
1

Paper AD02-2011

Take a Fresh Look at SAS® Enterprise Guide®:

From point-and-click ad hocs to robust enterprise solutions

Chris Schacherer, Clinical Data Management Systems, LLC

ABSTRACT

Early versions of SAS Enterprise Guide (EG) met with only lukewarm acceptance among many SAS programmers.
As EG has matured, however, it has proven to be a powerful tool not only for end-users less familiar with SAS
programming constructs, but also for experienced SAS programmers performing complex ad hoc analyses and
building enterprise class solutions. Still, many experienced SAS programmers fail to add EG to their SAS toolkit.
They face the barriers of an unfamiliar interface, new nomenclature, and uncertainty that the benefits of using EG
outweigh the time spent mastering it. Especially for this group, (but also for analysts new to SAS), the present work
attempts to orient new EG users to the interface and nomenclature while teaching them how to achieve common data
management and analytic tasks they perform with ease in SAS. In addition, EG concepts and techniques that focus
on using EG as a development environment for producing end-user analytic solutions are described.

INTRODUCTION

The first reaction many SAS users have to Enterprise Guide (EG) is "I don't need a point-and-click interface; I'm a
real SAS programmer". The idea of clicking on an interface widget to perform a PROC SORT, for example, (instead
of simply typing "PROC SORT DATA=….") seems like a frivolous piece of functionality. Others, having further
considered why SAS would develop a tool like Enterprise Guide, might even become worried that their livelihoods are
being threatened—thinking "if people who do not know SAS can perform these functions on their own, why does my
organization need me?" Still others see the flow-diagram-inspired "Process Flows" and imagine how much faster
they might crank out the endless stream of ad hoc queries with which they are bombarded once they no longer have
to search for (and type) all of those cryptic database table and variable names. "Better yet", this group imagines,
"perhaps I could empower my users to do some of this work themselves and I could focus on creating more
advanced data management and analytic tools for my organization". SAS Enterprise Guide has something to offer
users from each of these perspectives.

Once a SAS programmer is introduced to EG and learns both
the available functionality and the limitations of "point-and-
click programming" he or she discovers a programming
environment that both (a) empowers a broader community of
end-users to transform data into information and (b) provides
new opportunities to apply their SAS knowledge to the
development of more elegant data management and analytic
tools. The problem for these programmers, however, is that
when they sit down to create their first EG "program", they
often realize "I have no idea how this thing works." In fact,
the splash screen with which they are presented at startup
poses a question for which they are not entirely prepared—
do you want to start a new project or open an existing one?
The one option that seems manageable from this splash
screen is "New SAS Program". After all, you know what a
SAS program is; you have written hundreds or thousands of
them over your career. But creating a new SAS program
within EG (though a very meaningful part of creating an EG
Project), just delays the inevitable, you need to understand
the interface and nomenclature used to organize your work
within Enterprise Guide.

In order to start the transition to EG, it is important to start adapting to a new nomenclature. This transition begins
with understanding that a Project in Enterprise Guide "is a collection of related data, tasks, results, programs, and

notes" (Slaughter & Delwiche, 2010). You might wonder whether a Project is just the same as a SAS Program; after
all, a SAS program is little more than a collection of related LIBNAME statements, comments, PROC and DATA
steps, and the results of those PROC and DATA steps. Further, you can %INCLUDE SAS programs within one
another, so even the idea of having multiple, related programs referenced within a single driver program (Fecht,
2009) is not new to the SAS programmer. So, in what ways does a Project differ from a Program? First, not only can

2

EG Projects include links to an external SAS Program, but, as is demonstrated later in the paper, can contain
Embedded SAS Programs which exist solely within the confines of the project—having no external .SAS file.
Further, EG contains built-in facility for Conditional Processing to control the branching of code execution and user
interface components for presenting users with Prompts for selection or assignment of values that will drive code

execution—for example, by the assignment of macro variable values in a PROC SQL WHERE clause. Beyond these
differences, the goal of the Enterprise Guide Project and the SAS Program are the same—manipulation and
transformation of data for reporting and analysis. The main difference between the two software packages is that the
SAS System accomplishes these tasks strictly through the execution of user-written code, whereas Enterprise Guide
focuses on presenting the user with graphical user interface (GUI) components that gather the specifications for SAS
code that is then generated by the software. The first step in learning how to create these point-and-click Projects is
to gain a basic understanding of the user interface in which they are built.

ENTERPRISE GUIDE INTERFACE

After launching Enterprise Guide and choosing "New Project" to navigate past the splash-screen
1
, you are presented

with a screen comprised of two docked windows (Resources and Project Tree) and the Workspace—which
technically is not a "window" since it cannot be closed, minimized, etc. independently from the application.

RESOURCES WINDOW. The Resources window is located in the lower left corner of the EG screen. This window, as
its name suggests, organizes the resources available to the user. The four main types of resources available to you
are: Servers, SAS Folders, Tasks, and Prompts.

SERVERS refers to SAS Servers to which you have access. If you are
running EG in stand-alone mode (i.e., not connected to a Workspace,
Stored Process, or other remote server), by default EG will attempt to
connect to a "Local" server that represents your local installation of the
SAS System. The fact that SAS is connecting to a SAS Server (either
your local installation or another Server installation) belies the key
characteristic describing EG; it is essentially a graphical user interface
(GUI) to the SAS System. To confirm that EG is using your local SAS
installation, Start EG and navigate to the SAS Server "Local". After

1
Of course, if at some point you checked "Do not show this window again", you will no longer see the splash-screen at start-up, but

will instead be taken directly to a new project.

3

"Local" is started, launch SAS. You should notice that SAS gives you a warning that "User Preferences will not be
saved". This is because your local SAS environment is already in use—as the SAS engine for Enterprise Guide.
Enterprise Guide generates SAS code necessary to execute the Tasks you have specified and uses the local SAS
engine to run that code.

In addition to LOCAL, you can connect to other SAS Servers (e.g., MetaData, Workspace, etc.) that give you access
to data sources, macros, and stored processes available throughout your organization's SAS infrastructure, but the
scope of the current paper will be limited to the LOCAL server.

SAS FOLDERS SAS Folders are directories defined in a SAS Metadata
Server to standardize access to commonly used repositories
throughout your organization. As they expand beyond the scope of the
LOCAL server, they will not be discussed further here—but see SAS
(2011) for further information about this resource.

TASKS A great deal of the work performed in an EG Project is specified by
adding Tasks to the project. As seen in the figure to the right, some of the

entries in the TASK resource have names that are remarkably similar the
names of PROCS you might use in SAS. Many of these tasks map directly to a
SAS PROC; for example, using the "Sort Data" task sorts a dataset in the
Project just as PROC SORT would in a SAS program. Similarly, just as
PROCs have options and keywords that drive "how" the PROC will be
executed, so do Tasks. Each task has its own dialog window and/or wizard
that allows the user to specify the options to apply to how the task is executed.
This is where many experienced SAS programmers first throw up their hands in
exasperation because they can very likely write this SAS code faster than they
can point and click their way through the task.

But suppose you want to sort a dataset containing a large number of cryptically named variables associated with
(say) healthcare claims. If you do not use these data frequently and you want to sort the claims by the date on which
they were paid, you might only remember that the variable on which you want to sort probably has the word "paid"
and "date" in it, but you might not remember whether it is "paiddate", "paid_date", or "date_paid". In SAS you would
either right-click on the dataset in the LIBRARY window and choose "View Columns", try running PROC SORT with
each derivation of the name until you hit the correct variant, or open the dataset and scroll across the screen looking
for the variable of interest.

By contrast, in the Sort Data Task,
you can simply click the "Name"
heading under "Columns to Assign"
to sort the column names in
ascending or descending order,
scroll down the list and click on the
variable of interest—in this case
"paiddate". Once found, however,
you are confronted with another
concept that at first blush may
seem foreign—the Role that the

variable is to play within the task.
Intuitively, it is easy to make the
leap that if you want to sort the
dataset by "paiddate" this variable
is to play the "Sort by" role in the
current task. As seen in the
adjacent figure, once the variable of
interested is selected, click the
button to select the Role to be
played by that variable in the
current task. Alternatively, you can
drag "paiddate" to the "Sort by" role
in the Task roles list.

4

The "Sort Data" task also has another useful
role, "Columns to be dropped". Together, the
use of these two roles results in a very quick
and efficient way to both sort a data set by one
or more columns and reduce the variables in
the dataset. Although in some ways it seems
like a new concept, the Task Role is really just
an explicit name given to a concept that SAS
programmers have come to accepted implicitly
after many years of reading syntax examples
like the following (SAS, 2009):

PROC SORT <collating-sequence-option>

 <other option(s)>;

 BY <DESCENDING> variable-1

 <...<DESCENDING> variable-n>;

When executed as part of your EG Project, the preceding Sort Data task generates the following PROC SORT code:

PROC SORT DATA=WORK.MEDICAL_CLAIMS

 OUT=WORK.SORTSortedMEDICAL_CLAIMS(

 LABEL="Sorted WORK.MEDICAL_CLAIMS"

 DROP= oombrid nopharm memberid meddent);

 BY paiddate;

RUN;

This example demonstrates the critical role Tasks play within EG; they assist the user in generating SAS code by
providing an intuitive interface for specifying all of the parts of the syntax that need to be understood by SAS in order
to generate and execute code that performs the transformations, analysis, and reports intended by the user. And just
as you once did not know PROC SORT from PROC TRANSPOSE, you will have to familiarize yourself with how the
different Tasks work. This time around, however, you have the advantage of already knowing how SAS performs
these operations. As a result, the time it takes to become proficient with EG is a fraction of the time you struggled
through all of the different permutations of the PROCs in your SAS lexicon.

PROMPTS Prompts play an important role in creating enterprise-level solutions for analysts and report writers. This

resource provides a flexible way to present users with interface components that they can use to indicate single or
multiple values that will drive execution of a project. The specified values can be used, for example, to value macro
variables used in the WHERE clause of a PROC SQL statement, as the conditional value in an IF/THEN statement in
a DATA step, or as a password enabling a database connection. An example of the use of Prompts is provided later
in the paper.

WORKSPACE. The workspace is the
part of the EG interface that is used to
present Process Flows, Document
Windows, SAS Code, and Logs. The
Process Flow in SAS Enterprise

Guide is a construct that helps
organize the Tasks that are being
performed. Although each Project, by
default, has at least one Process
Flow, you can have multiple Process
Flows in a single project—for
example, to organize the Tasks
comprising "Step 1" and "Step 2" of a
complex set of data transformations.
In the following example the Excel
data file "Source Data – Excel.xlsx" is
dragged from the Local server's file
structure into the Process Flow.

5

When this drag-and-drop operation is performed, EG automatically detects that what the user wants to do is IMPORT
an external, non-SAS data file into the project, and EG launches the Import Data task. This task walks the user
through a four-step wizard to (1) specify the source data file and output dataset, (2) select the Excel worksheet to
import, (3) specify data types, informats, and formats for the imported data, and (4) specify any Advanced Options
associated with the Task.

Once all of the steps involved in this Task are specified, clicking "Finish" generates the depiction of the relationship
between the source dataset, the import task, and the output dataset in the Process Flow in the left side of the
Workspace and the output dataset is rendered in the right side of the Workspace—in a Document Window.

Note that the Document Window also provides tabs for the SAS code generated by EG as well as the Log entries
generated by the execution of that code.

6

To summarize the purpose of the Workspace, then, Process Flows are used to organize Tasks, and Document
Windows are used to view output datasets that are generated by the Tasks as well as the Code and Log entries
associated with execution of those tasks.

PROJECT TREE. The Project Tree serves to
organize the project by providing quick
reference to the lineage of datasets, the Tasks
that use and generate those datasets, and the
Process Flows used to organize the tasks in
logically meaningful groupings within the
project. In the adjacent Project Tree, we see
that the Tasks "Import Med" and "Import
Dental" are both part of "Process Flow A".
The output datasets "Medical" and "Dental"
are used in "Process Flow B" as inputs to the
Task "Combine Medical and Dental". Through
careful naming of Tasks and datasets and the
logical groupings of Tasks within Process
Flows, the Project Tree can be a useful tool for
quickly navigating through a complex project
and for documenting your analytic solution.

WORKING WITH TASKS AND PROCESS FLOWS

Having been provided with an introductory overview of the EG interface, most SAS Programmers are more than
ready to be turned loose and use some Resources to build a Project comprised of Tasks in which dataset variables
play specific Roles. However, as you should also do in SAS Programs, it is a good idea to first add comments about

your Project to each Process Flow.

PROJECT COMMENTING. Although some Enterprise Guide users may
have sophisticated source code repository systems, others may rely on
file naming conventions and comments within their code to track
changes. For this latter group of users, one of the nice features of EG is
that you can add Notes to your project. To add a Note to a process

flow, simply right-click in the workspace and choose "New►Note". A

7

blank Note then opens in the document window, and you can provide the technical information, background, and
change history information necessary to effectively maintain the process flow over time.

The note can then be used to document your project using the "Create HTML Document" option under the "Tools"
menu, and generate an HTML document that combines all of the Notes in your Project file.

DATA ACCESS. After writing comments to accurately describe the purpose of your project, the next step in creating
an EG Project is gaining access to the data with which you need to work. As demonstrated in the earlier example of
drag-and-drop data access from the Local server, bringing an Excel file into the Process Flow (by default) triggers the
creation of an Import Task. Depending on the file type being imported, you are walked through the import process
with import wizards specific to that file type. In contrast to Step 2 in the previous example of importing an Excel file,
Step 2 of the Import Task for a .txt file contains the options depicted in the following figure—with radio buttons to
specify the format of the records in the file and a drop-down menu to specify the column (variable) delimiter.

The ability to drag and drop data files into a Project provides the EG user with a great advantage compared to having
to remember the syntax of INFILE statements, PROC IMPORT, and the like for every file type and configuration they
might encounter. To be sure, there are files (especially files with multiline records) that are not amenable to this drag
and drop approach due to their sophisticated layout, but for the most common file types and layouts this approach
provides a very quick and easy way to bring data into your project.

For data that resides in relational databases such as Oracle, SQL Server, DB2, etc., a different approach is required
for the Enterprise Guide user accessing the SAS System on his or her local computer. Because the Tasks in
Enterprise Guide are built for utilizing SAS to perform analyses and data manipulations (and not for configuring your
SAS session), establishing a LIBRARY based on a SAS/ACCESS® connection to a database such as Oracle or DB2
requires some SAS code to be written the old fashioned way—in a SAS Program. To create a SAS Program in your

8

project, simply right-click in the Process Flow and select New ► Program to launch the Enhanced Editor.

In the following example, a LIBNAME statement is used to define the library "HCA" as a connection to the "billing"
database on the Oracle server "Finance". Following execution of this program (renamed "Connect"), a refreshed
view of the Local server shows that the project now has access to the HCA library

2
. From this point forward, EG

Tasks in the project can access the data tables in the Oracle database—but see, for example, Hemedinger (2007a,
2007b) for an explanation of why you might want to consider pass-through SQL statements when querying large
datasets with EG.

LINKING & EMBEDDING SAS PROGRAMS. In the previous
example, the SAS program "Connect" was created within
the project as an Embedded Program. As such, it exists

only within the EG project where it was created; there is no
".sas" file saved externally. If, on the other hand, we had
included an existing SAS program in the project by dragging
the program from the Files resource on our SAS server, the
program would be Linked to the project. In the latter case,

changes to the program file (which exists outside of the
project) would impact the project because when the project
is next run following those program changes, the changes
are naturally reflected in the "linked" program by virtue of the

2
 For more information on defining SAS Libraries as connections to databases via SAS/Access see Levine (2001), Schacherer &

Westra (2010), SAS (2004a, 2004b).

9

fact that EG is simply running the external SAS program. In the case of the Embedded program, the only way
changes can be made to the program is to open the EG project where the program is saved, and edit the program.
The embedded program "Connect" is represented in the flow diagram by the familiar SAS Program icon whereas the
linked program "External Connect" is represented by a shortcut icon—denoting, again, that this program exists as a
stand-alone SAS program outside of the EG Project.

You might decide later that an embedded program like "Connect" might be useful in several of your EG programs
because you often connect to the same database. In that case, you might want to convert it to be an external SAS
program that you can link to your projects and manage as a single program (instead of updating embedded programs
in multiple projects.) Conversely, you might decide that a program you wrote outside of EG is so highly specialized
that it does belong as an integral part of a single EG project. In either case, it is easy to make the desired change.
To embed a linked SAS program, simply right-click on the program, choose "Properties", and click on "Embed".
Conversely, to save an external copy of an embedded program, simply right-click on the program and choose "Save
As" and you will be prompted to specify a name for the saved program and a location in which to save it.

The result of the preceding two operations is that "Connect" is now a Linked Program ("Previously Embedded") and
"External Connect" is now embedded in the Project (as "Embedded Connect").

In Enterprise Guide 4.3, once you have written the code to establish libraries that point to your relational database
management system, you can move the program(s) used to make these connections to a new Process Flow, name
that Process Flow "Autoexec", and the code containing the LIBNAME statements will be executed automatically each
time you open the project. As described by Bangi, Hemedinger, and Slocum (2010), there can be only one Autoexec
Process Flow in any given project, but it may contain SAS Programs and/or any other EG Tasks that you want to

execute as preprocessing steps prior to the execution of the remainder of the project.

ENHANCEMENTS TO THE ENHANCED EDITOR. Regardless of whether SAS Programs are linked or embedded, the
SAS Program Editor in Enterprise Guide is actually a SAS programming tool that significantly improves upon the
Enhanced Editor available in the SAS software. As described in detail elsewhere [Bangi, Hemedinger, and Slocum
(2010); Fecht and Dhillon (2011); and Ravenna (2011)], the version of the Enhanced Editor that is available in EG

4.3 provides a number to tools developed specifically for the SAS programmer. Many of the frustrations encountered
by SAS programmers are overcome by the enhancements provided in EG 4.3. Among these enhancements is the
ability for the Enhanced Editor to Auto-Complete for keywords, PROCs, and available libraries and datasets. As

10

shown in the following example, once connected to the HCA library, you might want to run a PROC FREQ on
variables in the dataset "hca.claims_2011_08". After typing the PROC keyword, the editor shows you options for
auto-completing the phrase. After choosing FREQ from the list, procedure options, libraries, and datasets can be
selected, in turn, using auto-complete.

In addition to the auto-complete functionality, the EG 4.3 Enhanced Editor performs Parentheses Matching. If you

ever write expressions with nested functions, you can appreciate how helpful this feature can be.

Beyond these enhancements to facilitate the mechanics of SAS programming, the EG 4.3 Enhanced Editor also
provides programming support in the form of Integrated Syntax Help and Function Completion. Function

completion presents users with the syntax that is available for a given function, and after the desired form of the
function syntax is selected, assists the user by providing a template of the selected function syntax and provides hints
as to the purpose of each argument within the syntax.

11

Similarly, integrated syntax help provides context-specific help topics related to the keywords being typed in a PROC
or DATA step or OPTIONS statement. By simply hovering over the keyword, the user is presented with help
information related to that keyword.

Of course, like most options in SAS, you can choose to turn these (and many other) options On or Off by specifying
your preferences in the "Options" menu under "SAS Programs" in the "Tools" menu bar (Tools►Options►SAS
Programs). Regardless of which options you find useful, however, it is clear that "the new features in the 4.3 version
represent a big leap for productivity with the SAS language and programmer workflow." (Bangi, Hemedinger, and
Slocum, 2010, p. 10.). Even if you choose to eschew the other features and functions of Enterprise Guide and want
to simply continue to write SAS programs from scratch, EG now provides a number of options to enhance the
efficiency of that work.

MANIPULATING DATA. Beyond these enhancements to the Enhanced Editor, however, EG offers a wide variety of
Tasks that can make preparing and analyzing datasets much simpler than writing the code from scratch—even with
these new enhancements to the Enhanced Editor.

Whether accessing the data for your project is done by dragging and dropping files or by referencing data in SAS
libraries, one of the fundamental activities for which you will be using EG is preparing data for analysis and reporting.
This can include everything from sorting data for analysis across BY groups to filtering data to produce the desired
analytic subset or merging and transforming data using complex SQL statements. For each of these tasks (as well
as for transposing, appending, and comparing datasets), EG provides a Task to achieve the desired outcome. In the
following example, the SORT & FILTER task is used to limit a healthcare claims dataset to only those claims from
Company XYZ and to sort the data by the type of coverage held by the health plan subscriber:

Like many of the tasks in EG, the user interface for specifying the Filter and Sort Task has several useful features.
First, when the task is added to the process flow (by either clicking it in the Task resource or by choosing it from the
"Tasks" menu bar), the currently selected (or most recently selected) dataset is used to populate the task's user
interface.

12

The task also affords the ability to alphabetically sort the names of the available variables, which aids in selection of
the variables to be included in the resulting dataset. Variables can be selected for inclusion in the resulting dataset

one-by-one by selecting the variable and clicking the single arrow , by selecting multiple variables and clicking

the double-arrow , or by dragging one or more variables from the "Available" list to the "Selected" list.

After selecting the variables for inclusion, move to the Filter tab to establish the criteria by which you want to subset
your data. The filter tab allows you to build dataset filters by specifying the variable to be evaluated, the evaluation
statement, a criterion value (or values), and an operator (and/or) to build complex filter criteria. One particularly useful

component of the Filter interface is the ellipsis button . When you click on the ellipsis button, you are presented
with all of the distinct values for the selected variable found in the first 100,000 rows of the dataset. You can then
select your criterion value from this list, and it is added to the filter expression.

To add a second filter criterion, add an "And/Or" operator to the filter and enter the next filter criterion.

13

To build more complex criteria involving SAS functions, algebraic expressions, or advanced operators, click on the
"Advanced Edit" button to navigate to the Advanced Filter Builder. In the following example, an "AND" operator is
added to the set of conditions that define the filter and the MONTH function is used to specify that the filter should
also include a restriction to only select those records where the date of service provided is "June". The full
complement of SAS functions is available within the Advanced Filter Builder, and when you select a function, the
associated Help syntax is presented in the lower right pane of the window. Together, the Filter tab and the Advanced
Filter Builder allow you to build very sophisticated filter conditions in your Filter and Sort Task.

After utilizing the Advanced Editor, however, your ability to alter your point-and-click filter criteria is revoked and the
filter must be edited within the Advanced Editor.

After selecting the variables for inclusion and building your filter logic, the Sort tab can be used to order the records in
the resulting dataset. In the current example, the dataset will be sorted in descending order of the value of
"service_date" and (within a given value of "service_date") in ascending order of the values of "claim_id".

14

With the filter criteria and sort order specified, you can take a look at the SAS code that will be executed as a result of
the task specifications by clicking on the Validate button:

After running the Filter and Sort Task, the resulting dataset is generated, and the new Task is added to the Process
Flow.

As described earlier, Enterprise Guide tasks provide a graphical tool for building SAS code associated with PROC
and DATA steps. The "Validate" example, above, serves to reinforce this point; the result of the point-and-click
specification of the Filter and Sort Task generated the SAS code necessary to achieve the goal of filtering and sorting
the source dataset. Before the experienced programmer dismisses this as a "cheat", consider, first of all, the typing
(and avoidance of frustrating, time-consuming typos) that was saved by using this task. Moreover, note how easy it
is to go back and rearrange the order in which the variables appear in the resulting dataset using the variable
selection tab. These features, alone, make SAS EG a valuable addition to your SAS toolkit. Learning the individual
tasks takes some time to be sure (just as learning new PROCs did), but the time-savings in creating and recreating
datasets to suit ones needs is definitely worth the minimal time necessary to master the tasks—especially when you
already know the PROCs on which they are based.

THE QUERY BUILDER TASK. One of the most important EG tasks for both developers and end-users to master for
data manipulation is the QUERY task. As with the Filter and Sort task, the Query Builder task defaults to inclusion of
the dataset that was most recently selected or created in the current Process Flow. Unlike some of the other tasks,
however, the Query Builder task can perform a wide variety of different types of dataset transformations—including
the joining of datasets, computation of new variables, and recoding of existing variables.

Upon entry into the Query Builder task, you have the ability to (1) assign the task a name to identify it in the Process
Flow, (2) assign the name of the output dataset, (3) add tables to the query so that variables from those tables can be
included in the output dataset and/or used to filter and order the rows in the result set, and (4) specify the join
condition that will be used to associate records from each of the included tables.

15

In the following example, we add the account number from a health plan's membership table to our query of the
healthcare claims data. The first step is to add the members dataset to the Tables pane by clicking "Add Tables" and
navigating to the members dataset. Once the members dataset is added to the query, we can select the
"account_number" variable by simply dragging and dropping onto the Select Data tab.

To specify how the tables should be joined, click on "Join Tables" to bring up the Tables and Joins window.

By default, Query Builder will attempt to determine which fields should be used to join the tables specified in the
query. In this case Query Builder has detected that both datasets contain the variable "subscriber" and assumes that
you want to perform an equi-join between the members and their healthcare claims. However, in the current
example, "subscriber_id" is the field on which the tables should be joined, and the goal of the join is to determine the
total amount of claims paid per health plan member, so a left-join of members to claims will be performed [see Lafler
(2004, 2005) or Schacherer & Detry (2010) for an in-depth treatment of SQL joins in SAS].

First, the existing join is deleted by right-clicking on it and choosing "Delete Join".

16

Then the new join is created by dragging "subscriber_id" from the members table onto "subscriber_id" on the
medical_claims table.

Dragging the joined filed from one table to another, invokes the Join Properties dialog box. By choosing the Join

Type "Left Join", we specify that we want the query to return all rows in the "left" table (i.e., the table from which
subscriber_id was first selected—members) and only those rows from the medical_claims table that contain a record
with a matching subscriber_id.

Once the new join type is selected, click OK to assign the new join condition and close the Tables and Joins window
to return to the Query Builder's main interface.

17

Upon returning to the Query Builder's
main window, you can rearrange the
order of the variables in the Select

Data tab using the up and down
arrows to move the column names up
and down in the presentation order
(note the order of "t2.account_number"
and "t1.service_date"). Additionally,
you can add summary values by
choosing a summary function from the
"Summary" column's drop-down list. In
this example, we are going to sum the
value of "benefit_amount" across each
unique combination of
"account_number" and "service_date".
By default, when a summary function is
specified "Automatically select groups"
is checked for you, with all other
selected variables defining the group-
by term. To redefine the group-by
clause, uncheck the box and click "Edit
Groups" to be taken to a pop-up that
allows you to select the variables used
to define your grouping term.

To change the Sort Order (ORDER BY clause) or to add a Filter Condition (to the WHERE clause), the "Filter" and
"Sort" tabs provide the same highly intuitive interfaces demonstrated in the earlier example of the Filter and Sort
Task.

In addition to joining and summarizing data, however, you often need to create or transform variables in ways other
than those available through the SQL language's aggregation functions. In PROC SQL, you might accomplish these
tasks by using a CASE statement to perform recoding based on conditional logic, by writing an arithmetic expression,
or through the application of SAS Functions. In the Query Task all such transformations are achieved using
Computed Columns.

In order to create a Computed Column, click on "Computed Columns" button on the Query Builder Task's main
screen and click "New" in the Computed Columns window.

18

Next, select the Computed Column Type. Summarized
columns are those that are computed using SQL
aggregate functions. Advanced expressions are those
that use the Advanced Expression editor similar to the
Advanced Filter Builder in the previous Filter and Sort
example, and Recoded columns are those that assign
values based on some logical condition evaluated for
each record. Finally, columns produced "From an
existing computed column" are those for which an
existing computed column is used as the basis for the
computation used to produce the new column. In the
following example, the "Recoded column" type is used to
convert values of "M" and "F" in the "gender" column of
the "members" dataset to the values "Male" and
"Female", respectively, in the variable "member_gender".

After selecting the computed column type and clicking
"Next", the gender column is selected as the basis for the
recoded variable. Once the column is selected, click
"Next" again to advance to the specification of the values
to be recoded.

The values to be replaced are then specified along with their recoded values. Note that a number of replacement
strategies are supported. One can specify individual values to be replaced (e.g., "M" recoded as "Male"), ranges of
values can be replaced (e.g., ages 0 – 17 recoded as "Child"), or recoding can be based on a number of other
conditional logic operators (e.g., "claim_type" NOT IN 1,3,4,7,10 recoded as "Other").

19

In the last functional step of recoding a variable, you
supply a variable name for the new computed variable
and assign a format for the column. At this step, you
can also see the syntax of the CASE statement that will
be generated by the Query Builder task.

Finally, in Step 5, you are presented with a summary of
the properties for the new computed variable and you
can either click "Finish" to complete the creation of the
query syntax and return to the Query Builder screen or
click "Back" to go step back through the New
Computed Column wizard and alter the specifications

for the new column.

As in the previous Filter and Sort example, you can preview the SAS code that will be generated by the Query Task
before running it. Click "Preview" on the Query Task window and a Preview window containing the associated SAS
code is presented. You can also, preview the results of the query and check the log for any syntax errors that will
arise from running the task.

20

As the Query Task and Filter and Sort Task examples demonstrate, one of the main goals of EG is to enable end-
users without SAS programming expertise to utilize the power of the SAS programming environment to manipulate
and analyze data. One should not conclude, however, that EG obviates the need for SAS programmers; what is
advocated here is that SAS programmers embrace EG as a tool that can be used to help deliver the analytic power of
SAS to non-programmer end-users so that they can more efficiently use their content knowledge to help your
organization remain competitive with respect to data-driven decision-making. Instead of these users coming to you
each time they need to add a column to an output dataset, summarize detail data, or refresh a dataset that you
produced for them as a "one-time" ad hoc, you can use SAS EG to put this capability in their hands and focus your
efforts on more gratifying programming challenges such as leveraging the built-in capabilities of SAS EG to
developing enterprise solutions.

PROMPTS, AUTOMATED DELIVERY, CONDITIONAL PROCESSING, AND WINDOWS SCHEDULING

As an example of building an application that uses EG built-in capabilities to further empower your end-users,
consider the following SAS EG Project "Monthly Reports". An account manager at a third party administrator of
healthcare claims wanted some simple reports that would show her a few different breakdowns of claim payments for
her client (Company XYZ). You quickly produce these reports with a few Query Tasks followed by Line Graph and
Bar Chart Tasks.

The resulting graphs are exactly what she wanted, and after she shares them with a colleague, he decides that he
would like similar graphs delivered monthly for his clients. You suspect that requests for these graphs could grow
rapidly as they get shared with other account managers. You want to be able to rapidly fulfill the needs of these data
consumers, so you rethink the original project and realize that you need to build the queries with the flexibility to
change the client company on the fly—running the same code for Company XYZ, Company ABC, or JKL
Corporation.

21

PROMPTS. As a SAS programmer you
realize immediately that there needs to be
a macro variable in the WHERE clause of
each query so that different company
identifiers can be assigned without
changing the individual Query Builder
Tasks. In EG, the key to creating this
flexibility is provided by Prompts. As

mentioned earlier, Prompts facilitate user
interaction with Projects by allowing users
to select values from a list, enter individual
values, provide lists of values, etc.
Prompts are used in the following example
to allow users to specify the client
company for which the Weekly Reports
Project will be run.

The first step in rewriting the Monthly Reports project is to
add the Prompt that will be displayed to users when the
project is run. The Prompt "Client" is created by clicking
"Add" in the Prompt Manager resource and giving the
new prompt a Name, Display Text, and a Description.

The "client" prompt will also be required to have a non-
null value and will retain its value throughout the
execution of the "Monthly Reports" project.

Because the company id that is used in the WHERE
clause of the project queries is numeric, the Prompt
Type for "Client" is specified as Numeric. If you want

users of this project to select their client company by
choosing it from a drop-down list, choose "User
selects values from a static [or dynamic] list" under
Method for populating prompt. The Number of
values that users of this prompt can select is a single

value—their individual clients. The values for this
static list can be manually entered using the Add

button next to the List of Values, or automatically
populated from a datasource using the Get Values

button. Users of the "Client" prompt will be presented
with the Display Value appended with the
Unformatted Value (e.g., "Company ABC [140])—

which serves as a redundant piece of information for
users who might be equally familiar with the
company's client code within the claims processing
system as they are with the Formatted (Displayed)
Value. Once the prompt is built, click the OK button to
save the prompt to the project.

22

Next, the prompt needs to be associated with the Filter (or
WHERE clause) of the Query Builder Task. This association
is made by selecting the Query Builder Task in the Process
Flow, right clicking it, and choosing Modify <name of task>.

In the adjacent figure, the filter of the "Charges by Pd. Date"
Query Builder Task is being edited. Instead of providing a
specific company id (e.g., "170) as the filter condition for this
query (as was done originally), navigate to the "Prompts" tab
of the Value dropdown and select "&Client".

Once all three queries are changed to filter "claims"
records based on the Client Prompt instead of a
specific, hard-coded value, the Process Flow is ready to
be run in a manner that is driven by the response to
"Client" provided by the user. [Notice how the icons
representing these queries have now changed in the
Process Flow.]

When the Process Flow is next run, the user will be presented with the Prompt that was specified earlier:

Once a Prompt Value is chosen by the user, the Process Flow continues on through the Query Builder Tasks and on
to the production of the Reports for that particular client company. To produce the graphs for a different company, all
one needs to do is choose a different response for the prompt when the Process Flow is next run.

23

DELIVERY AUTOMATION. In addition to facilitating the flexible production of reports, however, SAS Enterprise Guide
also has built-in functionality to facilitate the distribution of analytic output. To expand on the previous example, once
the reports are generated, you could use the Send To functionality to send the resulting reports to a list of recipients

via e-mail.

In order for this e-mail option to work, you will
have to provide the configuration parameters
associated with the e-mail account from which
you will be sending the message. To specify
this information, select Tools► Options►
Administration on the menu bar and provide the
required information for your mail server. Once
your e-mail configuration is specified, however,
selecting Send To►E-mail Recipient as a Step
in Project will walk you through a three-step
wizard to attach any files you are sending,
specify the recipient(s) of the e-mail, and write
the associated e-mail message. At that point,
sending the e-mail simply becomes a task to be
executed in the Process Flow.

CONDITIONAL PROCESSING. One remaining
challenge for the distribution of these reports
is that for each client company there will
likely be different distribution lists. That is,
Mary might want to receive all Company XYZ
reports, but not Company ABC reports, and
the converse might be true for Bill. If that is
the case, you can take advantage of EG's
Conditional Processing functionality to

control the distribution of reports based on
the value of the "Client" Prompt chosen for
each execution of the project. The first step
in creating this conditional logic is to create
two different mail messages—one for
Company ABC (specifying Mary's e-mail
address) and one for Company XYZ
(specifying Bill's e-mail address). Next, a
Conditional Processing step is added to the
"ABC Distrib" node by right-clicking on the
node and selecting Condition►Add.

24

The properties of this condition specify that the Condition is based on the value of a prompt. Specifically, if the value
of the Prompt "Client" equals "140" the "ABC Distrib" task will be run and the reports generated in the Process Flow
will be e-mailed to Bill.

Once that condition is created, you can add an "Else If" condition to assess whether "XYZ Distrib" should be
executed in those cases where the first condition "&Client = 140" does not evaluate to "TRUE". If the value of "Client"
is 171 instead of 140, "XYZ Distrib" will be run—sending the results to Mary.

25

Once saved, this conditional logic is denoted in the Process Flow by the changes in the tasks "ABC Distrib" and "XYZ
Distrib" that indicate they are contingent on the outcome of the new condition.

After choosing Company XYZ as the response to the Client Prompt, the
representation of the distribution tasks changes once again to indicate
that "ABC Distrib" did not meet the condition required for its execution,
but "XYZ Distrib" did—and was run as a result of the conditional
processing. Conditional Processing and Prompts are very powerful
ways to control processing in SAS EG; for more in-depth information on
Prompts and Conditional Processing, the reader is referred to Hall
(2011) and Sucher (2010).

WINDOWS SCHEDULING. In addition to conditional processing and integrated e-mail as a means for automating data
delivery, Enterprise Guide also facilitates the scheduling of Project and Process Flow execution by providing a hook
into the Windows Scheduler. From within the EG interface, you can schedule your project (or an individual Process
Flow within a project) to run at a specified time of day, day of week, etc. Once the schedule is specified, EG
generates a VBScript that is launched by the Windows Scheduler according to the designated schedule, and this
Script, in turn, launches the scheduled Project or Process Flow via Enterprise Guide.

26

CONCLUSION

The inclusion of developer-centered functionality like Prompts, Conditional Logic, and Automated Scheduling and
Deliver, as well as the integration of smart, context-sensitive auto-completion in the Enhanced Editor really serves to
emphasize the fact that SAS Enterprise Guide is becoming a tool that should not be dismissed as simply a point-and-
click tool for those who do not use SAS. By providing non-programmers access to the power of SAS analytic
procedures, Enterprise Guide provides organizations the ability to put real analytic power in the hands of the users
who are managing their business operations. This has the added benefit of freeing IT, Analytics, and Decision
Support analysts from having to spend their time rerunning and tweaking reports and analyses every time a minor
change is needed in formatting, column/row order, or specification of a subset of data. Freed from these duties,
these programmers and analysts can put their SAS skills to work developing even more powerful analytic tools for the
non-programmer users throughout your organization. This virtuous cycle of enablement can facilitate your
organization's ability to turn data into information and provide an ever-broadening group of your co-workers with the
information needed to help your organization gain a competitive advantage.

REFERENCES

Bangi, A., Hemedinger, C., Slocum, S. (2010). New Goodies in SAS® Enterprise Guide® 4.3. Proceedings of SAS
Global Forum 2010. Cary, NC: SAS Institute, Inc.

Fecht, M. (2009). THINK Before You Type… Best Practices Learned the Hard Way. Proceedings of SAS Global
Forum 2009. Cary, NC: SAS Institute, Inc.

Fecht, M. & Dhillon, R. (2011). SAS Enterprise Guide 4.3: Finally a Programmer's Tool. Proceedings of SAS Global
Forum 2011. Cary, NC: SAS Institute, Inc.

Hall, A. (2011). Creating Reusable Programs by Using SAS® Enterprise Guide® Prompt Manager. Proceedings of
SAS Global Forum 2011.

Hemedinger, C. (2007a). Efficient Data Access using SAS Enterprise Guide. SAS Sample 26178. Retrieved July 6,
2011 from : http://support.sas.com/kb/26/178.html

Hemedinger, C. (2007b). Optimize Data Access within SAS Enterprise Guide. Retrieved July 6, 2011 from :
http://www.youtube.com/watch?v=OSTa1EUpKT8

Lafler, K.P. (2005). Manipulating Data with PROC SQL. Proceedings of the 30th Annual SAS Users Group
International Meeting. Cary, NC: SAS Institute, Inc.

Lafler, K.P. (2004). PROC SQL: Beyond the Basics Using SAS. Cary, NC: SAS Institute, Inc.

Levine, F. (2001). Using SAS/ACCESS Libname Technology to Get Improvements in Performance and Optimizations
in SAS/SQL Queries. Proceedings of the 26th Annual SAS Users Group International Meeting. Cary, NC:
SAS Institute, Inc.

Ravenna, A. (2011). Becoming a Better Programmer with SAS® Enterprise Guide®. Proceedings of SAS Global
Forum 2011. Cary, NC: SAS Institute, Inc.

Schacherer, C.W. & Westra, B.D. (2010). Introduction to SAS® for the Healthcare Analyst. Proceedings of the
Midwest SAS Users Group. Cary, NC: SAS Institute, Inc.

Schacherer, C.W. & Detry, M.A. (2010). PROC SQL: from SELECT to Pass-Through SQL. Proceedings of the
South Central SAS Users Group. Cary, NC: SAS Institute, Inc.

SAS Institute, Inc. (2004a). SAS/ACCESS 9.1 Supplement for Microsoft SQL Server. Cary, NC: SAS Institute, Inc.

SAS Institute, Inc. (2004b). SAS/ACCESS 9.1 Supplement for Oracle. Cary, NC: SAS Institute, Inc.

SAS Institute, Inc. (2009). SAS OnlineDoc® 9.2. Cary, NC: SAS Institute Inc.

SAS Institute, Inc. (2011). SAS® 9.2 Intelligence Platform: System Administration Guide, Second Edition. Cary, NC:
SAS Institute Inc.

Slaughter, S.J. & Delwiche, L.D. (2010). The Little SAS Book for Enterprise Guide 4.2. Cary, NC: SAS Institute, Inc.

Sucher, K. (2010). Interactive and Efficient Macro Programming with Prompts in SAS® Enterprise Guide® 4.2.
Proceedings of SAS Global Forum 2010. Cary, NC: SAS Institute, Inc.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Christopher W. Schacherer, Ph.D.

Clinical Data Management Systems, LLC

Madison, WI 53719

E-mail: CSchacherer@cdms-llc.com

Web: www.cdms-llc.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

