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Abstract

One of the lessons from the recent wave of mortgage defaults is that it is very important to know
the level of risk associated with mortgages held in a portfolio. In the banking world, lending risk
is usually defined in terms of the likelihood that a borrower will default on a mortgage. To
estimate the probability of default, banks utilize various risk scoring techniques, which output a
score. Depending on a predetermined threshold “cutpoint” for the score, loans are priced
differently. Loans with scores under that cutpoint are assigned higher interest rates compared to
loans with scores above the cutpoint. If there is no experience available to choose an optimal
cutpoint, statistical criteria can be used. One method for determining the cutpoint, the
Kolmogorov-Smirnov goodness-of-fit test, has become the industry standard. Other less
commonly used methods are decision trees/rules and a series of chi-square tests. In this paper we
evaluate and compare these methods for estimating an optimal cutpoint. The methods illustrated
here are applicable in many fields some of which are finance, biostatistics, and insurance.

Introduction

Risk models that determine borrowers’ credit quality are widely used in financial institutions.
The models usually estimate the ability of a person to repay debt and the outcome influences
decisions for extending credit or not. Even if credit is extended, banks may charge different
interest rates depending on the level of a loan’s estimated risk. For example, low risk loans,
referred to as Prime, usually have lower interest rates compared to high risk loans, referred to as
Subprime.

With regard to loans, the decisions that banks make are usually binary, e.g. extend credit to an
applicant (Yes/No), loan will default (Yes/No), etc. These types of decisions can be modeled
using logistic regression. The output of logistic regression is a score that represents the
probability that the modeled event will occur. Using the score, loans can be classified as low or
high risk, relative to a predetermined score threshold, known as a *“score cutpoint”.

If sufficient data is available, analysts can choose a score cutpoint that maximizes or minimizes a
target outcome — for example, they may choose a score cutpoint that maximizes revenue or
minimizes losses resulting from defaults. However, sometimes the data available is insufficient
to enable choosing a score cutpoint on this basis. For example, when starting a new line of
business, there may be no historical data available to choose a score cutpoint based on past
experience with revenue, profit, etc. To begin the business, one must choose an initial score
cutpoint based on whatever data is available. If the analyst has insufficient data available to
select a score cutpoint that maximizes or minimizes the desired outcome, one option is to use
statistical criteria to maximize the strength of association between a score cutpoint and a binary
target that roughly approximates the desired outcome. In other words, set a cutpoint such that the
resulting 2 x 2 table (rows: observation above cutpoint vs. not above cutpoint, columns:
observation in one category of the binary dependent variable vs. in the other category) shows the

1



strongest possible association between the row and column variables. (Exactly what this means is
described in more detail below.) This paper describes and illustrates methods for determining an
optimal score cutpoint based on statistical criteria. Specifically, we will compare three methods
for finding optimal cutpoint for a score — Kolmogorov — Smirnov goodness-of-fit test, decision
trees/rules, and chi-square tests.

Mortgage default model

Since the early 2007 the US housing market has suffered severely as a result of a sharp increase
in mortgage defaults and foreclosures. Foreclosure is the process that banks initiate to repossess
properties whose owners have stopped paying the mortgage on the loan obtained to purchase that
property. In many cases, the reason a property goes into foreclosure is because lenders have
extended credit to borrowers without due consideration of the financial stability of the credit
applicants. For a period of about six years, from 2000 to 2006, housing prices across the whole
US were steadily increasing. The economy was booming and people overextended their finances
to purchase homes. Borrowers with unstable financial situation were classified as Subprime and
given mortgages with high interest rates, the payment of which caused widespread defaults a few
years later.

The model score on which we demonstrate the comparison of the cutpoint techniques is the
probability that a loan will go into foreclosure. Various factors can influence the decision to
default on a mortgage, but among the main ones are borrowers’ personal savings and income,
amount of the monthly mortgage payment, type of interest rate (fixed or variable) and the
employment situation (employed or unemployed). Using a publicly available dataset we modeled
the likelihood that a property will go into foreclosure testing some of the variables discussed.

The data used is the 2009 Housing, Mortgage Distress and Wealth dataset from the Panel Study
of Income Dynamics (PSID). This is a balanced panel of 7,922 families that were active in 2007
and 2009. Families participating in the survey were asked questions about their housing
situation, whether they own a house or rent, and their personal savings and income.
Homeowners were asked additional questions about the type of their mortgage, interest rate, and
if they are in foreclosure, which is our variable of interest.

The model was developed using a logistic regression, implemented using PROC LOGISTIC in
SAS ®. The dependent variable was coded 1 = property in foreclosure vs. 0 = property not in
foreclosure.

The logit is calculated as

logit(rz) = Iog(lij =a+ fx
-7

where 7 = P(Y =1] x) is the probability modeled, « is the intercept and £ is a vector of the
coefficients for the independent variables.

To calculate the model score from the logit function we use the transformation below. For
presentation purposes the score is multiplied by 1000.

score = (Mﬁj *1000



To find the variables that have the strongest association with the outcome, we used variable
reduction techniques, which narrowed the predictor set to five covariates which together
maximized predictive performance of the model. The logistic regression model in SAS for the
selected variables is presented below.

%let depvar = mortg_dq;
%let weight = sample_weight;
%let predictors = bankacct_total amt

fixed_i_rate
interest_rate
mtgl years_to_mat
own_ira_stock;

proc logistic data=compsamp descending namelen=100;
weight &weight.;

model &depvar. = &predictors.;

run;

The final model exhibited good predictive performance. The c-statistic on the holdout sample
was 0.86, demonstrating a good fit with the data. All of the selected predictors were highly
significant, excluding the fixed interest rate binary variable (fixed_i_rate). This variable was only
marginally significant (p-value=0.032), but we decided to keep it in the model, due to its known
impact on the decision of borrowers to default. Borrowers with a variable interest rate are usually
more likely to default, because their rates are continuously adjusted upward by lenders, which
increases the monthly mortgage payments due.

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr> ChiSq
Intercept 1 -4.906¢ 0.7628 41.3786 <.0001
bankacct_total_amt | 1 -0.00009 0.000026 12.073%6 0.0005
fixed_i_rate 1 -0.6650 0.3105 4.5856 0.0322
interest_rate 1 0.3060 0.0877 20.4402 <.0001
mtg1_years_to_mat 1 0.065¢ 0.0163 16.2223 <.0001
own_ira_stock 1 -1.780%2 0.4370 16.5938 <.0001

Odds Ratio Estimates

95% Wald
Effect Point Estimate Confidence Limits
bankacct_total_amt 1.000 1.000 1.000
fixed_i_rate 0.514 0.280 0.945
interest_rate 1.358 1.189 1.551
mtg1_years_to_mat 1.068 1.034 1.102
own_ira_stock 0.168 0.072 0.387



Comparison of results to determine optimal score “cutpoint”
Kolmogorov-Smirnov goodness-of-fit test

In the private sector, the Kolmogorov-Smirnov goodness-of-fit test is a popular method to
determine appropriate score cutoff points. What makes it so popular is its relative simplicity,
compared to other statistical tests, which is important when results are presented to decision
makers who may not have training in statistics. Another feature that makes the test appealing is
that the empirical distribution functions of both groups tested can be graphed and presented to
stakeholders.

The Kolmogorov-Smirnov test is based on the empirical distribution functions of the modeled
scores across two groups — loans in foreclosure and not in foreclosure. Under the null hypothesis
of the test, there is no difference in the distribution of scores in both groups, and under the
alternative hypothesis the distributions are different. In SAS the test is performed using the
PROC NPARIWAY with the option EDF. The procedure computes the Kolmogorov-Smirnov
test statistic D, which is distance between both EDFs for every value of the tested score. The
score at which the statistic D is maximized is the score that can best discriminate between both
groups.

The KS test statistic D is calculated as
D =max| F(x;) - F,(x) ],
where F,(x;) and F,(x;) are the EDFs of both groups of loans.

To test on the empirical distribution functions it is important to specify the EDF option for
PROC NPARIWAY.

%macro kstest(inset=, depvar=, outset=, scoreVar=);
proc nparlway data=&inset. EDF;

class &depvar.;

var &scoreVar.;

output out=&outset. EDF;

run;

%mend;

%kstest (inset=train2, depvar=mortg_dq, outset=out, scorevar=score);

The Kolmogorov-Smirnov goodness-of-fit test was performed on a random sample of 200
observations, which is about 7% of the total file. We used a sample, because we found that the
third method presented in this paper (Chi-square tests) is not suitable for datasets with more than
200 observations. Based on the p-value for the test we can reject the null hypothesis that the
EDFs of both groups are the same.

Kolmogorov-Smirnov Two-Sample Test
(Asymptotic)

KS 0.22312Z8 D 0.608631

KSa 32.155504 Pr>KSa <.0001



At the point where the distance between the EDFs is at a maximum (D=0.609), we find our
suggested cutpoint. The suggested cutoff point for our data is 88, which is found at the bottom of
the table below. All loans with a score above the cutpoint are classified as High Risk and the
loans below the cutpoint are classified as Low Risk.

Kolmogorov-Smirnov Test for Variable score
Classified by Variable mortg_dq

EDF at Deviation from Mean
mortg_dq N Maximum at Maximum
1 32 0.218750 -2.892087
0 168 0.827381 1.262201
Total 200 0.730000

Maximum Deviation Occurred at Observation
155

Value of score at Maximum = 87.957772

Decision trees/rules

Another approach to select an optimal score cutpoint is to use decision trees or decision rules.
Using this method, one begins with all observations combined in a single category. Then, one
splits the observations into two categories, based on whether or not the observations are above
the score cutpoint. A score cutpoint is chosen that best separates the observations into two
categories, with respect to the “purity” of these categories on the target variable — specifically,
one category should have a maximal proportion of one level of the outcome (e.g., percent in
foreclosure) while the other category should have a maximal proportion of the other outcome
level (e.g., percent not in foreclosure). These algorithms mine through all possible cutpoints
(using shortcuts when possible, to be efficient) to identify the optimal cutpoint. There are many
variants of decision tree/rule algorithms and they may yield different score cutpoints.

SAS Enterprise Miner is an excellent tool for decision tree/rule analyses. However, some
companies do not purchase SAS Enterprise Miner for cost reasons. Alternatives for decision
tree/rule analyses include freeware programs such as Weka, R or RapidMiner. In this paper, we
identified score cutpoints using algorithms available in Weka (decisions tree/rule algorithms
available in Weka are described by Witten & Frank, 2005). To do this, we created a SAS dataset
including the target outcome (foreclosure vs. not) and the model score described above. The
dataset analyzed using Weka included only observations in the training sample. This dataset was
exported as a CSV file and then imported into Weka. Different decision tree/rule algorithms in
Weka were used to identify a set of optimal score cutpoints — specifically, we tried the JRIP,
RIDOR, J48 and RANDOMTREE algorithms in Weka. These cutpoints were further evaluated
on the holdout sample in SAS, to ensure that they would generalize. Score cutpoints that looked
especially promising on the holdout, namely cutpoints of 134 and 42, were retained for further
consideration (see Comparing the cutpoints below).

Chi-square tests (Williams et al.)

The final method for finding an optimal cutpoint presented in this paper uses a macro developed
by researchers at the Mayo Clinic (Williams et al.). At a high level, the macro performs a series
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of chi-square tests for all potential cutpoints in search for the one with the minimum p-value and
the maximum odds ratio.

The macro performs the selection in two steps. First, it calculates p-values and odds ratios for
potential cutpoints and then it ranks the selected cutpoints by their ability to split the data in two
groups.

At the first step the macro performs a series of two-sample tests for all possible dichotomizations
of the model score. For each unique model score the macro performs a chi-square test to
determine p-value. The best cutpoint will have the lowest possible p-value. Since the
methodology performs multiple tests in search for the minimum p-value, it is possible that the
significance of the final score is overestimated. To account for this problem, the macro calculates
an adjusted p-value for each cutpoint using methodology suggested by Miller and Seigmund
(1982). Besides, the p-value the macro calculates also the odds ratios. The cutpoints with the
highest odds ratios are potential candidates to use for dichotomization.

After calculating the p-values and odds ratios for all possible cutpoints the macro selects the ten
scores with the lowest p-values and the highest odds ratios. Readers interested in more details
should refer to Williams et al (2006).

The parameters of the macro can be changed depending on analysts’ needs. The parameters we
used in our analysis are:

%cutpoint (dvar=score,
endpoint=mortg_dq,
data=fullc,
trunc=round,
type=integers,
range=ninety,
fe=on,
plot=gplot,
ngroups=2,
padjust=miller,
Z0oom=no) ;

The top ten cutpoints suggested are presented in the table. The cutpoint with the optimal
combination of lowest p-value and highest odds ratio is 88.

Sugge§ted p-value Adjusted Odds Ratio p-value Odds Ratio Total

Cutpoints p-value Score Score Score
88 1.18E-12 1.78E-10 17.12 10 10 20
87 5.56E-12 7.88E-10 15.78 9 9 18
86 1.16E-11 1.59E-9 15.18 8 7 15
90 1.18E-11 1.62E-9 14.38 7 5 12
80 3.83E-11 5.00E-9 15.34 3 8 11
95 1.18E-11 1.62E-9 14.38 6 4 10
85 2.36E-11 3.14E-9 14.61 4 6 10
105 1.95E-11 2.62E-9 13.20 5 3 8
101 4.49E-11 5.82E-9 12.58 2 2 4
102 4.49E-11 5.82E-9 12.58 1 1 2




These cutpoints were calculated using a random sample of 200 observations, which is about 7%
from the complete file. We had to use a small sample, because the p-values calculated from the
full dataset are less than 1.9E-16, at which level the comparisons are meaningless. After testing
the macro on different sample sizes we concluded that the macro provides consistent results only
for small datasets with no more than 200 observations.

Comparing the cutpoints

Above, we described and illustrated three methods to identify optimal score cutpoints based on
statistical criteria. We identified score cutpoints based on the Kolmogorov-Smirnov statistic,
decision trees/rules and a chi-square test method described by Williams et al.

Different methods can yield different score cutpoints. In choosing an optimal cutpoint, it may
make sense to take the cutpoints obtained from different methods and compare them with respect
to effect size measures. In this context, effect size is a measure of the strength of association
between the binary variable resulting from the score cutpoint (i.e., 1 = above the score cutpoint
vs. 0 = not above the score cutpoint) and the binary outcome (i.e., 1 = loan in foreclosure vs. 0 =
loan not in foreclosure). Essentially, we are attemtping to quantify the strength of association in a
2 X 2 table, where the row dimension represents above vs. below the score cutpoint and the
column dimension represents loans in foreclosure vs. not in foreclosure. If the strength of
association is maximized, this means that the score cutpoint that was chosen yielded maximum
separation of the observations with respect to the target outcome (foreclosure vs. not in
foreclosure). In other words, the score cutpoint gives us the maximum ability to put the “good”
loans in one category and the “bad” loans in the other category.

There are different ways to estimate strength of association (effect size) in 2 x 2 tables, as
decribed by Grissom and Kim (2005). Two useful measures are relative risk and the phi
coefficient. Relative risk is simply percent target among observations with scores above the
cutpoint, divided by percent target among observations with scores not above the cutpoint (e.g.,
% in foreclosure among observations above the cutpoint / % in foreclosure among observations
not above the cutpoint). Greater relative risk indicates greater relative difference between the
groups with respect to the outcome variable. For 2 x 2 tables, relative risk may be a better
measure of effect size than the odds ratio (see Kraemer, 2006, for a discussion of limitations of
the odds ratio). The phi coefficient can be thought of as a correlation coefficient for 2 x 2 tables.
It is based on the Pearson chi-square statistic. It ranges from -1 to 1 and greater departures from
0 point to greater strength of association, similar to other common correlation coefficients.

To choose an optimal score cutpoint among the cutpoints yielded by various methods (which
might differ in some situations), one approach is to compare different cutpoints with respect to
relative risk and phi. The best score cutpoint will maximize both relative risk and phi. A table
showing these measures for different score cutpoints can be produced using the SAS macro
%EVALUATE_SCORE_CUTPOINTS shown below. With minor modifications, this macro
could be used to evaluate score cutpoints in almost any dataset.



%macro evaluate _score_cutpoints;

* List of cutpoints to be considered;
%let cuts=

88

87

86

42

134;

* Analyses run separately for each cutpoint;
%do 1=1 %to 5;
%let curr_cut = %scan(&cuts,&i);

* Define cutpoint indicator as 1 = score > cutpoint, O otherwise;
data hold;

set holdout;

cuté&curr_cut=(score>&curr_cut);

run;

* 2 x 2 analyses of cutpoint indicator x dependent variable (here,
mortg_dq)-;

* Use PROC FREQ to calculate row percentages, relative risk and phi.;
proc freq data=hold;

weight holdwgt;

tables cut&curr_cut*mortg _dq / measures chisq;

ods output RelativeRisks=RelativeRisks CrossTabFreqs=CrossTabFreqs
ChiSg=ChiSq;

run;

* The next 3 data steps gets and formats selected results from ODS OUTPUT;
* tables generated by PROC FREQ.;
data rr2;
set RelativeRisks;
keep relrisk;
if StudyType="Cohort (Col2 Risk)" then do;
relrisk = left(compress( put((1/value),5.3) ));
output;
end;
run;

data phi;

set ChiSq;

keep phi;

if Statistic="Phi Coefficient® then do;
phi = left(compress( put((value),5.3) ));
output;

end;

run;

data above_ cut(keep=pct_mortg_dq_above_cut)
not_above cut(keep=pct_mortg _dgq not above_ cut);

set crosstabfregs;

if cut&curr_cut=0 and mortg_dg=1 then do;
pct_mortg_dq_not_above cut=left(compress( put(rowpercent,5.2)|]"%" ));
output not_above_cut;

end;

if cut&curr_cut=1 and mortg_dg=1 then do;
pct_mortg_dq_above_cut=left(compress( put(rowpercent,5.2)]|"%" ));
output above_cut;

end;



run;

* Combine the measures in a single table where the first column (cutpt);
* indicates the score cutpoint.;

data allmeasures;

retain cutpt;

merge above cut not_above_cut rr2 phi;

cutpt=&curr_cut;

run;

* Combine the tables for all cutpoints being considered.;
%if &i=1 %then %do;
data cutpoint_eval_table;
set allmeasures;
run;
%end;
%else %do;
data cutpoint_eval_table;
set cutpoint_eval_table allmeasures;
run;
%end;
%end;
%mend evaluate_score_cutpoints;
%evaluate_score_cutpoints;

The table below shows the results produced by %EVALUATE_SCORE_CUTPOINTS. The
SAS table produced by the macro was exported to Excel and the column headers were relabeled
and formatted.

Score % mortgage defaults for % mortgage defaults for Relative
cutpoint cases above cutpoint cases not above cutpoint risk Phi
88 24.24% 3.31% 7.313 0.316
87 23.08% 3.35% 6.879 0.303
86 22.71% 3.37% 6.744 0.299
42 15.12% 2.85% 5.297 0.227
134 33.33% 4.37% 7.623 0.335

In these data, one of the score cutpoints selected via tree/rule analysis (= 134) exhibited
maximum relative risk as well as maximum phi. However, the score cutpoint of 88 chosen by
both the Kolmogorv-Smirnov statistics and the Williams et al method were a close second and
for practical purposes performed about as well as the cutpoint of 134. Given that 134 and 88 are
both viable options, other business considerations might be taken into account, for example the
fact that more adverse decisions would be made if the 134 cutpoint was chosen, possibly
resulting in customer ill-will and backlash. This might be one reason to choose 88 over 134,
despite the fact that 134 had slightly greater relative risk and phi.



Conclusion

In many situations, a predictive model score needs to be cut at some point (the “score cutpoint™)
to determine a binary decision, e.g., extend a loan with a Prime vs. Subprime interest rate. An
important consideration is how to select the score cutpoint. If sufficient data are available, one
may choose a score cutpoint that maximizes or minimizes the target outcome, for example,
maximize renenue, minimize losses resulting from defaults. Refer to Siddigi (2006) for guidance
on how to choose an optimal cutpoint on this basis. However, sometimes sufficient data are not
available to choose an optimal score cutpoint based on the ultimate target outcome. For example,
when starting up a new line of business, there may not be enough data to choose a cutpoint based
on the ultimate target outcome such as revenue maximization or dollar loss minimization. In
such situations, one may need to use whatever data are available (for example, publically
available data) and choose a cutpoint that maximizes separation with respect to a proxy for the
ultimate outcome of interest (for example, mortgage default vs. no default). In such situations,
one may choose a cutpoint that maximizes ability to separate observations into two categories
with respect to the binary, proxy outcome. This paper described and illustrated three methods to
determine an optimal score cutpoint in such situations, based on statistical criteria, namely the
Kolmogorov-Smirnov statistic, decision trees/rules and a chi-square test method described by
Williams et al.

We found that all methods pointed to cutpoints that performed similarly with respect to two
effect size measures, relative risk and phi. Relative risk and phi indicate the ability of the binary
indicator resulting from a score cutpoint to separate observations into categories that are
maximally different with respect to the outcome. Although the methods pointed to similar
optimal score cutpoints in the example presented in this paper, this may not be the case in every
dataset.

The methods described in this paper can be used in many different fields, for example, insurance
(e.g., use a streamlined vs. intensive underwriting process for applicants above vs. not above a
score cutpoint), medicine (e.g., patients with lab scores above a certain level receive a particular
treatment, whereas those with scores not above that level do not receive the treatment), education
(e.g., students with test scores above a certain level are put in an advanced track whereas
students with scores not above that level are put in the normal track) and many other fields.

References
Grissom RJ, Kim JJ. (2005). Effect sizes for research: A broad practical approach. Mahwah, NJ:
Lawrence Erlbaum.

Housing, Mortgage distress and Wealth Data. (2009). The Panel Study of Income Dynamics,
University of Michigan.

Kraemer HC. (2006). Correlation coefficients in medical research: From product moment
correlation to the odds ratio. Statistical Methods in Medical Research, 15: 525-545.

Miller R, Seigmund D. (1982). Maximum selected chi-square statistics. Biometrics; 38; 1011-
1016.

10



Siddigi N. (2006). Credit risk scorecards: Developing and implementing intelligent credit
scoring. New York: Wiley.

Williams et al. (2006). Finding Optimal Cutpoints for Continuous Covariates with Binary and
Time-to-Event Outcomes, Technical Report #79, Division of Biostatistics, Mayo Clinic.

Witten IH, Frank E. (2005). Data mining: Practical machine learning tools and techniques. New
York: Elsevier/Morgan Kaufman.

Contact Information

Valentin Todorov Doug Thompson

Assurant Specialty Property Assurant Health

260 Interstate North Cir SE 501 W. Michigan St.

Atlanta, GA 30339 Milwaukee, WI 53201

Phone: 770-834-5161 Phone: 414-299-7998
valentin.todorov@assurant.com doug.thompson@assurant.com

www.vatodorov.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
registered trademarks or trademarks of their respective companies.

11



