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ABSTRACT 
 
Proportional Hazards Regression using a partial maximum 
likelihood function to estimate the covariate parameters 
(Cox, 1972) has become an exceedingly popular procedure 
for conducting survival analysis. It is a notably robust 
survival method because it makes no assumptions about the 
shape of the probability distribution for survival times. On 
the other hand, strong violations of the proportional 
hazards assumption can have detrimental effects on the 
validity and efficiency of the partial likelihood inference 
(Struthers and Kalbfleisch, 1986; Lin and Wei, 1989). In 
this paper, graphical and analytical procedures to assess 
violations and extensions of the model to improve 
inferential validity and efficiency in the presence of non-
proportionality using SAS® are compared and presented. 
 
1.  Introduction  
 
Most statistical methods for the analysis of time-to-event 
data can be classified based on the distributional 
assumption as non-parametric, semi-parametric and 
parametric. Generically, the name for this time is survival 
time, although it may be applied to time ‘survived’ to any 
event of interest.  
 
Two features make special methods called survival analysis 
necessary. Firstly, the event of interest is observed in only a 
subset of individuals and subsequently survival times are 
not observed in a subset. This phenomenon is called 
censoring. Secondly, these data are rarely normally 
distributed, but are skewed. 
 
SAS/STAT® procedures LIFETEST, PHREG and 
LIFEREG, respectively provide a comprehensive set of 
tools to draw valid and reliable conclusions from these 
complex data.  
 
Non-parametric methods are available in the LIFETEST 
procedure when the adjustment for only a few covariates is 
necessary. The procedure provides survival probabilities 

for constructing the survivorship function, S(t) (Kaplan and 
Meier, 1985). In addition, survival in two or more groups 
can be compared using the log-rank test (Peto elt al, 1977).  
 
LIFEREG can be used to fit Accelerated failure time (AFT) 
models using maximum likelihood methods. AFT models 
describes the relationship between the survivor functions, 
S(t) for two groups. 
 

ܵሺݐሻ ൌ  ܵ଴ሺ߮ݐሻ 
 
The acceleration factor is φ and will stretch or shrink the 
survival curve along the time axis by a constant relative 
amount. If the acceleration factor is less than one, (φ < 1), 
the length of survival is decreased compared with the 
baseline survivor function. Conversely, if the acceleration 
factor is greater than one (φ > 1), the length of survival is 
increased.  
 
In the four decades since its introduction, the proportional 
hazards regression (Cox 1972) has been established as the 
first choice of many persons wanting to perform regression 
analysis of censored survival data (Bradburn et al 2003). 
PHREG has emerged as a powerful SAS procedure to 
conduct such analyses. Its capabilities can be greatly 
extended by use of a variety of public domain macros as 
well as customization techniques. Practical applications 
occur not only in medical research but also in economics, 
industrial reliability and the agricultural, biological and 
physical sciences. 
 
The proportional hazards (PH) regression model has two 
kinds of assumptions, that when satisfied allows one to rely 
on the statistical inferences and predictions the model 
yields. The first assumption is that the relationship between 
log hazard or log cumulative hazard and a covariate is 
linear. The second assumption is the time independence of 
the covariates in the hazard function, that is, the ratio of the 
hazard function for two individuals with different 
regression covariates does not vary with time, which is also 
known as the PH assumption. 
 



The application of a statistical method to data in which the 
model assumptions are violated can result in wrong 
conclusions. Although there are several approaches to 
detecting, testing and modeling non-proportional hazards in 
the literature, few researchers propose methods for focusing 
on verifying assumptions at the onset of the analysis.  
 
In order to understand how to test the proportional hazards 
assumption, it is important to understand the hazard 
function. 
 
2.  The Hazard Function 
 
The hazard rate is the number of events which occur during 
a unit of time. National average hazard rates for one year 
for selected events are shown in Table 1. 
 
Table 1.  Annual Risks for Selected Events  
Event Annual Risk 
Car Stolen 1 in 100 
House fire 1 in 200 
Die of Heart Disease  1 in 280 
Win State Lottery 1 in 1 million 
Killed by flood or tornado 1 in 2 million 
Die in commercial plane crash 1 in 10 million 
Source: National Aeronautics and Space Administration, 2009  
http://www.cotf.edu/ete/modules/volcanoes/vrisk.html 
 
For example, Hu and colleagues reported data from 86,016 
women who were followed for 1,132,229 person years and 
classified them by nut consumption. He and his team 
reported that women who were nut consumers had 30 fatal 
heart attacks in 100,000 person years (hazard rate = 
0.00030) compared to 49 fatal heart attacks per 100,000 
person years (hazard rate = 0.00049) for those women who 
did not consume nuts Hu et. al. 1998).  
 
Importantly however, the chance of a dying of heart disease 
is different for an 87 year old than a 10 year old. So when 
the hazard rate is described over time, it is called the hazard 
rate as a function of time, h(t), or hazard function for short. 
 
Figure A illustrates several generic shapes of hazard 
functions. For short periods of time, a hazard function can 
be constant (shown in black). A hazard function for an 
event can be increasing with age (red). A hazard function 
could be decreasing as in the case of patients recovering 
from kidney transplants (blue). The bathtub shape can 
describe a life-time hazard function (orange). If the hazard 
rate increases early and eventually declines then the 
function is arch shaped (green) and this is often used to 
model survival after successful surgery where early there is 
an increase risk of infection, bleeding or other complication 
followed by a decline in risk as the patient recovers. 
 

 
Figure A. Shapes of hazard functions: constant (black); increasing 
(red); decreasing (blue); bathtub shaped (orange); arch-shaped 
(green) 
 
The hazard function is usually more informative about the 
underlying mechanism of failure than the survival function. 
Because of its convenience, the hazard function is more 
popular way of describing continuous survival data than the 
probability density function (pdf). The hazard function is a 
limiting function of time that quantifies the instantaneous 

ill occur at time t and is formally defined as: risk an event w
 

݄ሺݐሻ ൌ  lim∆௧՜଴
P୰ ሼ௧ ஸ ் ழ ௧ା∆௧|்ஹ௧ሽ

∆௧
  (2.1) 

 
The hazard function is the limit of the instantaneous 
conditional probability an event occurs within the interval 
between t and Δt. Firstly, because time is continuous, the 
probability that an event will occur at exactly an 
instantaneous time t is zero, so we take the limit as the 
interval between t and Δt goes to zero. Secondly, we divide 
this probability by Δt. Thirdly, for a given interval, the 
probability is conditional on surviving to time t, because 
those who died before time t are not at risk for the event.  
 
The equation in (2.1) is not a probability because values 
can be greater than one. The equation can be simplified in 
terms of the probability density function and the survivor 

: function
 

݄ሺݐሻ ൌ ୤ሺ୲ሻ
Sሺ୲ሻ

 ,  (2.2) 
 
where f(t) is the probability density function (pdf) and S(t) 
is the survivor function. So there is a special relationship 
among f(t), F(t), S(t) and h(t), such that if given one the 
other three can be derived.  
 
Three important and well-known hazard functions can be 
derived based on how their logarithm is related to time. If 
the logarithm of the hazard is constant in time then the 
failure times have an exponential distribution (see 
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appendix).  When the log hazard is linear in time the model 
follows a Gompertz distribution. When the log hazard is 
linear in the log of time, the model follows a Weibull 
distribution function.  
 
Each of the logarithm models can be extended to account 
for the influence of covariates, which are used as 
explanatory variables. For example, age might be one 
covariate that explains an increasing hazard. The log 
hazards are provided in Table 2 for the case where there are 
p covariates [x1, x2, . . . , xp] = Xt. 
 
Table 2.  Log H els azards for Three Dis ributional Mod

܏
t

Distribution ܗܔ  ሻ࢚ሺࢎ
Exponential μ ൅                      ሾߚଵݔ ൅  … ൅ ௣ଵݔ௣ߚ  ሿ
Gompertz μ ൅ ݐߙ  ൅            ሾߚଵݔଵ ൅  … ൅ ௣ሿݔ௣ߚ 

μ ൅ ሻݐlogሺ ߙ  ൅ ሾߚଵݔଵ ൅   … ൅ ߚ௣ݔ௣ሿWeibull 
 
The summation in the square brackets of Table 2 can be 
rewritten as below in the spirit of the usua inear models 

at r he ri
l l

formul ion fo  t  effects of cova ates. 

ଵݔଵߚൣ  ൅ ଶݔଶߚ  ൅  … ൅ ௣൧ݔ௣ߚ  ൌ ෍ ௜ݔ௜ߚ 

௣

௜ୀଵ

 ሺ2.3ሻ 

 
The coding of factors and their interaction effects follows 
the usual rules for linear models. For example, if a factor 
has four levels, three indicator variables may be 
constructed to model the effect of the factor. An interaction 
between two or more factors may be examined by 
constructing new variables which are the product of the 
variables associated with the individual factors as is usually 
done in linear models. One needs to take care in 
interpreting coefficients so constructed. 
 
When one hazard function with covariates Xt is divided by 
another with covariates Xt*, the quotient is called the 
hazard ratio. The hazard ratio is the relative risk of an 
individual with risk factors Xt having the event compared 
to an individual with risk factors Xt*.  
 
When the hazard ratio is one, the risk of the event is equal. 
If the hazard ratio is greater than one, the factors increase 
the change of the event precariously. Conversely, if the 
hazard ratio is less than one, the factors are protective. For 
example, in the nut consumption study women who eat nuts 
had a lower risk of having heart attacks because the relative 
risk was 0.61 (0.00030/0.00049; Hu et. al. 1998).  
 
Admittedly the hazard ratio is perhaps a little non-intuitive 
and in survival analysis doesn’t describe how much longer 
an individual will live. In the future, statistics like the 
restricted mean could take its place (Schaubel and Zhang 

2010). Until then, we will be using the hazard function and 
hazard ratios.  
 
When the hazard ratio of functions with different covariates 

c t ds are said to be proportional. is ons ant, the hazar
 
݄ଵሺݐሻ ൌ  ሻ (2.4)ݐଶሺ݄ ߛ 
 
Otherwise, the gamma term above is a function of time and 

 said to be non-proportional. the hazard functions are 
 
݄ଵሺݐሻ ൌ  ሻ.  (2.5)ݐሻ ݄ଶሺݐሺߛ 
 
3. Proportional Hazards Regression 
 
Like many other models, the PH regression models the 
hazard function, as can be seen in equation 4.1. 
 

݄ሺݐሻ ൌ ݄଴ሺݐሻ ݁݌ݔ ቐ෍ β୧

௣

௜ୀଵ

x୧ቑ 

 (3.1) 
 
In the PH model, the hazard function is dependent on, or 
determined by, a set of p covariates [x1, x2, . . . , xp], 
whose impact is measured by the size of the respective 
coefficients [β1, β2, . . . , βp]. The ‘t’ in ݄ሺݐሻ reminds us 
that the hazard function varies over time. The term ݄଴ሺݐሻ is 
called the baseline hazard, and is the value of the hazard if 
all the ݔ௜ are equal to zero, since the quantity exp(0) equals 
1. The proportional hazards model is considered semi-
parametric because no assumption regarding the 
distribution of the baseline hazard is necessary. 
 
The quantities exp(β i) are called hazard ratios. A value of 
β i greater than zero, or equivalently a hazard ratio greater 
than one, indicates that as the value of the ith covariate 
increases, the event hazard increases and thus the length of 
survival decreases. In other words, a hazard ratio above one 
indicates the covariate is positively associated with the 
event probability, and thus negatively associated with the 
length of survival. 
 
The PH model is essentially a multiple linear regression of 
logarithm of the hazard on the variables, xi, with the 
baseline hazard being an ‘intercept’ term that varies with 
time. The covariates then act multiplicatively on the hazard 
at any point in time, and this provides us with the key 
assumption of the PH model: the hazard of the event in any 
group is a constant multiple of the hazard in any other. This 
assumption implies that the hazards for groups should be 
proportional and cannot cross or diverge. This 
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proportionality assumption is often appropriate for survival 
time data, but in some cases where it is inappropriate can 
lead to false conclusions. 
 
The process of modeling proportional hazards is admittedly 
fluid and iterative so many assumptions should not be 
ignored. Wilson (2008) recommended a thorough checking 
for at least five potential problems and provided some 
recommendations on possible solutions.  
 
Table 3. Possible Remedial Measures for Issues in 

PH Modeling 
 Potential Problem Remedial Measure 
1. Outliers and Influential 

Observations 
PH Influence Statistics 

2. Interaction among 
Covariates 

Martingale Plots 

3. Incorrect Functional Form 
for the Covariates 

Cumulative Residual 
Plots 

4. Quasi-complete separation Firths Penalized 
Likelihood Maximum 

5. Correlated Responses Quasi-likelihood 
estimation of the 
Sandwich Variance 

 
In this paper, we restrict ourselves to the problem of the 
proportional hazards violation and assume the potential 
problems listed above have been adequately addressed. 
 
4.  Methods 
 
Synthetic, censored time-to-event data for six pre-defined 
hazard patterns were generated using a clinical trial format 
for acute coronary syndrome. Specifically, three patient 
variables were generated including a randomly assigned 
dichotomous treatment variable, continuous age (in years) 
and diagnostic cardiac troponin-T (cTnT; in µg/L) variable 
(Melanson 2007). The continuous variables were 
independent, centered, standardized and from a normal 
distribution, with coefficients of -1, 2 and 0 for the age-by-
cTnT interaction. 
 
The six patterns generated are illustrated in Figure B and 
included two adhering to the proportional hazards (PH) 
assumption since the ratio of hazard functions is constant: 
(1) the null hypothesis case and (2) the alternative 
hypothesis case. The four remaining patterns were 
departures from the PH assumption since the ratio of 
hazard functions was not constant including (3) decreasing, 
(4) increasing, (5) diverging and (6) crossing hazards. 
 
The failure times were generated from the Weibull hazard, 
h(t) = λγ(λt)γ-1 for each of the six patterns using the 
parameter values from Table 4 (Bender 2005). The 

censoring mechanism for all patterns was singly, fixed 
(Type I) at 5 years. 
 
Table 4. Weibull Parameter Values for Six Hazard 

Patterns 
  Control Group Investigational 

Group 
Case Hazards 

Pattern 
Shape 

(λ) 
Scale 

(γ) 
Shape 

(λ) 
Scale 

(γ) 
1 Constant (1) 2.00 2.00 2.00 2.00 
2 Constant (2) 1.00 1.00 1.00 2.00 
3 Decreasing 0.30 2.00 0.50 2.00 
4 Increasing 1.50 2.00 2.00 2.00 
5 Diverging 0.75 1.00 2.00 1.00 
6 Crossing 1.50 1.00 3.00 1.00 

Adapted from Ng’andu 1997 
 
Histograms for the synthetic failure times are provided in 
Figure C which also shows the kernel for 5 probability 
distributions including the normal, lognormal, exponential, 
Weibull and Gamma. Further, summary statistics are 
provided in the inset.  
 
All failure times are non-negative and their distribution is 
right skewed. As a result, the sample means are expected to 
be larger than the theoretically expected values. The 
theoretically expected value in the absence of censoring is 
given by Γ(1+1/γ)/λ1/γ. For example, in the null hypothesis 
case the observed mean is 0.865 and the theoretically 
expected value in the absence of censoring is 0.627 (SAS 
Data Step shown in Table 5).  
 
Table 5. SAS Data Step for the Calculation of the 

Theoretically Expected Value for Weibull = 
Γ(1+1/γ)/λ1/γ 

*** nph04s01.sas ***; 
data; 
 shape = 2; scale = 2; 
 mean = gamma(1+(1/shape))/shape**(1/scale); 
 put mean; run; 
 
Routinely we also create plots of the survival curves 
(Figure D), the hazard function (Figure E) and the 
cumulative hazard (Figure F) using the LIFETEST 
procedure.  
 
5. Graphical Checks 
 
Since the validity of inferences based on the PH model 
depends on the proportional hazards assumption, it is 
desirable to have diagnostic methods for checking this 
assumption. Many tools are available for checking the PH 
assumption. These include plots of (a) Log Cumulative 
Hazard, (b) Schoenfeld Partial Residuals, and (c) 
Standardized Score Process. 
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5a.  Log Cumulative Hazard 
 
With the additional constraint that the hazard functions are 
proportional, the baseline hazard function algebraically 
cancels out of the numerator and denominator. 
Specification of the underlying distribution is unnecessary 
making the model semi-parametric. The remaining 
parameters can be estimated using partial maximum 
likelihood estimation. 
 
Suppose the hazards for two groups are proportional, as in 
equation 2.4 above:  ݄ଵሺݐሻ ൌ  ሻ. It can be shown thatݐଶሺ݄ ߛ 
this results in the relationship: 
 
log ሾെ log ܵଵሺݐሻሿ ൌ ߛ݃݋݈ ൅ log ሾെ log ܵଶሺݐሻሿ 
 (5.1) 
 
This relationship implies that a plot of the log(-log S(t)) 
curves for the two groups would differ by a constant. We 
recognize -log S(t) as the cumulative hazard function, H(t). 
So plotting the estimated log(-log S(t)) curves for the two 
groups, provides a visual check of the PH assumption. A 
clear departure from parallelism of these two curves would 
be consistent with violation of the PH assumption. 
 
The survival probabilities used in the construction of this 
plot can be unadjusted and come from the non-parametric 
estimation, which can be obtained in LIFETEST using the 
lls option. On the other hand, the survival probabilities can 
be adjusted for covariates and estimated from the semi-
parametric survivorship curve, which are obtained from 
PHREG using the baseline option. In the adjusted case, the 
log cumulative hazard functions are evaluated at the 
covariate mean values. In practice, both are produced to get 
different perspectives from the data, but are often similar. If 
one were to produce only a single form, the unadjusted 
represents the least susceptible to contamination.  
 
The Unadjusted Log Cumulative Hazard plots by Log time 
for the Six Synthetic Cases are shown in Figure G. The null 
case shows the similarity and shape of the curves. In the 
Alternative case the curves are separated by the treatment 
effect. The treatment effect in the Decreasing, Increasing 
and Diverging cases is separated early but merges toward 
the end of the study. As expected, the treatment effect 
crosses in the Crossing case. 
 
The Adjusted Log Cumulative Hazard by Log time plots 
for the Six Synthetic Cases are shown in Figure H. These 
plots require an extra Data Step and a GPLOT procedure in 
SAS 9.1. The violation of PH in the Crossing case is clearer 
in the unadjusted case, but otherwise, the results are similar 
to the unadjusted plots. 
 

The Adjusted Log Cumulative Hazard by the original time 
scales for the Six Synthetic Cases are shown in Figure I. 
Under the PH condition, these curves would be expected to 
differ by a constant value, but not be parallel. Therefore, 
these plots would be considered less sensitive and it would 
be more difficult to detect violations.  
 
5b.  Schoenfeld Partial Residuals 
 
For each covariate in a PH regression, a Schoenfeld 
residual can be calculated for each case that was not 
censored. Under the proportional hazards assumption, a 
plot of these residuals against time should be 
"approximately flat" (Grambsch and Therneau [10]). These 
residuals are available using the RESSCH option on the 
OUTPUT statement in PHREG. To make it easier to detect 
violations of the PH assumption, some authors recommend 
superimposing a LOESS line and looking for a non-zero 
trend. 
 
Figure J shows the Schoenfeld residual plot for a 
continuous covariate known to follow the proportional 
hazards assumption. As expected, the distribution of 
Schoenfeld residuals are evenly distributed about zero. The 
density of residuals lightens at longer survival times due to 
the decrease in sample size.  
 
On the other hand, Figure K shows the Schoenfeld residual 
plot for the categorical treatment variable for the six 
synthetic cases. Under the proportional hazards assumption 
of the first two cases, plots of these residuals against time 
are approximately flat. However the violation is easily 
detected in the last two cases. 
 
5c.  Standardized Score Process 
 
The standardized empirical score process is a transform of 
the martingale residuals. A martingale is a special sequence 
of random variables where the conditional expected value 
of the next observation, given all the past observations, is 
equal to the last observation. 
 
These standardized score paths are a ‘Tied Down Brownian 
Process’ since they start and end a zero. Several processes 
or paths can be simulated under the null hypothesis and 
plotted with the observed path. If the observed path is 
typical of the simulated paths it is considered evidence of 
proportional hazards. Atypical observed paths are evidence 
of violation of proportional hazards. 
 
Figure L provides the standardized score processes for the 
Alternative and Crossing cases. While there is support for 
the PH assumption for the Constant Hazards – 
Alternative0Hypothesis case for all three covariates, there 

Using SAS® for Non-Proportional Hazards 5 MWSUG 125-2010 
  M. G. Wilson 



appears to be a violation of PH in the Crossing cases for 
treatment. 
 
6. Tests for Non-Proportionality 
 
Graphical checks are useful but subjective. So they can be 
augmented with analytical tests. Several tests have been 
suggested including, tests based on (a) on re-sampling, (b) 
on Schoenfeld Residuals, (c) the Hazard Ratio for the 
covariate by time interaction, and (d) on the Hazard Ratios 
for the interaction between the covariates and categorized 
time. 
 
6(a)  Standardized Score Process Test 
 
Therneau et al. (1990) proposed testing the PH assumption 
using the score process. This PH statistic is sensitive to 
alternatives for which covariates have a monotonically 
increasing or decreasing effect over time. This test statistic 
has no known distribution; however, Lin et al. (1993) have 
shown it is consistent, against non-proportional hazards 
alternatives. In SAS®, this test is labeled ‘Supremum Test 
for Proportionals Hazards Assumption’  
 
For the Crossing Hazards case, Table 6 shows the 
Maximum Absolute Value and the P-value for the 
Supremum Test for Proportionals Hazards Assumption. 
The Maximum Absolute Values for the covariates are less 
than 1.96, indicating no evidence of the violation of 
proportional hazards. On the other hand, the maximum 
absolute value for the treatment covariate is greater than 
1.96, which is statistically significant at the 0.05 alpha level 
as shown by a significant P-value. 
 
6(b) Schoenfeld Partial Residuals Test 
 
Harrell (1986) developed a computationally simple test of 
the PH assumption based on Schoenfeld’s partial residuals 
of the model. It is based on Fisher’s z-transform of the 
Pearson correlation between the partial residuals and the 
rank order of the failure time.  
 
These residuals do not depend on time and they do not 
involve an estimated baseline hazard function which 
simplifies their asymptotic distribution. When there are tied 
failure times, one takes the residual as the total component 
of the first derivatives of the log-likelihood function with 
respect to a regression parameter divided by the number of 
tied failure times at the corresponding risk set, and weights 
the correlation estimate by the number of tied times.  
 
The test statistic for testing ρ = 0, that is, that PH holds, is a 
normal deviate calculated by the formula: 
 

 
ܼ ൌ ඥሺ݊௨ߩ  െ  2ሻ/ሺ1 െ  ଶሻ,  (6.1)ߩ
 
where ρ is the correlation between residuals and failure 
time order and ݊௨ is the total number of uncensored 
observations. The test statistic tends to be positive if the 
ratio of the hazards for high values of the covariate 
increases over time, and it tends to be negative if this 
hazard ratio decreases over time. It requires no 
categorization of the time variable or the covariate.  
 
This statistics can easily be calculated in a Data Step and is 
not available from the PHREG procedure.  
 
6(c)  Hazard Ratio for the covariate by time interaction 
 
In his original paper, Cox (1972) proposed a way to check 
the PH assumption by introducing a constructed time-
dependent variable, that is, add to the model interaction 
terms that involve time (for example, treatment–by–log (t)) 
and test for their significance. Importantly, the partial 
likelihood function has the same form with and without 
these time-dependent covariates. 
 
Therefore, to check the PH assumption for time-dependent 
variables, fit an extended Cox model that contains time-
dependent variables defined with some function of time:  
 

݄ሺݐ; ሻሻݐሺࢄ ൌ ݄଴ሺݐሻ ݁݌ݔ ቐ෍ β୧

௣

௜ୀଵ

୧܆

൅  ෍ γ୧

௣

௜ୀଵ

 ሻൡݐ୧g୧ሺ܆

(6.2) 
 
where g୧ሺݐሻ is some nonzero function of time that 
corresponds to ܆୧ (for example, g୧ሺݐሻ = log(t) or g୧ሺݐሻ = 
rank(t)). The hazard ratio is a constant for all t only when γ୧ 
= 0. 
 
To test the null hypothesis that γ = 0, that is, whether PH is 
adequate, one can compute the likelihood ratio test statistic 
using: 
 

െ2 ln ൤௅൫ఉ,෡ ଴൯
௅൫ఉ෡,ఊෝ൯

൨ ~ ߕଶ,  (6.3) 

 
with appropriate degrees of freedom. 
 
The creation of the interaction with time is complex data 
manipulation because that value changes. The PHREG 
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procedure is exceptional for creating these variables 
because it provides a rich subset of DATA step operators 
and functions for defining time-dependent covariates. 
These operators follow the model statement in PHREG as 
illustrated in Table 7. 
 
Table 7. SAS Code for Testing PH with the 

Interaction between Treatment and Time  
*** nph06s01 ***; 
proc phreg data = ads01;   
     model survtime*event(0) =  
           x1 x2 x3 trt trttime  
           / ties = efron; 
      trttime = trt*logsurvtime; 
     run; 
 
When the covariate is known to satisfy the assumption of 
proportional hazards, as age in the case of the Crossing 
Hazards, the likelihood chi-square is 1.7974 (Table 8) and 
is not significant. On the other hand, the treatment 
covariate has a likelihood chi-square of 2,549.0946 and is 
significant (Table 9). 
 
6(d)  Hazard Ratios for the interaction between the 
covariates and categorized time. 
 
Some programmers might be concerned that the interaction 
effect is not linear. So instead of dichotomizing, time could 
be categorized into four or five groups. Within these 
groups, the assumption that the covariate effect is linear is 
more reasonable. These interactions can be tested using the 
same likelihood test. Similar to the case of interaction 
between continuous time and the covariate, the partial 
likelihood function performs well. If the hazard ratios from 
these interactions are similar, they can be dropped.   
 
Table 10. SAS Code for Testing PH with the 

Interaction between Treatment and 
Categorized Time  

*** nph06s01 ***; 
proc rank data = ads01  
           out = ads04 group = 5; 
     var survtime; 
     ranks rsurvtime; 
     run; 
 
proc phreg data = ads04;   
     model survtime*event(0) = x1 x2 x3  
           trttime0 trttime1 trttime2 
           trttime3 trttime4 
           / ties = efron; 
     trttime0 = trt * rsurvtime_0; 
     trttime1 = trt * rsurvtime_1; 
     trttime2 = trt * rsurvtime_2; 
     trttime3 = trt * rsurvtime_3; 
     trttime4 = trt * rsurvtime_4; 
     run; 
 
The choice for the number of intervals should be based on 
subject-matter knowledge. Furthermore, there should be a 

relatively equal number of events and censored observation 
across the time intervals to ensure that the standard errors 
of the parameter estimates are relatively similar.  
 
The Data Step to create the time categories is illustrated in 
Table 10. Care in creating these indicator variables should 
be exercised. Because of missing values, Boolean 
programming is not recommended. 
 
The results in Table 11 show that over the five time 
categorized groups, the hazard ratio is increasing and 
therefore, provides evidence that the PH assumption is 
violated. 
 
6(e) Comparison of PH Test Performance 
 
Ng’andu (1997) showed that these three test statistics, that 
is the Score Process test, the Schoenfeld Partial Residuals 
Test and the Hazard Ratio for the covariate by time 
interaction are practically equally powerful. The Interaction 
Test for Continuous time has the advantage of its 
simplicity. 
 
7. Modeling Non-Proportionality 
 
7(a) Modeling the Time by Covariate Interaction 
 
When the proportional hazards assumption is violated, the 
effect of the predictor variable varies with time. Cox (1972) 
proposed an obvious solution when he suggested the 
inclusion of a new variable in the model from Section 6(c). 
From that section, it is known that this new variable is the 
interaction between the predictor variable and continuous 
time.  
 
Also, as was shown, the values of this new variable 
changes with over time. These variables differ from time-
independent variables where the values were determined at 
baseline (time = 0) and these values did not change over the 
period of observation.  
 
7(c) Stratification 
 
The PHREG procedure allows one to model the non-
proportionality by stratification. This technique is most 
useful when the covariate that interacts with time is 
categorical, not of direct interest and too difficult to model. 
Stratification is limited by the fact that one cannot stratify 
by a variable and also include it as a covariate. 
 
The basic idea of the stratified PH model is that the 
baseline hazard function is allowed to vary across strata. In 
other words, the underlying hazard function for on strata 



Table 6. Partial output from PHREG using the ASSESS option 
 
                                  Supremum Test for Proportionals Hazards Assumption 
  
                                         Maximum 
                                        Absolute                                      Pr >  
                            Variable       Value    Replications          Seed    MaxAbsVal 
 
                            trt           5.3397            1000         46163       <.0001 
                            x1            1.2089            1000         46163       0.1530 
                            x2            1.2693            1000         46163       0.1750 

 
 
Table 8. Maximum Likelihood Estimates from PHREG procedure for Interaction between Age (X1) and Time 
 
                                        Analysis of Maximum Likelihood Estimates 
  
                                      Parameter      Standard                                  Hazard 
                   Variable    DF      Estimate         Error    Chi-Square    Pr > ChiSq       Ratio 
 
                   x1           1      -0.80131       0.01273     3962.2248        <.0001       0.449 
                   x2           1       1.61956       0.01625     9935.5621        <.0001       5.051 
                   x3           1       0.01907       0.01099        3.0130        0.0826       1.019 
                   trt          1       0.11559       0.02313       24.9682        <.0001       1.123 
                   x1time       1      -0.00327       0.00244        1.7974        0.1800       0.997 
 
Table 9. Maximum Likelihood Estimates from PHREG procedure for Interaction between Treatment (TRT) and Continuous Time 
 
                                        Analysis of Maximum Likelihood Estimates 
  
                                      Parameter      Standard                                  Hazard 
                   Variable    DF      Estimate         Error    Chi-Square    Pr > ChiSq       Ratio 
 
                   x1           1      -0.90746       0.01236     5388.3594        <.0001       0.404 
                   x2           1       1.80893       0.01735    10868.2407        <.0001       6.104 
                   x3           1       0.08778       0.01018       74.3177        <.0001       1.092 
                   trt          1      -0.54525       0.02627      430.7541        <.0001       0.580 
                   trttime      1       0.60965       0.01208     2549.0946        <.0001       1.840 
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Table 11.  Output from PHREG procedure for Interaction between Treatment (TRT) and Categorical Time 
 
                                                  The PHREG Procedure 
 
                                                   Model Information 
 
                                          Data Set                 WORK.ADS04 
                                          Dependent Variable       survtime   
                                          Censoring Variable       event      
                                          Censoring Value(s)       0          
                                          Ties Handling            EFRON      
 
                                                   Convergence Status 
 
                                     Convergence criterion (GCONV=1E-8) satisfied.           
 
                                                 Model Fit Statistics 
  
                                                         Without           With 
                                        Criterion     Covariates     Covariates 
 
                                        -2 LOG L       164217.86      150925.09 
                                        AIC            164217.86      150941.09 
                                        SBC            164217.86      150998.77 
 
                                        Testing Global Null Hypothesis: BETA=0 
  
                                Test                 Chi-Square       DF     Pr > ChiSq 
 
                                Likelihood Ratio     13292.7637        8         <.0001 
                                Score                13477.7631        8         <.0001 
                                Wald                 11173.4468        8         <.0001 
 
                                        Analysis of Maximum Likelihood Estimates 
  
                                      Parameter      Standard                                  Hazard 
                   Variable    DF      Estimate         Error    Chi-Square    Pr > ChiSq       Ratio 
 
                   x1           1      -0.85988       0.01307     4327.4703        <.0001       0.423 
                   x2           1       1.72533       0.01952     7811.5800        <.0001       5.614 
                   x3           1       0.02681       0.01075        6.2132        0.0127       1.027 
                   trttime0     1      -0.21911       0.06389       11.7617        0.0006       0.803 
                   trttime1     1      -0.11454       0.04248        7.2682        0.0070       0.892 
                   trttime2     1      -0.03552       0.03583        0.9824        0.3216       0.965 
                   trttime3     1       0.10308       0.03430        9.0299        0.0027       1.109 
                   trttime4     1       0.58883       0.04436      176.1789        <.0001       1.802 
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can be completely different from the underlying hazard 
function for other.  
 
A stratified PH model ranks the event times separately 
within strata. However, a common vector of regression 
coefficients is fitted across the strata. These parameter 
estimates can be thought of as pooled estimates. 
 
So a stratified PH model can be used to obtain a separate 
underlying survival curve for each stratum while adjusting 
of the other predictor variables that satisfy the proportional 
hazards assumption. In fact, the model can be used to 
assess the proportional hazards assumption by plotting the 
predicted survival curves from a model without 
stratification and the predicted survival curves from a 
model with stratification. Major differences indicate that 
the assumption is violated (Kleinbaum 1996). 
 
One of the main disadvantages of stratification is that no 
parameter estimate and no hazard ratio are obtained for the 
stratification variable. Stratified PH models are used when 
the stratification variables are known to affect the outcome 
but the estimates of the effects are considered to be of 
secondary importance (Hosmer and Lemeshow 1999) 
 
8. Conclusion 
 
These results show that fitting a proportional hazards (PH) 
model to non-proportional hazards data can lead to 
incorrect conclusions. Good graphical and analytical 
methods for detecting violations of the PH assumption were 
identified and their implementation demonstrated in SAS®. 
Three strategies for properly modeling non-proportional 
time-to-event data were provided and their advantages and 
disadvantages were discussed. 
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Figure B.  Six Patterns of Hazard Functions by Time. The control groups are shown in red while investigational groups are shown in blue. Top Left Panel (Constant – Null); Top 

Middle (Constant – Alternative); Top Right (Decreasing); Bottom Left (Increasing); Bottom Middle (Diverging); Bottom Right (Crossing). 

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

0.0

6.0

12.0

18.0

0.0 0.5 1.0 1.5 2.0

0.0

1.0

2.0

3.0

4.0

0.0 0.5 1.0 1.5 2.0

0.0

3.0

6.0

9.0

12.0

15.0

0.0 0.5 1.0 1.5 2.0

Null Hypothesis Alternative Hypothesis 

Decreasing  

Increasing  

Diverging 
Crossing 



Using SAS® for Non-Proportional Hazards GA2 M. G. Wilson 
Graphical Appendix  MWSUG 125-2010 

 
 

 
 

Normal = Black, LogNormal = Red, Exponential = Orange, Weibull = Blue, Gamma = Yellow

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8

0

5

10

15

20

25
P

e
rc

e
n
t

Summary Statistics

N 9610

Mean 0.865

Std Dev 0.952

Skewness 1.873

survtime

Normal = Black, LogNormal = Red, Exponential = Orange, Weibull = Blue, Gamma = Yellow

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8

0

5

10

15

20

25

30

35

P
e
rc

e
n
t

Summary Statistics

N 8356

Mean 0.741

Std Dev 1.077

Skewness 1.967

survtime

Null Hypothesis 

(Theoretically Expected 

Value = 0.627) 

Alternative Hypothesis 



Using SAS® for Non-Proportional Hazards GA3 M. G. Wilson 
Graphical Appendix  MWSUG 125-2010 

 
 

 

Normal = Black, LogNormal = Red, Exponential = Orange, Weibull = Blue, Gamma = Yellow

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8

0

10

20

30

40

50

60

70
P

e
rc

e
n
t

Summary Statistics

N 7687

Mean 0.337

Std Dev 0.828

Skewness 3.289

survtime

Normal = Black, LogNormal = Red, Exponential = Orange, Weibull = Blue, Gamma = Yellow

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8

0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

P
e
rc

e
n
t

Summary Statistics

N 9446

Mean 0.837

Std Dev 0.994

Skewness 1.906

survtime

Decreasing  

Increasing  



Using SAS® for Non-Proportional Hazards GA4 M. G. Wilson 
Graphical Appendix  MWSUG 125-2010 

 
 

  

Normal = Black, LogNormal = Red, Exponential = Orange, Weibull = Blue, Gamma = Yellow

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8

0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
P

e
rc

e
n
t

Summary Statistics

N 8453

Mean 0.911

Std Dev 1.104

Skewness 1.663

survtime

Normal = Black, LogNormal = Red, Exponential = Orange, Weibull = Blue, Gamma = Yellow

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8

0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

P
e
rc

e
n
t

Summary Statistics

N 9310

Mean 1.042

Std Dev 1.002

Skewness 1.582

survtime

Diverging 

Crossing 



Using SAS® for Non-Proportional Hazards GA5 M. G. Wilson 
Graphical Appendix  MWSUG 125-2010 

 
S

u
rv

iv
a
l 
D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n

0.00

0.25

0.50

0.75

1.00

survtime

0 1 2 3 4 5 6

STRATA: trt=0 trt=1

S
u
rv

iv
a
l 
D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n

0.00

0.25

0.50

0.75

1.00

survtime

0 1 2 3 4 5 6

STRATA: trt=0 trt=1

S
u
rv

iv
a
l 
D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n

0.00

0.25

0.50

0.75

1.00

survtime

0 1 2 3 4 5 6

STRATA: trt=0 trt=1

S
u
rv

iv
a
l 
D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n

0.00

0.25

0.50

0.75

1.00

survtime

0 1 2 3 4 5 6

STRATA: trt=0 trt=1

S
u
rv

iv
a
l 
D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n

0.00

0.25

0.50

0.75

1.00

survtime

0 1 2 3 4 5 6

STRATA: trt=0 trt=1

S
u
rv

iv
a
l 
D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n

0.00

0.25

0.50

0.75

1.00

survtime

0 1 2 3 4 5 6

STRATA: trt=0 trt=1

 Figure D.  Six Patterns of Survival Functions by Time. The control groups are shown in red while investigational groups are shown in blue. Top Left Panel (Constant – Null); Top 

Middle (Constant – Alternative); Top Right (Decreasing); Bottom Left (Increasing); Bottom Middle (Diverging); Bottom Right (Crossing). 
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Figure E.  Six Patterns of Hazard Functions by Time. The control groups are shown in red while investigational groups are shown in blue. Top Left Panel (Constant – Null); Top 

Middle (Constant – Alternative); Top Right (Decreasing); Bottom Left (Increasing); Bottom Middle (Diverging); Bottom Right (Crossing). 
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Figure F.  Six Patterns of the Cumulative Hazard Functions by Time. The control groups are shown in red while investigational groups are shown in blue. Top Left Panel 

(Constant – Null); Top Middle (Constant – Alternative); Top Right (Decreasing); Bottom Left (Increasing); Bottom Middle (Diverging); Bottom Right (Crossing). 
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Figure G.  Six Patterns of the Unadjusted Log Cumulative Hazard Functions by Log Time. The control groups are shown in red while investigational groups are shown in blue. 

Top Left Panel (Constant – Null); Top Middle (Constant – Alternative); Top Right (Decreasing); Bottom Left (Increasing); Bottom Middle (Diverging); Bottom Right (Crossing). 
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Figure H.  Six Patterns of the Adjusted Log Cumulative Hazard Functions by Log Time. The control groups are shown in red while investigational groups are shown in blue. Top 

Left Panel (Constant – Null); Top Middle (Constant – Alternative); Top Right (Decreasing); Bottom Left (Increasing); Bottom Middle (Diverging); Bottom Right (Crossing). 
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Figure I.  Six Patterns of the Adjusted Log Cumulative Hazard Functions by Time. The control groups are shown in red while investigational groups are shown in blue. Top Left 

Panel (Constant – Null); Top Middle (Constant – Alternative); Top Right (Decreasing); Bottom Left (Increasing); Bottom Middle (Diverging); Bottom Right (Crossing).
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Figure J.  Schoenfeld Residuals for a Continuous Variable known to follow the Proportional Hazards Assumption by Survival Time. The control groups are shown in red while 

investigational groups are shown in blue. Top Left Panel (Constant – Null); Top Middle (Constant – Alternative); Top Right (Decreasing); Bottom Left (Increasing); Bottom 

Middle (Diverging); Bottom Right (Crossing).
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Figure K.  Schoenfeld Residuals for a Categorical Variable under different Proportional Hazards Assumptions by Survival Time. The control groups are shown in red while 

investigational groups are shown in blue. Top Left Panel (Constant – Null); Top Middle (Constant – Alternative); Top Right (Decreasing); Bottom Left (Increasing); Bottom 

Middle (Diverging); Bottom Right (Crossing)
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Figure L.  Standardized Score Processes for three covariates by Survival Time. The top panels represent the 3 covariate processes from the Alternative case. The bottom panels are 

the processes from the Crossing case. 

 


