and datasets and the
logical groupings of Tasks within Process
Flows, the Project Tree can be a useful tool for
quickly navigating through a complex project
and for documenting your analytic solution.

€ SAS Enterprise Guide

File Edit ‘iew Tasks Program

Tools

Hep | B~ (5- & | 5 3= B3 (2 X |5 o |00

@ Source Data - Excel sksx
@ Import Med

E| E‘i Dental

----- E;- Combine Medical and Dental

WORKING WITH TASKS AND PROCESS FLOWS

Having been provided with an introductory overview of the EG interface, most SAS Programmers are more than
ready to be turned loose and use some Resources to build a Project comprised of Tasks in which dataset variables
play specific Roles. However, as you should also do in SAS Programs, it is a good idea to first add comments about

your Project to each Process Flow.

PROJECT COMMENTING. Although some Enterprise Guide users may
have sophisticated source code repository systems, others may rely on
file naming conventions and comments within their code to track
changes. For this latter group of users, one of the nice features of EG is
that you can add Notes to your project. To add a Note to a process
flow, simply right-click in the workspace and choose "New» Note". A

E E Process Flow & [+ Run = [Stop | Expart + Schedule = | Zoam v;

<
Dental Combine medical_d.. f
Medical a..
= e
Medical ;

‘f% Tew 3 | L.’E Data
£ Tpen » & Program
@ Project ' |&@ Report..
J+ RunProcess Flow & &) Stored Pracess...
Schedule Process Flow & ||’j. Mote
#| Create Stored Process.., "ﬁ Process Flow
5 Past Ordered List

blank Note then opens in the document window, and you can provide the technical information, background, and
change history information necessary to effectively maintain the process flow over time.

I Process Flow A - =] x ProcessFlow A = x
J+ Run = [0 Stop | Export - Stheddle ~ | Zoom = |2 ProjectLog | [£] Properties - Export ~ SendTa - | [] Properties
2l|process Flow &
m This process flow imports data from "Source Data —
el Excel.xls".
Process
Flow &
K- & i
i
Source Import Medical
Data-Ex.. Med

Import Dental
Derttal

The note can then be used to document your project using the "Create HTML Document" option under the "Tools"
menu, and generate an HTML document that combines all of the Notes in your Project file.

[& 5AS Enterprise Guide - Project D1.egp f_f Project 01 - Windows Internet Explorer
Fle Edt Wew Tasks Program | Tools | Hep | E1- S5+ | 3 L — - - -
L&E’ [y Ié C\Documents and SettingsiChrisiLocal Settings) TemplSEGT 1244
Add-In 3 = =
Bl Bgg Process Flow A |ﬂ Create HTHL Document... J File Edt ‘iew Favortes Tools Help J E Snagit
| -8 Sowce Data- Excelalss T Style Manager
] Lo -
-] Import bed i 4 @project 01 | |
-] Import Dental [, SAS Enterprise Guide Explorer
-[#] Process Flow & ool
Assign Praject Library,,.
=] Process Flow B B ‘Process Flow A
g1 Medical S Update Library Metadata...
B Dental % WP Stored Process Packager ..
% Combine Medical and Dental .) Process Flow A
roject Maintenance. .
e G e S0 This process flow imports data from "Source Data - Excelxls".
Options

DATA ACCESS. After writing comments to accurately describe the purpose of your project, the next step in creating
an EG Project is gaining access to the data with which you need to work. As demonstrated in the earlier example of
drag-and-drop data access from the Local server, bringing an Excel file into the Process Flow (by default) triggers the
creation of an Import Task. Depending on the file type being imported, you are walked through the import process
with import wizards specific to that file type. In contrast to Step 2 in the previous example of importing an Excel file,
Step 2 of the Import Task for a .txt file contains the options depicted in the following figure—with radio buttons to
specify the format of the records in the file and a drop-down menu to specify the column (variable) delimiter.

g1 Import Data from Simple Charge File.txt 1[
2 ofd SelectData Source J(Sas_
r— Teut format] i I
("'Bx arma ™ File contains field names on record number:
* Delimited figlds
D ata records start at record number: I'I
IEI | L
A l_ ™ Limit the number of records read to: I
R . .
Fired columns ™ Rename columns ta comply with 545 naming conventions.

Mame Account Number Charge Payment.
Schacherer, Christopher 6lElZ3457 1287.30 537.01
[Testra, Brent ST T1IEI4ER E0 D3 les0.32

The ability to drag and drop data files into a Project provides the EG user with a great advantage compared to having
to remember the syntax of INFILE statements, PROC IMPORT, and the like for every file type and configuration they
might encounter. To be sure, there are files (especially files with multiline records) that are not amenable to this drag
and drop approach due to their sophisticated layout, but for the most common file types and layouts this approach
provides a very quick and easy way to bring data into your project.

For data that resides in relational databases such as Oracle, SQL Server, DB2, etc., a different approach is required
for the Enterprise Guide user accessing the SAS System on his or her local computer. Because the Tasks in
Enterprise Guide are built for utilizing SAS to perform analyses and data manipulations (and not for configuring your
SAS session), establishing a LIBRARY based on a SAS/ACCESS® connection to a database such as Oracle or DB2
requires some SAS code to be written the old fashioned way—in a SAS Program. To create a SAS Program in your

project, simply right-click in the Process Flow and select New » Program to launch the Enhanced Editor.

_Elx|
- (5~ 8 | B 9f B (B X |15 @ |- |BegProcess Flow s~

“mencess Flow &+ 7] <Select anode> - |3
I P+ Run ~ [Stop | Export = Schedule - | Zoom - |Pr0ject Log | Properties =

| Process |I‘% Mt 4 Ej Data

" Flowa ,, :

= Dpen 4 ||§l Program
xa R @ R % @ Project * g Report...
LR [+ Run Process Flow A (£l stored Process...

I . Dsa?:[-ch... Inh}%?jrt Medical Schedule Process Flow & ‘j‘ Mote

| E‘ Create Stored Process. ., ﬂ% Process Flow

T

I‘ @ & Pasts Ordered List

-
arid
Source Import Select another node to show

1

. Data-Ac.. Dental Layout

i Auto Arrange

e g M
mNM > . R L S il
‘“"““‘”‘"dw ' ‘—“‘Aﬂl

In the following example, a LIBNAME statement is used to define the library "HCA" as a connection to the "billing"
database on the Oracle server "Finance". Following execution of this program (renamed "Connect"), a refreshed
view of the Local server shows that the project now has access to the HCA Iibraryz. From this point forward, EG
Tasks in the project can access the data tables in the Oracle database—but see, for example, Hemedinger (2007a,
2007b) for an explanation of why you might want to consider pass-through SQL statements when querying large
datasets with EG.

[& SAS Enterprise Guide - Project 01.egp _18] x|
Fie Edt Wew Tasks Frogram Tools Hep | E- (S @G| S o By o X |9 o |[]]- |BegProcessFlowa -
Process Flow A& ~] *x Connect - x
Process Flow & [Run » [Stop | Export » Schedule ~ | Zoom + | (53 Project Lag | [4) Properties = [&] Program |
E-#] Source Data - Excel sksx =
Import Med | [Hsave » » Run + [0 Stop Select Server | Expart » SendTo + Create - | =
Impoit Dental LTENANE HCA ORACLE =

1
[31 Process Flow & z USER=cschacherer:
Frocess 3 Pl={5a5002) SFAESDSS3 AFTOEBIS1C 670503 B44F 195
Flowt & 4 SCHEMA='billing'

5

PATH='finance';

&] Dental

*-E% Combine Medical and Dental

&GES A

€3 Refresh | Disconnect (1 Stop /_

Import Dental
Dental

B,
SASHELP
SASUSER

m»eréﬂr'NrJMr&fﬁﬂ"“Mrjrd',Jﬂd---

LINKING & EMBEDDING SAS PROGRAMS. In the previous Process Flow & - o ox
example, the SAS program "Connect" was created within
the project as an Embedded Program. As such, it exists
only within the EG project where it was created; there is no
".sas" file saved externally. If, on the other hand, we had
included an existing SAS program in the project by dragging
the program from the Files resource on our SAS server, the
program would be Linked to the project. In the latter case,
changes to the program file (which exists outside of the
project) would impact the project because when the project
is next run following those program changes, the changes
are naturally reflected in the "linked" program by virtue of the

[Run = [Stop | Export - Scheduls - ‘ Zoom - |Proiect Lag | Properties -

L

Process Connect Extemal
Flowe & Connect

s Y S TN

s

L

2 For more information on defining SAS Libraries as connections to databases via SAS/Access see Levine (2001), Schacherer &
Westra (2010), SAS (2004a, 2004b).

fact that EG is simply running the external SAS program. In the case of the Embedded program, the only way

changes can be made to the program is to open the EG project where the program is saved, and edit the program.
The embedded program "Connect" is represented in the flow diagram by the familiar SAS Program icon whereas the
linked program "External Connect" is represented by a shortcut icon—denoting, again, that this program exists as a
stand-alone SAS program outside of the EG Project.

You might decide later that an embedded program like "Connect" might be useful in several of your EG programs
because you often connect to the same database. In that case, you might want to convert it to be an external SAS
program that you can link to your projects and manage as a single program (instead of updating embedded programs
in multiple projects.) Conversely, you might decide that a program you wrote outside of EG is so highly specialized
that it does belong as an integral part of a single EG project. In either case, it is easy to make the desired change.

To embed a linked SAS program, simply right-click on the program, choose "Properties”, and click on "Embed".

Conversely, to save an external copy of an embedded program, simply right-click on the program and choose "Save
As" and you will be prompted to specify a name for the saved program and a location in which to save it.

Results

Prompts
Summary

zl
General
Label
IExtemaI Connect
Code will run on server.
ILocaI j
Last Execution Time:
IUnknnwn
File path;
IC.LCD MSSMWSUGE 20114EG\Extemnal Connect. sas Change.
Locatign: My Computer
Embed | Save As..
=
’ More (F1).. =]
0K Caneel |

General
Results
Prompts
Summary

x

General

Label

IEUnnecl

Code will run on server:

ILnDaI j

Last Execution Time:

IUnknuwn

File path:

I[Emhedded I Project] Change:

Location: Praoject

— @
Specifies the name of the code in the Project Explorer and Project Designer. ou can ;I
change the name of the cade.
More (F1l.. |

0K

Cancel I

The result of the preceding two operations is that "Connect" is now a Linked Program ("Previously Embedded") and
"External Connect" is now embedded in the Project (as "Embedded Connect").

[Rum =

Process
Flow 2

Previouzly
Embedded

Skop | Expart = Schedule - | Zoarm -+ ||:?_"5Project Lag | |#] Properties =

Embedded
Connect

-

In Enterprise Guide 4.3, once you have written the code to establish libraries that point to your relational database
management system, you can move the program(s) used to make these connections to a new Process Flow, hame
that Process Flow "Autoexec”, and the code containing the LIBNAME statements will be executed automatically each
time you open the project. As described by Bangi, Hemedinger, and Slocum (2010), there can be only one Autoexec
Process Flow in any given project, but it may contain SAS Programs and/or any other EG Tasks that you want to
execute as preprocessing steps prior to the execution of the remainder of the project.

ENHANCEMENTS TO THE ENHANCED EDITOR. Regardless of whether SAS Programs are linked or embedded, the
SAS Program Editor in Enterprise Guide is actually a SAS programming tool that significantly improves upon the
Enhanced Editor available in the SAS software. As described in detail elsewhere [Bangi, Hemedinger, and Slocum
(2010); Fecht and Dhillon (2011); and Ravenna (2011)], the version of the Enhanced Editor that is available in EG
4.3 provides a number to tools developed specifically for the SAS programmer. Many of the frustrations encountered
by SAS programmers are overcome by the enhancements provided in EG 4.3. Among these enhancements is the
ability for the Enhanced Editor to Auto-Complete for keywords, PROCSs, and available libraries and datasets. As

shown in the following example, once connected to the HCA library, you might want to run a PROC FREQ on
variables in the dataset "hca.claims_2011_08". After typing the PROC keyword, the editor shows you options for
auto-completing the phrase. After choosing FREQ from the list, procedure options, libraries, and datasets can be
selected, in turn, using auto-complete.

14/-PROC FR - 14{HPROC FREQ b
15§ | : -
:-2 % FREQ I] ¢ Gl COMPRESS
n ; FSEROWSE o dP DATA=
7 %, FSEDIT ' 171 @@ FORMCHAR(12.7)= prt
}3 % FSLETTER — & 112 P FORMCHAR=
9 % FSUST » =2 @ NLEVELS
“u % FSVIEW ' f: @ NOPRINT
21 ' £2 (@ ORDER=
2z e 2z P PAGE
2z % G3GRID 22\ &
23 % GA . 23] I
s -~
S e P o
25 -\
14{&PROC FREQ DATA = HCA. l
: :‘5 i CLAIMS_2011_01
14|PROC FREQ DATA = { 16 [cLams_2011_02 r
159 1: &) HCA = CLAIMS_2011_03 y
16 : @ maes i] CLAMS_2011_0¢)
17 (&) SASHELP ff CLAIMS_2011_05)
18 (i) SASUSER 29 [cLaMs_2011_06 p
190 &) WORK 22 CLAIMS_2011_07 .
20 [work claims asl || [cLams_2011_08 -
Z1 2
* ‘:-;’."M\‘ '0“"! “H’ M”‘J“w

In addition to the auto-complete functionality, the EG 4.3 Enhanced Editor performs Parentheses Matching. If you
ever write expressions with nested functions, you can appreciate how helpful this feature can be.

|- DATA work.claims;
SET heca.claims 2011 08;

account class = SUBSTH cunt_no,1,4);
accountno_fail = VERI 2 mLﬁs[acce:....- no,4), '123456789

Beyond these enhancements to facilitate the mechanics of SAS programming, the EG 4.3 Enhanced Editor also
provides programming support in the form of Integrated Syntax Help and Function Completion. Function
completion presents users with the syntax that is available for a given function, and after the desired form of the
function syntax is selected, assists the user by providing a template of the selected function syntax and provides hints
as to the purpose of each argument within the syntax.

7= DATA work.claims;
8 SET hca.claims 2011 _08;
S
10j| account_class = SUBSTR(| =
11 a2 of 29 SUBSTR(variable. position<. length>)
12 vanable:
i3 Specifies a character variable
iz el *-4-' > o ’—s PR o el \” s

10

Similarly, integrated syntax help provides context-specific help topics related to the keywords being typed in a PROC
or DATA step or OPTIONS statement. By simply hovering over the keyword, the user is presented with help
information related to that keyword.

o

| PROC FREQ DATA = HCA. ::.:—.:515_2 0 '.'._:
TABL Keyword: FREQ
RUN; ‘ Context: [PROCEDURE DEFINITION] PROC FREQ

Syntax: PROC FREQ <options> ;
BY vanables
EXACT statistic-options </ computation-options> ;
OUTPUT <OUT=SAS-data-set> options
TABLES requests </ options> :
TEST options :
WEIGHT varizble </ option> ;

’

pa s

DO ¥

The FREQ procedure produces one-way to n-way frequency and contingency (crosstabulation) tables
For two-way tables, PROC FREQ computes tests and measures of association. For n-way tables, PROC
FREQ provides stratified analysis by computing statistics across, as well as within, strata

- r&uﬁmw M @‘w&' Nﬁ'ﬁr' M “’!Or*. r W SV

Of course, like most options in SAS, you can choose to turn these (and many other) options On or Off by specifying
your preferences in the "Options" menu under "SAS Programs" in the "Tools" menu bar (Tools» Options» SAS
Programs). Regardless of which options you find useful, however, it is clear that "the new features in the 4.3 version
represent a big leap for productivity with the SAS language and programmer workflow." (Bangi, Hemedinger, and
Slocum, 2010, p. 10.). Even if you choose to eschew the other features and functions of Enterprise Guide and want
to simply continue to write SAS programs from scratch, EG now provides a number of options to enhance the
efficiency of that work.

LUV IS T S T O T T e
W N = O W o

o

)

']

MANIPULATING DATA. Beyond these enhancements to the Enhanced Editor, however, EG offers a wide variety of
Tasks that can make preparing and analyzing datasets much simpler than writing the code from scratch—even with
these new enhancements to the Enhanced Editor.

Whether accessing the data for your project is done by dragging and dropping files or by referencing data in SAS
libraries, one of the fundamental activities for which you will be using EG is preparing data for analysis and reporting.
This can include everything from sorting data for analysis across BY groups to filtering data to produce the desired
analytic subset or merging and transforming data using complex SQL statements. For each of these tasks (as well
as for transposing, appending, and comparing datasets), EG provides a Task to achieve the desired outcome. In the
following example, the SORT & FILTER task is used to limit a healthcare claims dataset to only those claims from
Company XYZ and to sort the data by the type of coverage held by the health plan subscriber:

E; SAS Enterprise Guide - Project O1.egp
File Edit ‘Wiew Tasks Program Tools Help | Sl- (3 @G| A o By L X |9 od | [0~ |BegFrocessFlows -

Process Flow & = T

eg Process Flow & P Run ~ [Stop | Export = Schedule - | Zoom |Pr0ject Log | Properties =
- @ Source Data - Excel xlsx =
] Impart Med =
A Impart Dental
[Process Flow &
P
| rogFr'ams_ 1 Embiedded Process Previouszly Embedded
TEVIOLElY Embedde: Flow & Embedded Connect
Embedded Connect
[—]gqg Procezz Flow B
] Medical mrx * @
-G g Dental -
Ej o _I Source Import
Data-Ex.. Med
B GE® Ll
ITasks by Categary j @ a .
Datg = Import Dental
. Dental
1 Filter and Sort
4 Query Builder
Eﬁ Append Table P R s
w— '—A-.’ oy "‘-‘- il .”-‘ J L ' o

Like many of the tasks in EG, the user interface for specifying the Filter and Sort Task has several useful features.
First, when the task is added to the process flow (by either clicking it in the Task resource or by choosing it from the
"Tasks" menu bar), the currently selected (or most recently selected) dataset is used to populate the task's user
interface.

11

The task also affords the ability to alphabetically sort the names of the available variables, which aids in selection of
the variables to be included in the resulting dataset. Variables can be selected for inclusion in the resulting dataset

one-by-one by selecting the variable and clicking the single arrow il, by selecting multiple variables and clicking
the double-arrow _%_| or by dragging one or more variables from the "Available" list to the "Selected" list.

i Filter and Sort for Local:WORK.MEDICAL_CLAIMS x|

= Varisbles | < Fiter | 20 Sort|

Availghls Selected (7 of 8);
‘ M Type | Label I
iy subsonber [}b Num benefit_amount

2
LI @ company_name Char COMpany_name Q |
53 | i claim_il Hum claim_id
[[&] service_date Date service_date
@ diagnosiz_code Char diagnosiz_code
G | @ aroup_id Char group_id
subscriber_id | Num subscriber_id
o | |@ b 3

I Display labels instead of variable names

Show Preview | “Walidate | ak I Cancel | Help |

After selecting the variables for inclusion, move to the Filter tab to establish the criteria by which you want to subset
your data. The filter tab allows you to build dataset filters by specifying the variable to be evaluated, the evaluation
statement, a criterion value (or values), and an operator (and/or) to build complex filter criteria. One particularly useful
component of the Filter interface is the ellipsis button . When you click on the ellipsis button, you are presented
with all of the distinct values for the selected variable found in the first 100,000 rows of the dataset. You can then
select your criterion value from this list, and it is added to the filter expression.

ter and Sort for Local:WORK.MEDICAL_CLAIMS x|

B variables g Filer |'—=IL Sortl

Filter description:
y N
Icumparw_name ﬂ IEuua\ o j I () j w
Select a single value: S
Values | Fommatted Y alues |
Add flkers by selecting the AMD/OF | ABC Corparation ABC Corparation
Company v Company 572
More Yalues
oK Cancel |
I Display labels instead of variable names Advanced Edit... | Clear &ll |

Show Preview | “Walidate | ak | Cancel | Help |

To add a second filter criterion, add an "And/Or" operator to the filter and enter the next filter criterion.

ter and Sort for Local:WORK.MEDICAL_CLAIMS x|

E Yariables g Filter |'—=£L Sortl

Filter description:

Icompany_name j IEqua\ ko j IEompanyXYZ | IAND j LI
Ibanefit_amount j IGreater than or equal to j I'IEIEIEI | I j LI

12

To build more complex criteria involving SAS functions, algebraic expressions, or advanced operators, click on the
"Advanced Edit" button to navigate to the Advanced Filter Builder. In the following example, an "AND" operator is
added to the set of conditions that define the filter and the MONTH function is used to specify that the filter should
also include a restriction to only select those records where the date of service provided is "June". The full
complement of SAS functions is available within the Advanced Filter Builder, and when you select a function, the
associated Help syntax is presented in the lower right pane of the window. Together, the Filter tab and the Advanced
Filter Builder allow you to build very sophisticated filter conditions in your Filter and Sort Task.

£fi Filter and Sort for Local:WORK.MEDICAL_CLAIMS x|

5] Variables & Filter |'—=Jl Sortl

Filter dezcription:

Icumpany_name j IEquaI to j ICompany =2 | I j 4
Advanced Filter Builder x|
Bier o M= - at the end aof the expression
1.comparny_name = 'Company =72 AND MOMTH(H . service_date] = B

Home Mext Back End |Und0 Redo |Edit - Favorites - | Validate

+ - g o ‘ I GO % %, aben
AND)OR MOT | = <> £ == = >= |Advancad Operator -
-3 MOD Function - |

MONTH Function
= =4 Returns the month from a SAS

-~ f& M Aggregate _ILI date walue
{ &

< =
oK | cCamcel | Hen | Gvanced Edi?D Clear Al |
V- _______/
Shaow Preview | Yalidate | ak. I Cancel | Help |

After utilizing the Advanced Editor, however, your ability to alter your point-and-click filter criteria is revoked and the
filter must be edited within the Advanced Editor.

,f‘—',ij_FiIter and Sort for LocakWORK.MEDICAL_CLAIMS LI

E] Variables g Filter |==ﬂ Snrtl

Filter description:

t1.company_name = 'Company xY2' AND MONTH(H .service_date] =B
A A e et H-—..M ’-- r,“_,‘ W

After selecting the variables for inclusion and building your filter logic, the Sort tab can be used to order the records in
the resulting dataset. In the current example, the dataset will be sorted in descending order of the value of
"service_date" and (within a given value of "service_date") in ascending order of the values of "claim_id".

) Filter and Sort for LocakWORK.MEDICAL_CLAIMS |
=] Variablesl S Fiter =3 Sot |
Specify sort:
Sort by:
£ Ascending
service_date i
I = J il ' Descending
Then by:
% Ascending
= il " Descending
Then by:
% fscending
| =l x|
 Descending

r Dizplay labels instead of variable names Clear All |
Show Preview (Walidate D ok I Cancel | Help |

e

13

With the filter criteria and sort order specified, you can take a look at the SAS code that will be executed as a result of
the task specifications by clicking on the Validate button:

validate x|

The expression syntax is walid

1EPROC SQL NOEXEC; =]

Z SELECT tl.benefit_amount, tl.claim id, tl.company name, tl.diagnosis_code,

3 tl.group_id, tl.service_date, tl.subscriber_ id

4 FROM WORK.MEDICAL CLAINS A% tl

5 WHERE tl.company name = 'Company ITI' AND MONTH(tl.service date) = 6

[ORDER. BY service date DESCENDING, claim id:

7 | quiT;

g

=

1| | LlJ

Cloze |

4

After running the Filter and Sort Task, the resulting dataset is generated, and the new Task is added to the Process
Flow.

I L5l
8- 13- @) & 9= By B X |5 o6 |0 | BegrrocessFlowa -
Process Flow & - 7] x Filker and Sort ~ x
[Run = Stop | Export = Schedule - | Zoom + |E§iject Log ‘ Properties - Ea InputDatal ':”1 Codel % Log EE Output Data |
- Gj mMod\Fy Task |$iFiIter and Sort %Query Eilder ‘ Data ~ 4
}rlj-i lﬁ @ benelil_amuﬂ@ company_name@ claim_id |5 service_date
L______Ji - 1 1,15?.88J1C0mpany><YZ 24 ZrIUNzm1
Process Previously Embedded 2 32217 Company 572 25 07AJUNZ011
Flow & Embedded Connect
g-—d—E a0
& va 1 E— ks
Source Import fedical Filter and FILTER_FD
Data-Ex.. Med - Sort

As described earlier, Enterprise Guide tasks provide a graphical tool for building SAS code associated with PROC
and DATA steps. The "Validate" example, above, serves to reinforce this point; the result of the point-and-click
specification of the Filter and Sort Task generated the SAS code necessary to achieve the goal of filtering and sorting
the source dataset. Before the experienced programmer dismisses this as a "cheat", consider, first of all, the typing
(and avoidance of frustrating, time-consuming typos) that was saved by using this task. Moreover, note how easy it
is to go back and rearrange the order in which the variables appear in the resulting dataset using the variable
selection tab. These features, alone, make SAS EG a valuable addition to your SAS toolkit. Learning the individual
tasks takes some time to be sure (just as learning new PROCSs did), but the time-savings in creating and recreating
datasets to suit ones needs is definitely worth the minimal time necessary to master the tasks—especially when you
already know the PROCs on which they are based.

THE QUERY BUILDER TASK. One of the most important EG tasks for both developers and end-users to master for
data manipulation is the QUERY task. As with the Filter and Sort task, the Query Builder task defaults to inclusion of
the dataset that was most recently selected or created in the current Process Flow. Unlike some of the other tasks,
however, the Query Builder task can perform a wide variety of different types of dataset transformations—including
the joining of datasets, computation of new variables, and recoding of existing variables.

Upon entry into the Query Builder task, you have the ability to (1) assign the task a name to identify it in the Process
Flow, (2) assign the name of the output dataset, (3) add tables to the query so that variables from those tables can be
included in the output dataset and/or used to filter and order the rows in the result set, and (4) specify the join
condition that will be used to associate records from each of the included tables.

&= Query Builder for Local:WORK.MEDICAL_CLAIMS x|

Dutput name: |WDF|K.QUEF|Y_FDF|_MEDIEALq Charge. . |

] Computed Columns @Prompt Manager | 50| Preview | B0y Tooks = | 2 Options -

Query name:

add Tables X mJoin Tables | SelectData | Filter Datal Sort Datal
8 EE {1 [MEDICAL_CLAIMS) Column Name | Input | Surmnmary | |4 |
@ claim_id
[&] service_date [irop a column here to add it to the queny. |
diagnosiz_code I

14

In the following example, we add the account number from a health plan's membership table to our query of the
healthcare claims data. The first step is to add the members dataset to the Tables pane by clicking "Add Tables" and
navigating to the members dataset. Once the members dataset is added to the query, we can select the
"account_number" variable by simply dragging and dropping onto the Select Data tab.

&= Query Builder for LocakWORK.MEDICAL_CLAIMS x|

Query narme: |Quer_l,l Euilder Qutput name: |WDHK.QUEHY_FDH_MEDIEAL_CLAI Change...

Computed Columns @ Prompt Manager EaPreview E!Q; Tools + Options -

HH Add Tables X Dalat@ Join Table; Select Data | Filter D ata I Sort Data |

EIEE i [ME_DIE_AL—CLAIMS] Column Mame | Input | Summary | | @l
@ daimid @ claim_id t1.claim_id —
~E sqwce_dale [service_date t1.service_date
-l diagnosis_code 5 - 5 -
; @dlagnoswﬁcode t1.diagnosis_code
-l subscriber ;
3 @ aroup,id @subscnber t1.subscriber
-i{) benefit_amaurt ®Emu$_—'d t:: EmuDr—'d Xl
@ compary_nams @ enefit_armount t1.benefit_amount
o @ subsciiber_id £ company_name | tl.compary_name Eis |
EIEE 2 MEMBEHS_] @ subscriber_id t1.subscriber_id
. @ subscriber account_number | t2 Lnt_number EI y |
i subscriber_id
i gender
-] dob
<l aceoun_number
4 2

™ Select distinct rows only

Fun Save and Cloze | Cancel | Help |
4

To specify how the tables should be joined, click on "Join Tables" to bring up the Tables and Joins window.

_ioix]

EHadd Tables < Delete) Properfies @9 Jain Order =0 Table - 2 Optians « <+ Move Up <= Move Down

I 12 { MEMBERS)

zriber

claim_id | ! Ci
service_date il subscrber_id
diagnosis_code () : gender

i| dob

i account_nurmber

subseriber
group_id
benefit_amount

company_name
subserber_id

By default, Query Builder will attempt to determine which fields should be used to join the tables specified in the
query. In this case Query Builder has detected that both datasets contain the variable "subscriber" and assumes that
you want to perform an equi-join between the members and their healthcare claims. However, in the current
example, "subscriber_id" is the field on which the tables should be joined, and the goal of the join is to determine the
total amount of claims paid per health plan member, so a left-join of members to claims will be performed [see Lafler
(2004, 2005) or Schacherer & Detry (2010) for an in-depth treatment of SQL joins in SAS].

First, the existing join is deleted by right-clicking on it and choosing "Delete Join".
1ol x|

fE# add Tables 3¢ Celete /] Properties @ Join Order 2y Table ~ [Options = < Move Up & Move Down

tl [MEDICAL CLAIMS)
claim_id subscriber
service_date subscriber_id

diagnosiz_code
subscriber
group_id
benefit_amaumnt
company_name
subscriber_id

Delate Join

Properties...

o |

%,

15

Then the new join is created by dragging "subscriber_id" from the members table onto "subscriber_id" on the
medical_claims table.

=T

Fhadd Tables 4 Delete) Properties @b Join Order © Table - Options + < Move Up < Maove Dawn

11 [MEDICAL_CLAIMS)

claim_id subscrber
service_date 2|
diagnoszis_code H gender
subscriber if deb

group_id H account_number

benefit_amount
company_name
subszcriber_id

= b i ot . s e P ndl P g PP

Dragging the joined filed from one table to another, invokes the Join Properties dialog box. By choosing the Join
Type "Left Join", we specify that we want the query to return all rows in the "left" table (i.e., the table from which
subscriber_id was first selected—members) and only those rows from the medical_claims table that contain a record
with a matching subscriber_id.

Join Properties x|

Jain type

aiven a condtion [Inner Jain

£ 1l

All ravs fram the right table given a condition [Right Join |
Al rowez from both tables given a condition [Full Duter Join] —
The cartesian praduct [Cross Jain |

M atehing rows anly with equal cormaon columnz [Matural Inner Join | LI
r— Condition

Left table and columr: () Right table and calurn:

|t2 subzeriber_id |= j IH subscriber_id

Filter ta include in the fjain tables on' clause

Clear... | Edit... |
oK. I Cancel | Help |

Once the new join type is selected, click OK to assign the new join condition and close the Tables and Joins window
to return to the Query Builder's main interface.

=T

FHadd Tables 4 Delete) Properties @ Join Order © Table - Options * < Move Up < Move Down

11 [MEDICAL_CLAIMS)
claim_id
service_date
diagnosiz_code
subscriber
group_id
benefit_amount
company_name
subszcriber_id

i| account_number

*"—“_4..—-1 | J"‘—rf"‘r‘#“-

16

Upon returning to the Query Builder's Hg Query Builder for Local:WORK.MEDICAL_CLAIMS x|
main window, you can rearrange the

. . F] S [¥] Build Clutput : [WORK.QUERY_FOR_MEDICAL_CLaI Ch. ..
order of the variables in the Select ey e [Guey Bice uptrame: | - Al [eree |
Data tab Using the Up il and dOWﬂ il Computed Calumns @Prnmpt Manager E'QiPreview E& Taaols - Options =
arrows to r_nove the CO|umn names up {4 Add Tables ¢ Delete B Join Tables | SelectData |F||terData| SnrtDataI
and down in the plrlesentatlon order) F1{E] 1 (MEDICAL_CLAINS | Tl e et v -] &)
(nOte the Or(;lel’ of tz-accour!t._number @ Cla'm—'d Ay account_number | t2.account_number =
and "tl1.service_date"). Additionally, E ;f;;:;—;a;z i (] service_dale
you can add summary values by b subscriber ”t‘e"' . =]
choosing a summary function from the jg g;‘;ﬁi'imm b diagrosis_code | 11 diagrosis_corks X|
"Summary" column's drop-down list. In b company_name £ subseriber H.subserber | | —
this example, we are going to sum the (@) subserber_id %g’m‘"—‘d H.group_id 2]

" . " [_]E’E 12 [MEMBERS | company_hame t1.company_name i
value of "benefit_amount" across each "/ subscrber 4 | _»l_I il
unigue combination of (2 subscriber_id [E———
"account_number" and "service_date". jjj}% gzgde' I Automaticaly select groups | Edit Groups... |
By default, When a Summal’y funCtion iS @ account_nurmber t2.account_number, t.service_date ﬂ
specified "Automatically select groups"” B‘"__lgm"g::uifi';‘;m -
is checked for you, with all other - =
N . elect distinct rows only

selected variables defining the group-
by term. To redefine the group-by Fun Save and Cloze Cancel | Help |
clause, uncheck the box and click "Edit Y

Groups" to be taken to a pop-up that
allows you to select the variables used
to define your grouping term.

To change the Sort Order (ORDER BY clause) or to add a Filter Condition (to the WHERE clause), the "Filter" and
"Sort" tabs provide the same highly intuitive interfaces demonstrated in the earlier example of the Filter and Sort
Task.

In addition to joining and summarizing data, however, you often need to create or transform variables in ways other
than those available through the SQL language's aggregation functions. In PROC SQL, you might accomplish these
tasks by using a CASE statement to perform recoding based on conditional logic, by writing an arithmetic expression,
or through the application of SAS Functions. In the Query Task all such transformations are achieved using
Computed Columns.

In order to create a Computed Column, click on "Computed Columns" button on the Query Builder Task's main
screen and click "New" in the Computed Columns window.

i Query Builder for Local:WORK.MEDICA x|

Query name: IQueryBuiIder Output name: IW’DHK.QUEHY_FDH_MEDICAL_ELAI Change... |

P —
Computed Colun@@ Prompt Manager E'c'i" Preview E& Tools - Options =
Welete 2 Join Tables | Gelect Data | Filter Datal Sort Datal

= B 1 (MEDICALCLAMS
@ claim_id
..... [&] service_date Calurnm | Details |
..... @ diagnosiz_code @_Ealculation SUMIH . benefit_amovnt]

----- i subscriber Edi...
----- @ group_id
@ benefit_armaunt Delete
----- company_name
i subscriber_id Rename
E-E3 t2 (MEMBERS)

----- i subscriber

@ subzcriber_id

----- /i gender

..... [&] dob

----- /i 'account_number
Computed Columng

Ix

N
_J/

Mew...

Close

v &dd new computed columns to the query selection

[T Select distingt raws orly

Fun Save and Close Cancel Help

g

17

Next, select the Computed Column Type. Summarized
columns are those that are computed using SQL
aggregate functions. Advanced expressions are those
that use the Advanced Expression editor similar to the
Advanced Filter Builder in the previous Filter and Sort
example, and Recoded columns are those that assign
values based on some logical condition evaluated for
each record. Finally, columns produced "From an
existing computed column" are those for which an
existing computed column is used as the basis for the
computation used to produce the new column. In the
following example, the "Recoded column” type is used to
convert values of "M" and "F" in the "gender" column of
the "members" dataset to the values "Male" and
"Female", respectively, in the variable "member_gender".

After selecting the computed column type and clicking
"Next", the gender column is selected as the basis for the
recoded variable. Once the column is selected, click
"Next" again to advance to the specification of the values
to be recoded.

New Computed Column

1 of6 Selectatype

" Summarized column
* Recoded calumn
" Advanced expression

" From an existing computed column

Column \ Details

E)_Calculation SUMIH benefit_amount)

™ Convert to an advarced expression

ek <] mew Firish

Cancel Help

New Computed Column

2 of5 Selectacolumn

|

Gsas

=49 Select Data Calumns
i el account_number
B Query Buldsr

=G t1 [MEDCLAIMS]
@ claim_id
F5] semice_date
). disgnasis_code
b, subsciiber
£, goup_id
2 benefit_amount
A company_name
@ subserber_id
£ £ 12 (MEMBERS)
A subscriber
@ subseiber_id
2 ey
[E] dob

A aceount_number

Back || New Firish

Cancel Help

The values to be replaced are then specified along with their recoded values. Note that a number of replacement
strategies are supported. One can specify individual values to be replaced (e.g., "M" recoded as "Male"), ranges of
values can be replaced (e.g., ages 0 — 17 recoded as "Child"), or recoding can be based on a number of other
conditional logic operators (e.g., "claim_type" NOT IN 1,3,4,7,10 recoded as "Other").

Specifv a Reolacement x|
New Computed Column Replace Values I Replace a Range I Replace Cundit\unl

F
3 ofs Specify a replacement

[~ H BD'&CE!TIEI’][—_— |
Peplace | with
=M M ale’

“wdith this value;

IFemaIE

¥ Enclose this value in quotes

(1.9 I Cancel | Help |

<Back "I Next>

Firish | Cancel I Help I

18

In the last functional step of recoding a variable, you xl
supply a variable name for the new computed variable 4ol Moty additonal aptions §SaS
and assign a format for the column. At this step, you)

can also see the syntax of the CASE statement that will

Colurn [member_gended

be generated by the Query Builder task. dins EEr
Summang [nonE = Lenghfinbptest [
Expression CASE

WwWHEN 'F' = t2 gender THEN Female'
WHEN 'M' = t2.gender THEN ‘Male’
ELSE Mot Stated"

END

Column type;
& Character
£ Numeric
Fomat [$CHAR1D Charnge...
<Back |'| MNext> | Finish | Cancel | Help |
Finally, in Step 5, you are presented with a summary of x|
the pr_opertie_s for Fh_e new computed variable_and you 5 o5 Summanyof praperies SSaS
can either click "Finish" to complete the creation of the
query syntax and return to the Query Builder screen or Tl o =
. Qlumn; member_genadst
click "Back" to go step back through the New ;ype.ic;m;.a'g
Computed Column wizard and alter the specifications b
for the new column. By
WHEN 'F' = t2.gender THEMN Female’
WHEN M = t2.gender THEN Male'
ELSE 12 gender
END
L]

@ack [7| wee [Fmsh | Coneat | Hen |

As in the previous Filter and Sort example, you can preview the SAS code that will be generated by the Query Task
before running it. Click "Preview" on the Query Task window and a Preview window containing the associated SAS
code is presented. You can also, preview the results of the query and check the log for any syntax errors that will
arise from running the task.

5z Query Builder for Loca:WDRK.MEDICAL_CLAIMS x|
Query name: | Query Builder Output name: [wORK.QUERY_FOR_MEDICAL_CLAI Change.
Computed Columns | #5) Prompt Manaqer@] 553 Tools ~ Options ~
4 Add Tables 2 Delete B Join Tat (TSN =]
=[5 1 (MEDICAL_CLAIMS) Code ' '
% z::‘:;:date 1 % _eg conditional dzropds(WORK.QUERY FOR_MEDICAL CLAIMS):]
b diagnosis_code 2£
- subscriber 3EIPROC SQL:
Zi group_id 4 CREATE TABLE WORK.QUERY FOR_MEDICAL_CLAIMS A%
{3 bershit_smcunt s SELECT t2.account_number,
@ company_name [tl.serviee date,
i subscriber_id 7 /T 3UM_of_hkenefit_smount */
=157 12 (MEMBERS) E (SUM{t1.benefit_amount)) FORMAT=COMMALZ.Z AS SUM_of_henefit_:
- subscriber = ti.elaim if,
@ subscriber_id 10 tl.diagnosis_code,
-/ gender 11 tl.subscriber,
[&] dob 1z til.group id,
b account_number 13 t1.company neme,
_"‘Wte‘j E“"”S 14 tl.subscriber id,
i 15 /* Caloculation =/
16 (CASE
17 WHEN 'F' = tZ.gender THEN 'Femsle'
18 WHEN 'M' = tZ.gender THEN 'Male'
139 ELSE t2.gender
20 END) FORMAT=§CHLES. AS Calculation
21 FROM WORK.MEMBERS AS t2 LEFT JOIN WORK.MEDICAL CLAIMS AS ti1 ON (o2
2z GROUF BY t2.account_number, tl.service date; b
23 | QUIT; -
y | o
Code 2

19

As the Query Task and Filter and Sort Task examples demonstrate, one of the main goals of EG is to enable end-
users without SAS programming expertise to utilize the power of the SAS programming environment to manipulate
and analyze data. One should not conclude, however, that EG obviates the need for SAS programmers; what is
advocated here is that SAS programmers embrace EG as a tool that can be used to help deliver the analytic power of
SAS to non-programmer end-users so that they can more efficiently use their content knowledge to help your
organization remain competitive with respect to data-driven decision-making. Instead of these users coming to you
each time they need to add a column to an output dataset, summarize detail data, or refresh a dataset that you
produced for them as a "one-time" ad hoc, you can use SAS EG to put this capability in their hands and focus your
efforts on more gratifying programming challenges such as leveraging the built-in capabilities of SAS EG to
developing enterprise solutions.

PROMPTS, AUTOMATED DELIVERY, CONDITIONAL PROCESSING, AND WINDOWS SCHEDULING

As an example of building an application that uses EG built-in capabilities to further empower your end-users,
consider the following SAS EG Project "Monthly Reports". An account manager at a third party administrator of
healthcare claims wanted some simple reports that would show her a few different breakdowns of claim payments for
her client (Company XYZ). You quickly produce these reports with a few Query Tasks followed by Line Graph and
Bar Chart Tasks.

B oo By 4 X | 59 o4 | [+ | Beg Client Summary Reports by Date of Claim Payment ~

Client Surmmary Reports by Date of Claim Payment =

[+ Run = Skop | Expart ~ Schedule ~ ‘ Zoom - |E€‘,Project Lag | |/] Properties ~
NE= . NEEE . . &
& & W
Connect claimz Charges by OUERY_FOR... Claims by SAS Report
Fd. Date Maonth Paid - Sumrmar...
-
> G > * | o
Coverage QUERY_FOR... Claims by 545 Report
Breakdown Coverage ... -Bar Cha...
E‘E » B . l[l_[[l , (&
S __
igit OUERY_FOR... Claims by SAS Report
Types Wigit Type -BarCha...

The resulting graphs are exactly what she wanted, and after she shares them with a colleague, he decides that he
would like similar graphs delivered monthly for his clients. You suspect that requests for these graphs could grow
rapidly as they get shared with other account managers. You want to be able to rapidly fulfill the needs of these data
consumers, so you rethink the original project and realize that you need to build the queries with the flexibility to
change the client company on the fly—running the same code for Company XYZ, Company ABC, or JKL
Corporation.

Summary of Paid Claims by Month Paid Total Claims Paid by Coverage Type and Month Claims Paid

2.0E+11 - 6000000 —

5000000 +
156411+
4000000 —

1.0E+11 - 3000000

Sum of Paid Claims
Sum of Paid Claims

2000000 -

5.0E+10—
1000000 —

mm.mmmmmﬁﬂﬂmmmmﬂﬂﬁ

=)

0.0E+00—

Month Paid

Month Paid coverage [OJFMFD [FMSD [SMSD ‘

20

[SAS Enterprise Guide - Monthly Reports.egp
Help |18~ 5~ @G| & % Ba % X | 9 o |17~ | BegClient Summary Repad

PROMPTS. As a SAS programmer you
realize immediately that there needs to be
a macro variable in the WHERE clause of 3
each query so that different company
identifiers can be assigned without
changing the individual Query Builder

File Edit

View

Tasks

Program

Tools

eg Client Surmmary Reports by Date of Clam Pagment =
- claims
: Ei% Charges by Pd. Date

¢ Ely Coverage Breakdown

By Visit Types

£ QUERY_FOR_COPD_SASTEDAT
£ QUERY_FOR_COPD_SASTEDAT_0001

Tasks. In EG, the key to creating this 1 f;] DUERY_FOR_COFD_SAZ7EDAT 000D
flexibility is provided by Prompts. As . E&“’gﬂject .
mentioned earlier, Prompts facilitate user 4 : | _’lJ
interaction with Projects by allowing users
to select values from a list, enter individual FiIcEE)
values, provide lists of values, etc. ps Y Noorte

e [s=dBy I

Prompts are used in the following example
to allow users to specify the client
company for which the Weekly Reports
Project will be run.

B Add New Prompt

General | Frompt Type and Valuesl

Mame:

[Client
Dizplaped text:

ISeIect Client Compary

Diescription:

Clignt company for which paid claims surmmary graphs will be generated.

— Optionz
I Hide from user il Requires a non-blank value

r Read-only values il illg

prompt valug thioughout project

Because the company id that is used in the WHERE
clause of the project queries is numeric, the Prompt
Type for "Client" is specified as Numeric. If you want
users of this project to select their client company by
choosing it from a drop-down list, choose "User
selects values from a static [or dynamic] list" under
Method for populating prompt. The Number of
values that users of this prompt can select is a single
value—their individual clients. The values for this
static list can be manually entered using the Add
button next to the List of Values, or automatically
populated from a datasource using the Get Values
button. Users of the "Client" prompt will be presented
with the Display Value appended with the
Unformatted Value (e.g., "Company ABC [140])—
which serves as a redundant piece of information for
users who might be equally familiar with the
company's client code within the claims processing
system as they are with the Formatted (Displayed)
Value. Once the prompt is built, click the OK button to
save the prompt to the project.

X

Mo Prompts Defined

‘."‘“‘J«—-—-—'dk

Clienk Summaty Reports by Date of Claim Payment +

.

I+ Run ~ 0 Stop | Export = Schedule - | Zoom ~ | (S Project Log | Pr’(

4
i ke

Charges by E!UEHYfFEIF,
Fd. Date

Connect

%—»f

Coverage QUERY_FI
Breakdown

e
e A
man QUERY_FORy

wm.m

The first step in rewriting the Monthly Reports project is to
add the Prompt that will be displayed to users when the
project is run. The Prompt "Client" is created by clicking
"Add" in the Prompt Manager resource and giving the
new prompt a Name, Display Text, and a Description.
The "client" prompt will also be required to have a non-
null value and will retain its value throughout the
execution of the "Monthly Reports” project.

B Add New Prompt

General Prompt Type andalues |

Prampt type:

INumelic

tethad for populating prampt:

[

MNumber of values:

IUser selects values from a static list

™ Allow only integer values

tdinimumn number of decimal places allowed:

j I Single value j

b aximum number of decimal places allowed:

Iinimum value allovwed

tazimum value allowed

Include Special Yalues

™ &l pozzible values r izzing values ‘

ird Append formatted values with unfomatted values

List of walues:

Unformatted Value | Farmatted [Displayed) Value | Default Add |
140 | Company ABC O Get Valuss.. |

171 | Company 372 C
Delete |

182 | JKL Corporation C
212 | MNO_LLE c Clear Default |

5 | Zerilinon, LLP [

™ Allow user lo specify additional [unformatted) values

”»

21

Move up |
Iove davr |

il B i

Next, the prompt needs to be associated with the Filter (or

Egitpler x
WHERE clause) of the Query Builder Task. This association _I
is made by selecting the Query Builder Task in the Process m Gsas
Flow, right clicking it, and choosing Modify <name of task>.
In the adjacent figure, the filter of the "Charges by Pd. Date" Fotimn (T
Query Builder Task is being edited. Instead of providing a - - =

specific company id (e.g., "170) as the filter condition for this
query (as was done originally), navigate to the "Prompts” tab

™ Generate filter for a prampt value [only appliss to prampt tupes]

of the Value dropdown and select "&Client". Vabe i I~
P 7 e 5
eampeny = Values | Colurnns ~ Prompts I
™| Enclose val
J Cancel Help

Once all three queries are changed to filter "claims" a :
) . lient Summary Reports by Date of Claim Payment -
records based on the Client Prompt instead of a

3
o . B+ Run ~ [Stop | Export ~ Srheduls - | Zoom - | (53 Project Log | () Propertiss ~
specific, hard-coded value, the Process Flow is ready to L
be run in a manner that is driven by the response to] v <@ (
"Client" provided by the user. [Notice how the icons : b= e -

. . . Conhect claims Charges by QUERY_FOR.. Claims by_ 545 Report f
representing these queries have now changed in the Pd Date MerthPad - Clame
Process Flow.] _

? Fe
- fat = o
Coverage QUERY_FOR Claims by 545 Repart f
Breakdown Coverage .. - Claims .. 1
o ? E==H
o)
Wisit QUERY_FOR. Claims by 545 Report R
Types Wisit Type - Claims
>

When the Process Flow is next run, the user will be presented with the Prompt that was specified earlier:

[E4 Specify ¥alues for Project Prompts

x|

|General Beset group defaults |

Select Client Company
Client company for which paid claimz summary graphz will be generated.
Compar 71.0

|

Run Cancel |

Once a Prompt Value is chosen by the user, the Process Flow continues on through the Query Builder Tasks and on
to the production of the Reports for that particular client company. To produce the graphs for a different company, all
one needs to do is choose a different response for the prompt when the Process Flow is next run.

22

DELIVERY AUTOMATION. In addition to facilitating the flexible production of reports, however, SAS Enterprise Guide
also has built-in functionality to facilitate the distribution of analytic output. To expand on the previous example, once
the reports are generated, you could use the Send To functionality to send the resulting reports to a list of recipients

via e-mail.

I Client Summary Reports by Date of Claim Payment =

I+ Rum = [Stop | Expart v Schedule = | Zoam ¢ | Sk Praject Log | /] Properties -

- - —— L

.] - [©pen
Connect claims Charges by QUERY_FOR.. Claims by FDF
Pd. Date Month Paid Clair Export 4
Maorth
2 E-mail Recipient... Send To 3
@ __| E-mail Recipient as a Step in Project. .. | X Delete
Coverage . i
Erestdomn Inkernet Explorer Froperties

Microsoft Word

Microsoft Excel

&4
Y

4
P

I rublish... &
r

L

”

[

7 Microsaft PowerPoint
P E Q
it QUERY_FOR... Claims by FDF -
I Types Yigit Type Claims b..
O o s b P el T g™ P 0
In order for this e-mail option to work, you will]
have to provide the configuration parameters [Gordl | Adminiatration
associated with the e-mail account from which B e
i i i csuits s
you will be sending the message. To specify Raae S — —
this information, select Tools» Options» iewer Dt Senven [
Administration on the menu bar and provide the e oot Transle Hods
required information for your mail server. Once e (“ U ' By |
your e-mail configuration is specified, however, G ‘DE':’E"SE‘t‘”QSI oo
. . . . [l utgoing e-mall server and por
selecting Send To» E-mail Recipient as a Step bas | nalschastermiean [
in Project will walk you through a three-step pata Hener Serder o mal adress
wizard to attach any files you are sending, ey [ichis@schecherer com
specify the recipient(s) of the e-mail, and write Tasks Authenticator: _ i i
. N . Tasks General [\windows Atemate [use 2 specified user id and password in your curent windows domain) =l
the associated e-mail message. At that point, Castor Codle oo N
sending the e-mail simply becomes a task to be sus P [Fhis@schacherescom

executed in the Process Flow.

CONDITIONAL PROCESSING. One remaining
challenge for the distribution of these reports
is that for each client company there will
likely be different distribution lists. That is,
Mary might want to receive all Company XYZ
reports, but not Company ABC reports, and
the converse might be true for Bill. If that is
the case, you can take advantage of EG's
Conditional Processing functionality to
control the distribution of reports based on
the value of the "Client" Prompt chosen for
each execution of the project. The first step
in creating this conditional logic is to create
two different mail messages—one for
Company ABC (specifying Mary's e-malil
address) and one for Company XYZ
(specifying Bill's e-mail address). Next, a
Conditional Processing step is added to the
"ABC Distrib" node by right-clicking on the
node and selecting Condition» Add.

Securty
Administration

b= o P Pt P - g

Do - G S oo By 4 X | o | [T+ | Beglient Summary Reports by Date of Claim Payment -

Client Summary Reports by Date of Claim Payment ~ ;
I+ Run = () 5top | Export - Schedule + | Zoom ~ |5 Project Log | [#] Praperties + r
G ="
i H (2] (2] B f
Connect claims Charges by QUERY_FOR Claims by FDF -
Pd. Date Month Paid Claims b, F
1
) P
@? [I@ Distib
E o é
Coverage QUERY_FOR Claims by FDF -
Breakdown Coverage Claims b. !
;
: xz P
@? % a1 Distib
L= i ;
Wigit UUERY_FOR... Claims by PDF -
Types Visit Type: Claims b -
‘,‘,’ o T Pl b s~ . o

23

The properties of this condition specify that the Condition is based on the value of a prompt. Specifically, if the value
of the Prompt "Client" equals "140" the "ABC Distrib" task will be run and the reports generated in the Process Flow

will be e-mailed to Bill.

Conditional Processing ll

e £
Bazed on; IF'rompls ﬂ
r— Definition
Prompt: | cient |
Mew.
Add Edit Delete
Operator: IEquaI ta ﬂ
Then n this task:
ABC Distrib
Walue: |1 i
Add Elzelf | Delete Elze |f
Add Cancel
Else run this task:

Once that condition is created, you can add an "Else If* condition to assess whether "XYZ Distrib" should be
executed in those cases where the first condition "&Client = 140" does not evaluate to "TRUE". If the value of "Client"

is 171 instead of 140, "XYZ Distrib" will be run—sending the results to Mary.

Conditional Processing x| Conditional Processing x|

IF Else if |

If this condition i bue:

If this condition iz true:

Client equal to 140 Client equal to 171

Add Edit Dege || Gombive [7] /V Add Edit Delete Combine ||
Then run this task: / Then run this task:
[BE Distib =l [sevz Distin =1
Delete Else IF | Add Elze [F Delete Elze If

Add Else If

e —
Elze run this task:

Else run this task:
=l

j I [hane]

| ok | Cancel |

I [mane]

ok | Cancel

24

Once saved, this conditional logic is denoted in the Process Flow by the changes in the tasks "ABC Distrib" and "XYZ
Distrib" that indicate they are contingent on the outcome of the new condition.

[Client Summary Reports by Date of Claim Payment -

[+ Rum v [Stop | Export » Schedule ~ | Zoom - | (S Projectlog | [/ Properties -
Eaas 2 Eaas i
= = i = . = ﬁ
A B L z
Connect claims Charges by GQUERY_FOR... Claims by FDF -
Pd Dats Month Paid Clairns b ey @
P — . ABC Distrib
Y . ~ sl . 'ﬂ] 0
]
Coverage GQUERY_FOR... Claimz by POF -
Breakdown Coverage ... Clairns b...
#E Distrib.
= || o
- -
Wigit GUERY_FOR... Claims by FOF -
Tupes Wizt Tupe Claims b...

After choosing Company XYZ as the response to the Client Prompt, the
representation of the distribution tasks changes once again to indicate ®
that "ABC Distrib" did not meet the condition required for its execution,
but "XYZ Distrib" did—and was run as a result of the conditional =
processing. Conditional Processing and Prompts are very powerful LEERE D
ways to control processing in SAS EG; for more in-depth information on &,‘)
Prompts and Conditional Processing, the reader is referred to Hall
(2011) and Sucher (2010). &

HZ Distrib.

[1}]

WINDOWS SCHEDULING. In addition to conditional processing and integrated e-mail as a means for automating data
delivery, Enterprise Guide also facilitates the scheduling of Project and Process Flow execution by providing a hook
into the Windows Scheduler. From within the EG interface, you can schedule your project (or an individual Process
Flow within a project) to run at a specified time of day, day of week, etc. Once the schedule is specified, EG
generates a VBScript that is launched by the Windows Scheduler according to the designated schedule, and this
Script, in turn, launches the scheduled Project or Process Flow via Enterprise Guide.

I Process Flow = Schedule - Project x|
b Run - Stop | Export - |Schedule -~ | Zoom - |E§Project Log | Froperties - Task Scheduls | Se[[inggl

Process Flow

Prioject

1 -
New | Delete |

Schedule Task: Start time:

| Daiy = | %00 &M = Advanced.. |
Schedule Task Daily

’7 Ewery W day(s]

¥ Show multipls schedules.

Cancel |

25

CONCLUSION

The inclusion of developer-centered functionality like Prompts, Conditional Logic, and Automated Scheduling and
Deliver, as well as the integration of smart, context-sensitive auto-completion in the Enhanced Editor really serves to
emphasize the fact that SAS Enterprise Guide is becoming a tool that should not be dismissed as simply a point-and-
click tool for those who do not use SAS. By providing non-programmers access to the power of SAS analytic
procedures, Enterprise Guide provides organizations the ability to put real analytic power in the hands of the users
who are managing their business operations. This has the added benefit of freeing IT, Analytics, and Decision
Support analysts from having to spend their time rerunning and tweaking reports and analyses every time a minor
change is needed in formatting, column/row order, or specification of a subset of data. Freed from these duties,
these programmers and analysts can put their SAS skills to work developing even more powerful analytic tools for the
non-programmer users throughout your organization. This virtuous cycle of enablement can facilitate your
organization's ability to turn data into information and provide an ever-broadening group of your co-workers with the
information needed to help your organization gain a competitive advantage.

REFERENCES

Bangi, A., Hemedinger, C., Slocum, S. (2010). New Goodies in SAS® Enterprise Guide® 4.3. Proceedings of SAS
Global Forum 2010. Cary, NC: SAS Institute, Inc.

Fecht, M. (2009). THINK Before You Type... Best Practices Learned the Hard Way. Proceedings of SAS Global
Forum 2009. Cary, NC: SAS Institute, Inc.

Fecht, M. & Dhillon, R. (2011). SAS Enterprise Guide 4.3: Finally a Programmer's Tool. Proceedings of SAS Global
Forum 2011. Cary, NC: SAS Institute, Inc.

Hall, A. (2011). Creating Reusable Programs by Using SAS® Enterprise Guide® Prompt Manager. Proceedings of
SAS Global Forum 2011.

Hemedinger, C. (2007a). Efficient Data Access using SAS Enterprise Guide. SAS Sample 26178. Retrieved July 6,
2011 from : http://support.sas.com/kb/26/178.html

Hemedinger, C. (2007b). Optimize Data Access within SAS Enterprise Guide. Retrieved July 6, 2011 from :
http://www.youtube.com/watch?v=0STalEUpKT8

Lafler, K.P. (2005). Manipulating Data with PROC SQL. Proceedings of the 30t Annual SAS Users Group
International Meeting. Cary, NC: SAS Institute, Inc.

Lafler, K.P. (2004). PROC SQL: Beyond the Basics Using SAS. Cary, NC: SAS Institute, Inc.

Levine, F. (2001). Using SAS/ACCESS Libname Technology to Get Improvements in Performance and Optimizations
in SAS/SQL Queries. Proceedings of the 26t Annual SAS Users Group International Meeting. Cary, NC:
SAS Institute, Inc.

Ravenna, A. (2011). Becoming a Better Programmer with SAS® Enterprise Guide®. Proceedings of SAS Global
Forum 2011. Cary, NC: SAS Institute, Inc.

Schacherer, C.W. & Westra, B.D. (2010). Introduction to SAS® for the Healthcare Analyst. Proceedings of the
Midwest SAS Users Group. Cary, NC: SAS Institute, Inc.

Schacherer, C.W. & Detry, M.A. (2010). PROC SQL: from SELECT to Pass-Through SQL. Proceedings of the
South Central SAS Users Group. Cary, NC: SAS Institute, Inc.

SAS Institute, Inc. (2004a). SAS/ACCESS 9.1 Supplement for Microsoft SQL Server. Cary, NC: SAS Institute, Inc.

SAS Institute, Inc. (2004b). SAS/ACCESS 9.1 Supplement for Oracle. Cary, NC: SAS Institute, Inc.

SAS Institute, Inc. (2009). SAS OnlineDoc® 9.2. Cary, NC: SAS Institute Inc.

SAS Institute, Inc. (2011). SAS® 9.2 Intelligence Platform: System Administration Guide, Second Edition. Cary, NC:
SAS Institute Inc.

Slaughter, S.J. & Delwiche, L.D. (2010). The Little SAS Book for Enterprise Guide 4.2. Cary, NC: SAS Institute, Inc.

Sucher, K. (2010). Interactive and Efficient Macro Programming with Prompts in SAS® Enterprise Guide® 4.2.
Proceedings of SAS Global Forum 2010. Cary, NC: SAS Institute, Inc.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Christopher W. Schacherer, Ph.D.
Clinical Data Management Systems, LLC
Madison, WI 53719

E-mail: CSchacherer@cdms-lic.com
Web: www.cdms-llc.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

26

