
1

Paper 070-2010

Using a Few Key Elements of SAS® DATA STEP Code and
a Couple of Procedures to Optimize the Observation Length of a Data Set

Philip A. Wright, The University of Michigan, Ann Arbor

ABSTRACT

The SAS DATA STEP supports quite a few statements and functions. Many of these are usually accompanied with
acceptable default values. Due to the nature of SAS programming, however, the function defaults are sometimes
overly generous. This is particularly true of length specifications for both the numeric and character variables. With
the default of 8 bytes for numeric variables (the equivalent of double-float notation in other languages) and the default
length of character variables sometimes as long as 200 bytes, the potential for shortening variable lengths is quite
high. Some standard SAS functions and procedures enable you to shorten variable lengths quite easily. Shorter
variable lengths mean shorter observation lengths, and shorter observation lengths enable faster I/O processing.

INTRODUCTION

The SAS system encompasses a slew of procedures and elements that can be quite effective when their features are
fully utilized and used in combination. The data set options that are available for use with both the DATA STEP’s
data and set statements are capable of customizing a data set while being processed by the DATA STEP, and the
DATA STEP’s support of array processing allows for the processing of many variables with a relatively small amount
of code. Likewise, PROC SQL is capable of generating a significant amount of variable information using a relatively
small amount of code. PROC TRANSPOSE provides the means of transforming a horizontally orientated data set
into a vertically oriented dataset. Fortunately, the SAS Macro Language provides the means to glue information from
the DATA STEP, information from PROC SQL, and the functionality of PROC TRANSPOSE together.

These three components of the SAS system are among the first a novice SAS programmer should start learning once
the basic elements of a DATA STEP are mastered. Competency with these elements is essential for the intermediate
SAS programmer. Using these elements as a means to optimize the lengths of observation variables in a data set
makes for an extremely effective learning exercise and is a good start on intermediate SAS programming.

MACRO VARIABLES ARE USED AS ABBREVIATIONS FOR LISTS OF SPECIFIC
VARIABLES

The SAS Macro Language can be considered a programming language itself. It mirrors DATA STEP programming
quite closely with one major exception: it is entirely alphanumeric character based. Basic numeric calculations can
be made using the %eval() macro function, but that is a rare exception. Macro variables, consequently, are variables
that contain strings of characters. When a macro variable stores a number, it stores the alphanumeric representation
of the number—not the value of the number. The following macro language statement uses the ‘%let ‘ statement to
assign the numeric string ‘3.14159265’ to the macro variable ‘pi’:

 %let pi = 3.14159265 ;

The value string can now be referred to with the character string ‘&PI’ (upper or lower case).

With a few exceptions, string delimiters(‘ and “) are not used as the macro language uses only alphanumeric
characters. Many more detailed explanations and uses of the SAS Macro Language are available in several
excellent books and papers available on the SAS web site.

As macro variables store strings and the length of macro variables are based on the length of the string values they
are assigned, macro variables are extremely well suited for storing variable lists.

PROC SQL AND SAS DICTIONARY TABLES ARE USED TO GENERATE THE REQUIRED
VARIABLE LISTS

PROC SQL is SAS’ implementation of the ANSI SQL standard. As such, it supports all of the functionality of the
ANSI standard as well as many features of the SAS language. The SAS system also maintains about two dozen
dictionary tables which comprise all the metadata relevant to the SAS system as it is implemented in a SAS session.
One of the features supported by PROC SQL is the use of macro variables. Consequently, we can use PROC SQL
to generate the lists of specific variables we want to optimize.

The following PROC SQL code will generate lists of all character and numeric variables from the CLASS sample
data set respectively:

2

CHARACTER VARIABLE NAME QUERY EXAMPLE NUMERIC VARIABLE NAME QUERY EXAMPLE

proc sql
 noprint
;
select
 name
into
 :_character_variables separated by ‘ ‘
from
 DICTIONARY.COLUMNS
where
 (libname EQ 'SASHELP')
 and (memname EQ 'CLASS')
 and (UPCASE(type) EQ 'CHAR')
;
quit ;

proc sql
 noprint
;
select
 name
into
 :_numeric_variables separated by ‘ ‘
from
 DICTIONARY.COLUMNS
where
 (libname EQ 'SASHELP')
 and (memname EQ 'CLASS')
 and (UPCASE(type) EQ 'NUM')
;
quit ;

%put &_CHARACTER_VARIABLES ;
Name Sex

%put &_NUMERIC_VARIABLES ;
Age Height Weight

Similarly, we can generate the count of each type of variable:

CHARACTER VARIABLE NAME QUERY EXAMPLE NUMERIC VARIABLE NAME QUERY EXAMPLE

proc sql
 noprint
;
select
 count(name)
into
 :_char_n
from
 DICTIONARY.COLUMNS
where
 (libname EQ 'SASHELP')
 and (memname EQ 'CLASS')
 and (UPCASE(type) EQ 'CHAR')
;
quit ;

proc sql
 noprint
;
select
 count(name)
into
 :_num_n
from
 DICTIONARY.COLUMNS
where
 (libname EQ 'SASHELP')
 and (memname EQ 'CLASS')
 and (UPCASE(type) EQ 'NUM')
;
quit ;

%let _char_n = %cmpres(&_CHAR_N) ;
%put CHAR_N: &_CHAR_N ;
CHAR_N: 2

%let _num_n = %cmpres(&_NUM_N) ;
%put CHAR_N: &_CHAR_N ;
NUM_N: 3

PROC SQL is also used to generate a table comprised of variable length metadata:

 proc sql noprint ;

 * GENERATE TABLE OF DATASET VARIABLE LENGTH SPECIFICATIONS ;
 create table
 work._variable_lengths
 as select
 varnum,
 name,
 label,
 type,
 length,
 length(strip(label)) as label_length
 from
 dictionary.columns
 where
 (libname EQ "&_LIBNAME")
 and (memtype EQ 'DATA')
 and (memname EQ "&_MEMNAME")
 order by
 varnum

3

 ;
 create unique index name on work._variable_lengths ;

 quit ;

USE ARRAYS TO ACCESS THE LISTED VARIABLES WITHIN A DATA STEP

The array DATA STEP element will allow us access to each variable in a list of variables. Arrays are lists of DATA
STEP variables. The variables can be either from data sets or created during the DATA STEP. Although we could
use the global _CHARACTER_ and _NUMERIC_ variable lists as abbreviations for the character variable list and
numeric variable list respectively, we will instead use the previously-generated specific variable lists. The arrays
themselves, however, only exist in the DATA STEP. There are methods to maintain the list of variables in an array
beyond a DATA STEP, but detailing those methods are beyond the scope of this paper . The syntax for declaring an
array is :

ARRAY array-name { subscript } <$><length> <array-elements> <(initial-value-list)>;

Our declaration for the character variable array would then be:

 array char_vars(*) &_CHARACTER_VARIABLES ; *NO VALUES ASSIGNED ;

And our declaration for the numeric variable array would then be:

array num_vars(*) &_NUMERIC_VARIABLES ; *NO VALUES ASSIGNED ;

The ‘*’ specifies that SAS will generate the subscript by counting the elements assigned
to the array.

CORE CODE FOR GENERATING VALUES FOR USE IN THE SUBSEQUENT
OPTIMIZATION OF A DATA SET

Data set optimization requires the knowledge of how much we can change the variables without truncating the values
the variables hold. A DATA STEP is used to step through the records and the variables of the data set intended for
optimization to first generate and then retain the optimal variable lengths. A distinct data set is generated for a
decimal value flag summary, an absolute value summary, and a character length summary. The drop or keep data
set option is used with each summary data set specification so that variables that do not belong with the
corresponding variables types are not retained in the summary data sets:

 * GENERATE DATA SETS COMPRISED OF MAXIMUM ABSOLUTE NUMERIC VALUES,
 DECIMAL PRECISION FLAGS AND CHARACTER VARIABLE VALUE LENGTHS ;
 data
 work._decimal_summary (drop = i &_CHARACTER_VARIABLES)
 work._maximum_abs_values (drop = i &_CHARACTER_VARIABLES)
 work._maximum_char_lengths (keep = &_CHAR_LENGTH_VARIABLES)
 ;

The end data set option is used on our set statement to specify when we are ready to save the values we will use to
subsequently optimize the data set:

 set
 &_DS
 end = end_of_ds
 ;

These variables are numeric variables
that will contain the maximum length
for each character variable.

4

Once we initialize the input and output data sets, we are ready to initialize the arrays:

 * INITIALIZE ARRAYS FOR EACH TYPE OF VARIABLE, LENGTH SUMMARIES FOR
 EACH TYPE OF VARIABLE, AND A FLAG ARRAY FOR NON-INTEGER VALUES ;
 array num_vars{*} &_NUMERIC_VARIABLES ;
 array char_vars{*} &_CHARACTER_VARIABLES ;

 array max_vals{&_NUM_N} _TEMPORARY_ ;
 array max_chars{*} &_CHAR_LENGTH_VARIABLES ;

 array dec_vals{&_NUM_N} _TEMPORARY_ ;

We use the retain statement to both initialize the values for the listed variables to zero and hold the values they are
subsequently assigned from one observation to the next observation. Assigning a value of zero insures we do not
finish with a missing value for any of these variables.

 retain dec_vals max_vals &_CHAR_LENGTH_VARIABLES 0 ;

The DATA STEP’s do statement will cycle through each variable in each variable array. We can use either the macro
variable count values or the dim() function to generate the count of elements for each array.

The abs() and max() functions are used to generate and assign the maximum absolute value for each numeric
variable.

 * CYCLE THROUGH AND RETAIN THE MAXIMUM ABSOLUTE VALUE AND
 NON-INTEGER FLAGS OF NUMERIC VARIABLES ;
 do i = 1 to &_NUM_N ;
 max_vals[i] = max(max_vals[i], abs(num_vars[i])) ;
 dec_vals[i] = input(put(max(dec_vals[i], abs((num_vars[i])-
 int(num_vars[i]))),BOOLEAN.),1.0) ;
 end ;

The int(), abs(), and max() functions and a BOOLEAN format are used to flag whether a numeric value utilizes
decimal precision. SAS utilizes a double float storage scheme for all numeric variables and allocates the maximum of
8 bytes for each numeric variable by default. The SAS programmer has the ability to lower the number of allocated
bytes to 2 or 3, depending upon the Operating System. Doing so, however, may result in a significant loss in decimal
precision and should be avoided.

A detailed explanation of SAS’ storage of numeric values may be found at
http://support.sas.com/documentation/cdl/en/lrcon/61722/HTML/default/a000695157.htm

The maximum lengths for character values are generated and assigned in a similar manner:

 * CYCLE THROUGH AND RETAIN THE LENGTH OF CHARACTER VARIABLES ;
 do i = 1 to dim(char_vars) ;
 max_chars[i] = max(max_chars[i], length(strip(char_vars[i]))) ;
 end ;

Now that we have cycled through all of the numeric variables and all of the character variables for each observation
in the original data set (yes, this can be a lengthy process for larger data sets), we are ready to output our summary
values to the summary data sets:

The maximum absolute values for each numeric variable are assigned to the original numeric variables. These
numeric variables, however, are output to the _maximum_abs_values data set; not the original data set.

 if (end_of_ds) then do ;
 * COPY MAXIMUM ABSOLUTE VALUES TO ORIGINAL NUMERIC VARIABLES AND
 OUTPUT SUMMARY RECORD ;
 do i = 1 to &_NUM_N ;
 num_vars[i] = max_vals[i] ;
 end ;
 output work._maximum_abs_values ;

Note: This is where we
need to use numeric values
for the subscript as these
array statements generate
new variables.

5

The decimal precision flags are output to their own data set in a similar manner.

 * COPY DECIMAL FLAGS TO ORIGINAL NUMERIC VARIABLES AND
 OUTPUT SUMMARY RECORD ;
 do i = 1 to &_NUM_N ;
 num_vars[i] = dec_vals[i] ;
 end ;
 output work._decimal_summary ;

The generation of the _maximum_char_lengths data set is less complex.

 * OUTPUT CHARACTER VARIABLE LENGTH SUMMARY RECORD ;
 output work._maximum_char_lengths ;

We finish our ‘end of data set’ processing and …

 end ; * if (end_of_ds) ;

We are ready to .

 run ;

GENERATING TRANSPOSED DATA SETS COMPRISED OF OPTIMIZED VARIABLE
VALUES

Cloning the original data set and saving only the required length values leaves us with three data sets each
comprised of only one record. We need to transpose these data sets so that we have three data sets comprised of
an observation for each variable, with each observation containing a variable name character variable and a numeric
length variable. The following PROC TRANSPOSE code generates exactly what we need:

 * RECTANGULARIZE THE SUMMARY RECORD DATA SETS ;
 proc transpose
 data = work._decimal_summary
 out = work._decimal_flags (
 rename = (
 NAME = NAME
 COL1 = NON_INT
)
)
 ;

 proc transpose
 data = work._maximum_abs_values
 out = work._rectd_maximum (
 rename = (
 NAME = NAME
 COL1 = ABS_MAX_VALUE
)
)
 ;

 proc transpose
 data = work._maximum_char_lengths
 out = work._rectd_char_lengths (
 rename = (
 NAME = NAME
 COL1 = MAX_CHAR_LENGTH
)
)
 ;

6

We previously had to generate new numeric variables that contained the lengths of the character variable values.
We needed new names for the new variables, so we merely appended ‘_l’ to the original variable names. Now that
we are not working with the original data set we are able to drop the appended string:

 * CHANGE VALUES OF CHARACTER VARIABLE LENGTH VARIABLE BACK TO
 ORIGINAL VARIABLE NAME ;
 data
 work._rectd_char_lengths (
 index = (name /unique)
)
 ;
 attrib
 name label = 'Variable Name' length = $ 32 format = $CHAR32.
 ;
 set
 work._rectd_char_lengths
 ;
 name = substr(name,1,length(strip(name))-%length(&_CHAR_VAR_SUFFIX)) ;
 ;
 run ;

Our PROC TRANSPOSE code did not assign labels to the transposed variables. We also need a better name for our
maximum absolute values data set. Let’s use PROC DATASETS!

 * STANDARDIZE TRANSPOSED DATA SETS ;
 proc datasets
 library = work
 nolist
 ;
 age _rectd_maximum _maximum_abs_values ;
 run ;
 modify _decimal_flags ;
 label name = 'NAME OF VARIABLE' ;
 modify _maximum_abs_values ;
 label name = 'NAME OF VARIABLE' ;
 quit ;

We now generate a single table comprised of all the information needed to optimize the original data set by joining
the original variable_lengths table with the three transposed data sets using PROC SQL. Use of the
variable_lengths table as the first table in a series of left joins assures us of an ordered observation for each
variable in the original data set. A where statement excludes the numeric variables with values of decimal precision.

 * GENERATE DATA SET COMPRISED OF ALL VARIABLE NAMES AND
 OPTIMIZED BYTE VALUES FOR NUMERIC VARIABLES ;
 proc sql ;
 create table
 work._required_bytes
 as select
 lengths.varnum,
 lengths.name,
 lengths.label,
 lengths.type,
 input(put(values.abs_max_value, BYTES_NEEDED.),1.) as REQUIRED_BYTES label =
 'REQUIRED BYTES'
 from
 work._variable_lengths lengths
 left join work._decimal_flags flagged on
 (lengths.name EQ flagged.name)
 left join work._maximum_abs_values values on
 (flagged.name EQ values.name)
 where
 flagged.non_int NE 1
 order by
 varnum
 ;

7

 create unique index name on work._required_bytes ;
 quit ; * proc sql ;

We subsequently update the _required_bytes data set first with character variable length values and then with the
required bytes for numeric values.

 * UPDATE REQUIRED BYTES DATA SET WITH THE REQUIRED BYTES FOR
 CHARACTER VARIABLES ;
 data
 work._required_bytes (
 index = (name /unique)
)
 ;
 update
 work._required_bytes
 work._rectd_char_lengths (
 rename = (max_char_length = required_bytes)
)
 ;
 by
 name
 ;
 if (missing(required_bytes)) then
 error 'ERROR: NO REQUIRED BYTES: ' name=
 ;
 run ;

 * UPDATE THE VARIABLE LENGTHS DATA SET WITH THE REQUIRED
 BYTES DATA SET ;
 data
 work._variable_lengths
 ;
 update
 work._variable_lengths
 work._required_bytes (
 rename = (required_bytes = length)
)
 ;
 by
 name
 ;
 proc sort ;
 by varnum ;
 run ;

Finally! All the information we need to generate an optimally-sized data set in a second data set. All we need to do
now is to use this information in a final DATA STEP. We will do this by first generating a valid length statement
argument for each variable and then export the valid argument to an indexed macro variable (remember: macro
variable values are comprised of strings) Here, the strings will be valid length statement arguments.

 * EXPORT VARIABLE NAMES AND REQUIRED BYTES TO INDEXED MACRO VARIABLES ;
 data
 NULL
 ;
 attrib
 bytes label = 'Bytes Required String' length = $ 5
 length_str label = 'Length Statement String' length = $ 64
 ;
 set
 work._variable_lengths
 end = end_of_ds
 ;
 bytes = strip(put(length,5.0)) ;

8

 length_str =
 strip(name)
 || ' '
 || put(type,$VARTYPE.)
 || ' '
 || strip(bytes)
 ;

 call symput('_length_str_' || strip(put(_N_,12.0)), trim(length_str)) ;

 if (end_of_ds) then call symput('_varname_n', strip(put(_N_,12.0))) ;
 run ;

And the final DATA STEP code looks like this:

 * GENERATE OPTIMIZED DATA SET ;
 data
 &_OPTD_FILE (label = %bquote(&_DS_LABEL))
 ;
 length
 %do _i = 1 %to &_VARNAME_N ;
 &&_LENGTH_STR_&_I
 %end ;
 ;
 set
 &_DS
 ;
 run ;

CONCLUSION

The previous snippets of code are from a Macro program that not only optimizes a data set but also reports on the
relative results of the optimization (percentages, etc.). The snippets, however, demonstrate the use of SAS system
procedures and elements that can be among the first used by a novice SAS programmer.

We used the data set options keep and drop in the DATA STEP’s data and set statements to customize the
composition of the data set within the set statement, and we used the set statement’s end option to delimit DATA
STEP code we did not want executed until all of the data set’s observations were read.

We used PROC SQL to generate macro variables comprised of character variable and numeric variable lists.

We used arrays of variables to assign values generated by several different DATA STEP functions to values of
another array of variables.

We used PROC TRANSPOSE to transpose horizontally oriented informational data sets into vertically oriented
datasets.

We used PROC DATASETS to prepare three informational datasets for subsequent merging.

And, going full circle, we used PROC SQL to first merge the three informational datasets and then used macro code
within a DATA STEP’s length statement to generate a data set comprised of observations whose variables were of an
optimal length.

The author hopes this paper will encourage the novice SAS programmer to quickly move beyond their comfort zone
and discover, on their own terms and in their own manner, the benefits and advantages of using elements of the SAS
system both together and to their fullest extent.

This macro code loop inserts the
previously-generated length statement
arguments into this dataset’s length
statement.

9

REFERENCES

 Abolafia, Jeff (2005), “What Would I Do Without PROC SQL and the Macro Language,” Proceedings of the 30th
annual SAS Users Group Conference
http://www2.sas.com/proceedings/sugi30/031-30.pdf

 Dilorio, Frank and Jeff Abolafia (2004), “Dictionary Tables and Views: Essential Tools for Serious Applications,”
Proceedings of the 29th Annual SAS Users Group Conference
http://www2.sas.com/proceedings/sugi29/237-29.pdf

 Lafler, Kirk Paul (2005), “Exploring DICTIONARY Tables and Views,” Proceedings of the 30th Annual SAS Users
Group Conference
http://www2.sas.com/proceedings/sugi30/070-30.pdf

 Varney, Brian (2006), “Using Metadata and Project Data for Data Driven Programming,” Proceedings of the 31st
Annual SAS Users Group Conference
http://www2.sas.com/proceedings/sugi25/25/cc/25p077.pdf

ACKNOWLEDGMENTS

I would like to thank the SAS users in the Survey Research Operations section of the Survey Research Center at the
Institute for Social Research for the initial presentation of this paper. I would especially like to thank Frost Hubbard
for his encouragement and Megan Turf for her valuable feedback.

RECOMMENDED READING

Carpenter, Art (2004). Carpenter’s Complete Guide to the SAS Macro Language, Second Edition. Cary: SAS Press.

Prairie, Katherine (2005). The Essential PROC SQL handbook for SAS Users Cary: SAS Press.

Varney, Brian (1999), “Creating Data Driven Programs with the Macro Language,” Proceedings of the 24th Annual
SAS Users Group Conference
http://www2.sas.com/proceedings/sugi24/Posters/p254-24.pdf

Zirbel, Doug (2002), “10 Things Experienced SAS Programmers Don’t Know – But Should,” Proceedings of the 27th
annual SAS Users Group Conference
http://www2.sas.com/proceedings/sugi27/p240-27.pdf

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Philip A. Wright
Enterprise: Inter-university Consortium for Political and Social Research (ICPSR),
 The Institute for Social Research (ISR),
 University of Michigan
Address: P.O. Box 1248
City, State ZIP: Ann Arbor, Michigan 48106-1248
Work Phone: 734-615-7886
Fax: 734-647-8200
E-mail: pawright@umich.edu
Web: http://www.icpsr.umich.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

