Paper 63-2010

You Did That Report in SAS®!?:
The Power of the ODS PDF Destination

Pete Lund, Looking Glass Analytics, Olympia, WA

Abstract

The Output Delivery System (ODS) has been around since SAS® version 7 and yet many people still don’t
realize that they use it every day just to send results to the output window. They’re still more amazed when they
see that publication quality reports in PDF files can be created with SAS and ODS.

This paper explores a number of ODS options in general and, more specifically, their use in creating PDF
output. We will cover ODS ESCAPECHAR, which allows for inline formatting of titles, footnotes and other text
and new syntax for version 9.2; ODS LAYOUT, which lets you place output wherever you want it on the page -
even output from more than one procedure, both text-based output and graphics; inline formatting in PROC
REPORT,; the new world of DATA _NULL_ reporting using the ODS object and more.

We'll work from real life examples and see how you can produce output that looks like it took hours to create.
Introduction

This paper is an update of a paper that was first presented at SUGI 31 in San Francisco in 2006. There have
been some nice changes to ODS in version 9.2, which was released since that paper was first written. We'll still
go a number of the same real world examples that demonstrate techniques that can be used with the PDF
destination to make your reports crisper, cleaner and more useful than ever before. Some new examples and
updated syntax will also be covered.

All too often it seems that the examples presented in conference papers are difficult to translate to “real” code
and the reader is forced to bridge the gap between concept and reality. All the examples shown here are copied
directly from production code — the only exception being some macro variable references have been “resolved”
to show the real values. The hope is that these annotated examples will give some ideas to use in your own
jobs and see the breadth of options available to make your output look the way you want it to — without any
after-the-fact intervention.

PROC REPORT, ODS PDF and Inline Styles

Many of the examples presented in the paper use PROC REPORT. This procedure has the most flexibility in its
use of ODS-related options and can best demonstrate the possibilities of creating PDF output. However, there
are similar techniques that can be used with PROC PRINT and PROC TABULATE, as well as a number of
techniques we’ll see that are procedure independent.

CREATING GROUPS OF DATA COLUMNS
We'll start with something simple — simple that is with ODS and PDF, not so simple just a few short years ago.
Notice in Exhibit 1 that there is a little extra space between some of the columns. Not quite a full data column

worth, but enough to offset groups of data columns.

This is easy to do in PROC REPORT with some in-line formatting and a computed column. The pertinent code
is shown below:

Add another column (blank) to
those under the location header

column popday Bookings Releases locationgroup, (blank thisyear lastyear diff);

define locationgroup / across '' format=securelocation. order=data preloadfmt
style=[font_size=9pt font_weight=bold];

define thisyear / analysis sum "&ReportYear" format=comma?.;

define lastyear / analysis sum "%eval(&ReportYear-1)" format=comma?7.;

define diff / analysis sum 'Percent“Change' format=MyPct.;

define blank / computed '' format=NoDot. style=[cellwidth=8mm];

°°"b'g“t: blank; The CELLWIDTH= STYLE option specifies the width
endcz;p T of the data column — in this case 8mm

The COMPUTE block creates the variable blank as
a missing numeric value on every row of the report

Note in the report that the columns with yearly data (thisyear, lastyear and diff) are placed under a common
column header (the “across” variable locationgroup). To visually separate the columns we can include a fourth
variable, blank. Blank does not exist in the incoming dataset — it is computed in the procedure and set to
missing (note the COMPUTE block). This could be done prior to ODS and you'd get a blank column in your
output. However, notice the STYLE= parameter on the DEFINE statement for blank: we can specify the width of
the column with the CELLWIDTH parameter and create a gap as large or small as we need.

We’'ll see a number of other examples of style parameters. The syntax is simple:
STYLE=[<style option=style value> <style option=style value >]

You can enclose as many option=value pairs as you need, separated by spaces. A complete list of style options
is included in Appendix A at the end of the paper.

CREATING GROUPS OF DATA Rows

We've seen how to add and control the appearance of blank columns in a report. We can use another
technique to add blank rows to a report. Again, this technique could be used prior to ODS, but with the addition
of STYLE we can control the appearance of those blank rows. Take a look at Exhibit 2. Note that the blank line
every five rows is a different color than the data rows and that it's not as tall as the data rows. The blank lines
are created in the following COMPUTE block.

compute before LineGroup / style=[font_size=3pt background=cxBDB76B];

line ' ';
endcomp; / \

Tf?e FONT_SIZE= STYLE changes th‘e The BACKGROUND= STYLE changes
size of the text that will be generated in the background color of the text that will
the COMPUTE block be generated in the COMPUTE block

The variable LineGroup is a non-printing GROUP variable that changes values every five observations. So,
this COMPUTE code executes at the beginning of each group of five observations and writes a blank row to
the table. However, it's size and color are different from the surrounding rows because of the STYLE= option.

DIFFERENTIAL STYLES ON DATA ROwsS
Another use of inline styles can be seen in Exhibit 3. Item 1 points out that we have different text styles on

different rows of the table, depending on the type of data displayed. The total lines are italicized for added
emphasis.

The TreatmentDetail variable has a value “XX” for total The FONT_STYLE= STYLE changes the

adult and total youth values. The variable YouthAdult appearance of the text for the entire row -
has a value “Z” for the grand total values. note that the scope of the CALL DEFINE
is the row (_row_)
compute treatmentdetail; /
if YouthAdult eq 'Z' or TreatmentDetail eq :'XX' then

call define(_row_,'style’',"style=[font_style=italic]");
if YouthAdult eq 'Z' then call define(_col_,'style',"style=[background=white]");

endcomp; \

Note that both of the CALL DEFINEs are called for The row header column normally has a colored
YouthAdult="Z" - you can see in the output that both packground. On the grand total row, we use the
the subtotal rows and the grand total row are BACKGROUND STYLE= option to set the column
italicized. The subtotal rows do not trigger the (_col_) background color to white.

second CALL DEFINE and are left with their default

background colors.

There is one other trick to note from Exhibit 3. We just alluded to the fact that the header row has a background
color. It’s hard to see in the black and white copy in the paper, but the background color of the header rows are
the same color as the bars in the corresponding graph on the bottom of the page. The Adult rows in the table
and bars on the Adult graph are green. The background and bars for the youth are blue. We can use another
style trick to make this easy.

We start out by defining a SAS format that has RGB color codes as the labels for the data values.

value $TxColorDetail All the adult values (ending in “A”) are

"OPA','IOA','MOA','GCA','XXA' = 'cx52b552" assigned to an RGB value (cx52b552)
'OPY','TIOY','MOY','GCY','XXY' = 'cx6373b5'Y — thatis green. The youth values (ending
'0SX' = 'cxd63194' in *Y”) are assigned to a value that is
'22Z' = 'white’; blue (cx6373b5).

The format will be used in an unusual place. As we saw above, the dataset used in the report contains a
variable called TreatmentDetail that contains the type of treatment received (i.e., OPA=outpatient adult). We're
going to reference the format we’ve just created, which defined the colors we want to use based on the type of
treatment received, in the DEFINE statement for TreatmentDetail.

Note that the BACKGROUND STYLE=

column YouthAdult TreatmentDetail (AdmissionDate,Total); option is calling the format with the
colors. The value of TreatmentDetail is

define TreatmentDetail / ' ' group preloadfm er=data of the cell!
format=$TreatmentTypeDetail. :
style=[background=$TxColorDetail. foreground=white font_weight=bold];

So, using the format in a STYLE= option on the DEFINE statement allows us to control the appearance of the
data cell based on the value of the data.

We’ll have one more example of inline STYLE= options when we discuss methods for putting output from more
than one procedure on a page. For now, let’s look at the greatest thing to happen to ODS since.... Well, it's
just the greatest thing ever to happen to ODS.

EMBEDDING A HISTOGRAM IN PROC REPORT

Graphics and pictures often help to tell the story that our data contains. There’s a little trick that will allow you
embed a histogram in PROC REPORT output with nothing more than PROC REPORT code.

The hex character 67 in the Webdings font produces a solid rectangle (m). The key to our little trick is that there
is infinitesimal white space between consecutive characters so that when viewed or printed in a PDF document a solid
bar is seen.

In the following example, we have a dataset that is pre-aggregated by age group. Our table has a column for
age range, count and percent of total. To make the values in the table jump out at the reader, we’ll also include
a computed column that contains a bar representing the percentage for the age group. The bar will be made up
of a string of ‘67’x characters in the Webdings font.

By trial and error we’ve determined that the column to hold the bars will be 75mm wide and that we can fit 50
4pt ‘67’x characters in it. The width of the column is set to 75mm, the font to Webdings and the size to 4pt.
Also, make sure that the column is left-justified so that the bars are against the edge of the column and centered
vertically so that align visually with the numbers in the table.

deTine Bar / '' style(column)=[cellwidth=75mm Tont size=4pt Tont_Tace=Webdings
vjust=middle just=leTt cellpadding=0];

compute Bar / char length=200;

: The percent variable (Percent) is pre-calculated, so we can
Barsize = round(Percent.sum*50);

it Barsize gt 0 then just use Percent.sum to get its value for the current row. We
Bar = repeat('67'x,Barsize); have 50 characters to work with, so the BarSize variable
endcomp; contains the number of characters for each row.

Use the REPEAT function to get the right number of characters for the current bar. Since the REPEAT function
always returns at least one character, even if the repeat value is 0, the Bar value is set only is the BarSize is
greater than 0. If itis 0, Bar will have a null value and no bar will be displayed. As you can see from the output
below, this little trick can give the reader a jump on where to look in the table.

Number of
10 Year Age Group (calculated) Records Percent
0-9 92 22.5% —
10-19 32 7.8% —
20-29 34 8.3% —
30-39 43 10.5% —
40 -49 81 14.9% —
50-59 64 15.6% —
60 - 69 38 9.3% —
70-79 32 7.8% —
80 and older 12 2.9% -

There is actually another technique used to display the histogram. In order to get the vertical line to the left of
the bars we’ve turned on a single cell border. This requires setting style attributes in a couple places. On the
PROC REPORT statement, we turn off all cell borders with FRAME=VOID and RULES=NONE. Then, in the
Percent variable DEFINE statement, we turn on the right-side border with BORDERRIGHTCOLOR=BLACK.

proc report ... style(report)=[frame=void rules=none cellpadding=1 cellspacing=0];

define Percent / style(column)=[borderrightcolor=black borderrightwidth=1pt];

Notice that we had to make the border color assignment in the column preceding the Bar column. The border
definitions are applied from right to left, so if we’d set the BORDERLEFTCOLOR attribute for the Bar column, it
would have been clobbered by the default right border color in the Percent column. We also had to set the

BORDERRIGHTWIDTH attribute, since the CELLSPACING=0 in the PROC REPORT statement takes away the
space allocated for borders. A full page of the report can be seen in Exhibit 8.

ODS ESCAPECHAR — THE GREATEST THING SINCE SLICED BREAD

The ODS ESCAPECHAR statement, while not specific to PDF, is one of most powerful new features of the
Output Delivery System. The statement defines a character that is used to designate the beginning of a series
of formatting commands.

0DS ESCAPECHAR='-~'

That character will be used to designate sequences of text to be treated as “instructions” for the text that follows
them. You can use the escaped sequences to change the style of titles and footnotes, add page numbers and
superscripts, highlight single words in your output, and much more. You'll want to choose a character that is not
likely to be used in your data so as not to “confuse” ODS. Common choices are carets (*) and tildes (~). The
examples in this paper use a tilde.

We'll look at a number of examples of using escape sequences to enhance your output. For all the examples
we’ll use assume that we’re using the command above and use a caret to denote our escape sequences.

Inline Formatting

We've seen a number of examples of formatting with the STYLE= option in PROC REPORT. A major use of
ESCAPECHAR is to allow formatting of output almost anywhere — either from procedures, titles and footnotes.

The escape sequence “~{style [...] }” allows you to embed style attributes in the brackets anywhere in your text.
Any number of style parameters can be placed inside the brackets. The text between the closing square
bracket and the closing curly brace will be formatted using the style attributes listed. (Note: this is a syntax
change for inline styles beginning in SAS v9.2. For pre-9.2. syntax, please see the discussion in Lund, 2006).

The following example is from Exhibit 4. Note in the exhibit that the leading part of the text is bold and the

number part of the text is not. The code uses the STYLE sequence in the value to be displayed by a LINE
statement.

compute after key [/ style={just=lert};

TotalLine = '~{style [Tont_weight=bold]Total DOC Days Tor Inmate: }'||put(TotalDays.sum.,2.):;

Line ' ';

Line TotallLine $100.; The variable TotalLine contains the text that will be written out
endcomp; by the LINE statement. We're embedding fext style

Information using the STYLE escape sequence. In this case,
setting the text to bold.

Notice also that there is a STYLE= option on the COMPUTE statement which left justifies the text. You can use
both methods for assigning styles. In this case, the ~{style [...]} gives us control over whichever portions of the
text need it.

This same exhibit (4), item 1 points to another use of inline styles. The leading line of each section contains a
name, booking number, booking date, etc. for inmates in a jail. (The names have been obscured or changed for
confidentiality reasons.) Notice that the name is a larger, bold font and that the header text for the other items
on the row are bold.

All the information on this row is actually contained in one big text variable. The value of the variable contains
all the formatting information, along with the actual data values. Here is the datastep code that creates the
variable (Key).

The formatting information is included in the variable The values of the variables (Name, BA, CCN,

itself. Allthe labels are wrapped with STYLE BookingDate and ReleaseDate), along with the
defimitions, while the variable values will be formatted formatting information, are all concatenated together.
in whatever the default text styleis.

Y

Key = catt('~{style [font_weight=bold font_size=12pt]'
'~{style [font_weight=bold]BA}',BA,
'~{style [font_weight=bold]CCN}',CCN,
'~{style [Tont_weight=bold]Booking Date}',put(BookingDate,mmddyy10.),
'~{style [font_weight=bold]Release Date}',put(ReleaseDate,mmddyy10.));

When this value is printed in PROC REPORT, the formatting information does not print but is applied to the
other parts of the value.

This method of inline formatting can be used anywhere text is displayed: titles, footnotes, variable values, etc. It
gives you a great deal of control over the appearance of your output.

It should be noted that inline styles are only rendered in text-based output. No SAS/Graph output, from
procedures or SAS/Graph statements (i.e., AXIS, LEGEND, TITLE, FOOTNOTE), support them and the text of
the style attributes will be printed in the output.

Special Escape Sequences

In addition to {style [...]}, the ESCAPECHAR can also be used to add some special values to your output.

In Exhibit 1 we see a superscript on the footnote at the bottom of the page. Superscripting is achieved with the
escape sequence {super nn}, where nn is the value to be superscripted. The code used in Item 3 shows that we

can just add the escape sequence to the footnote text.

footnote1 '~{super 1}Totals may include contract beds';

The 1 is superscripted at the beginning of the text and, again, the escape sequence does not print. As you can
guess, there is also a {sub nn} sequence to subscript values.

Exhibit 1 also shows another use of superscripts. Item 1 shows a superscript in a column header. The
superscript value is actually contained in the label of the format for these values.

value SecureLocation (notsorted)
1.3 = 'Main Jail - wall st

1.6 = 'Main Jail - Oakes St° The superscript designations {super 1} can
2 = 'The Ridge’ be added to the format labels and will be

9 = 'Subtotal-Secure Beds~{super 1}’ 4—_ rendered whenever the formatted values are
9.1 = 'Suhtotal‘Go--uniW displayed.

9.2 = 'Total~{super 1}

As we’ve already seen, anywhere text can be generated the escape sequences can be used.

A topic which has generated a number of SUGI/SAS Global Forum papers is putting dynamic page numbers on
your output. This is a paper topic no more as it now only an escape sequence added to your titles or footnotes.
There are two escape sequences that we’ll demonstrate for included page numbers on your output.

A number of the exhibits included in this paper have page numbers — we’ll look at those shown on Exhibit 4.

footnote h=8pt f=Arial j=1 "%sysfunc(today().,mmddyy10.)" This footnote contains two pieces, the
j=r "~{thispage} / ~{lastpage}"; lefi-justified date and the right-justified

/ '\pm numbers.

The {thispage} sequence resolves to the current page number. The {lastpage} sequence
resolves tothe page number of the last page, i.e., the number of pages.

We can use the {thispage} and {lastpage} sequences together to get the nice “page x of y” that we’ve struggled
so many years for. There is a currently a bug with {lastpage} if there are any graphics on the page. The graphic
could be SAS/Graph output that is on the page in a LAYOUT region (we’ll talk about this later) or placed via a
PREIMAGE or POSTIMAGE tag in a title or procedure output. If {lastpage} is used, the graphics will not
display.

One last set of special escape sequences to note are line breaks and wrapping to a marker. Exhibit 5 shows a
nice set of footnotes indented under a header. All of the footnotes in this example are done with a single
footnote statement.

We will use two escape sequences here to get the footnotes looking this way. First, the -n sequence produces
a line-break in the text. (A quick side note here — does the fact that there are a whole bunch of nicely arranged
footnotes generated from a single footnote statement give you a clue that you’ll never have to worry about the
10 footnote limit again!). But, we can use -n in conjunction with another escape sequence (m) to get the
indented effect that we see.

The m escape sequence sets a “marker” that the -n will wrap to. This is more easily explained with the code
that generated the example. First, notice that this is all one footnote statement. Second, if you look between
the code and the exhibit you will see that the individual physical line in the code do not affect the output — they
are there only to make them fit on my screen when I’'m writing the code. Now, let’s look at the use of the two
escape sequences.

Notice the “m in the middie of the word “Definitions.” This is an
escape sequence, which will not print, but marks the place to which

) - any subsequent line breaks should wrap.
footnotel j=1 h=8pt rial’

'Defi~mnitions:'

'~-nPA0 Referral: Referral from police - Source: PAD’

'~-nCase Credit: Source: OPD'

'~-nFiling: ReTerral filed in Superior Court - Source: Superior Court - SCOMIS'

'~-nResolution: Cases adjudicated in Superior Court by any method (plea, verdict, dismissal or other) '
'- Source: Superior Court - SCOMIS'

'~-nGuilty Plea: any case that is resolved with a plea irrespective of when in the process the plea '
'occurs (even during trial).'

'~-nTrial: any case that is resolved with a trial verdict.'

'~-nDismissal: any case that is dismissed at any time in the process (including those dismissals that °
'occur during trial).’'

'~-nOther: any case resolution that is not resolved via plea or trial - example is a "change in venue".'

Median Days: Median days from filing to resolution. The median is the number of days where half '

ases were longer and half the cases were shorter.';

The —n characters denote where a line break should take place. Since we've set a marker (m) in
the text, all the line breaks will wrap to that mark — right under the “n” in “Definitions”in this case.
Ifthere were no marker character the —n would still cause a line break, with the text wrapping to
the left edge of the page.

There is another line break sequence, {newline n}. This will insert n new lines in the text, the default being one
line. There is no {newline} syntax that will break to a marked location — only —n will do that.

SUPERSCRIPTS REVISITED

One drawback of the {super xx} and {sub xx} sequences is that you have no control over the appearance of the
text. The size is proportionately adjusted to the size of the preceding text and cannot be changed. None of the
other font attributes can be changed. There is an undocumented work around for this — but, as it is
undocumented, there is no guarantee that it will continue to work in future releases.

The escape sequences —nY and nY move the text up and down respectively. Following the move up or down,
normal style attributes can be applied. When mimicking a superscript the most common stylistic change will be
to decrease the font size. However, there may be times when other changes are desired, such as an italic note
with a roman (non-italic) superscript, as shown in the following example:

In this case, we use the SUPER escape sequence to get a superscript. The font style and weight is the same as
the rest of the text and the size is based on a pre-determined (and unadjustable) proportion to the original text.

titlel f='Helvetica/italig” h=12pt » Tme L,‘ne123456789 Here
"Title Line~{super 123456789} Here";

Here we take total control over the appearance of the superscript by moving the cursor position with ~nY and
changing the aliributes of the footnate to be whatever we need it o be.

titlel f='Helvetica/italic' h=12pt » Title Line'234°6789 Hare
"Title Line~-9y~{style [font_size=8pt font_style=roman]123456789}~9y Here";

/ \

9y moves the print

-9y moves the :
pr‘;;]f position up With STY{_E we change position back down
the fort size and style to its original position
ODS TeXT

The ODS TEXT command is like a PUT statement that you can use anywhere. The syntax is simple,

ods text='<text goes here>';

The output of the statement will be placed on the page immediately following the last procedure output. It would
be a relatively useless command if all it did was place plain text. | bet you’ve already figured out that all the
inline style functionality provided by ESCAPECHAR can be used in PDF TEXT.

Exhibit 6 shows an entire page generated using nothing but PDF TEXT. This offers a wonderful method of
adding explanatory text to your reports without having to edit them after the fact.

We start out by turning on bold, 14-point font for the header portion and then turn off the
baold for the rest of the text.

S \

ods text="~{style [Tont_wgight=bold Tont_size=14pt]A. }~m~{style [Tont_weight=bold Tont_size=14pt]Operation Definition: }
~{style [font_size=14pt]The proportion of pedhle in the general population who received publicly funded Outpatient
mental Health services in the Fiscal Year Oy RSN.}";

Note that we've placed a marker here, but there are no line breaks (-n) specified in the text. The text will wrap to the mark
even if the line break is caused by an automatic line break due to the length of the text. Note also that the marker cannot be
embedded in the style definition, so we need o repeat it for the two pieces of the header.

The ODS TEXT statement can also be made destination-specific. This is done simply by placing the destination
name between the other two keywords, i.e. ODS PDF TEXT. This allows for notes that are specific to a
destination, if more than one ODS destination is open at a given time.

OUTPUT FROM MORE THAN ONE PROCEDURE ON A PAGE

With SAS/Graph we’ve had PROC GREPLAY and the VPOS/HPOS/VSIZE/HSIZE options that have allowed
putting output from more than one graphic procedure on the page at one time. This has always been more of a
challenge with output from text-based reporting procedures. We’'ll look at two methods now available with ODS
which allows us to do just that.

STARTPAGE=NO

By default, any time a new procedure is run a new page will be created in the output document. There is an
option (STARTPAGE=) on the ODS PDF statement which controls that page generation.

The STARTPAGE=NO option tells ODS that you don’t want a page generated between procedures. You still
get a new page when the current page fills up, but new procedure output will start immediately following
previous output.
Exhibit 5 shows an example of how this works. The data at the top of the page is generated from a PROC
REPORT. The data at the bottom of the page is from a second PROC REPORT. The ODS PDF statement
contained a STARTPAGE=NO so that the output from both procedures showed up on the same page.
There is s STARTPAGE=NOW option you can use to force a new page whenever you want it, which is handy if
you've turned the startpage off. You can set the startpage to NOW with a ODS PDF statement that does not
reference a file, so will be applied to the current PDF file being created. For example,
ods pdf file='my pdf file.pdf' startpage=no;
<procedure 1>
<procedure 2>
ods pdf startpage=now;

<procedure 3>

There would be no page break between the output from procedures 1 and 2 above, but output from procedure 3
would begin on a new page.

It was noted earlier that there would be one more STYLE= example when we discussed multiple outputs on a
page. In Exhibit 5, the single columns in the upper report need to be centered over the groups of three columns
in the lower report. We can do this with STYLE= options on the DEFINE statements in the two procedures.

The important thing to note here is the CELLWIDTH values: in the
first PROC REPORYT, the header column is set to 45 and the “data”
columns (Value and Blank) have values of 29 and 17 (46 total).

columns Type DateIndex,(Value Blank); /

define Type / group '' left style=[cellwidth=45mm font_wejight=bold]s

define DateIndex / '' across order=internal format=$ReportDatelLabels.4center;
define Value / '' sum format=CommaUnknown. style=[just=gec cellwidth=29mm] center;
define Blank / '' sum format=Blank. style=[cellwidth=17mm];

columns ResolutionGroup ResolutionCode DateIndex,(Value Pct MedianDays Blank);

define ResolutionGroup / group noprint;

define ResolutionCode / 'Breakdown of~-2nResolution Dispositions' group style=[cellwidth=45mm];
define DateIndex / '' across order=internal format=$ReportDateLabelsBlank. center;

define Value / "N" sum format=CommaUnknown. right style=[cellwidth=12mm];

define Pct / "%" sum format=PercentUnknown. right style=[cellwidth=13mm];

define MedianDays / "Median~-2nDays" sum style=[cellwidth=13mm];

define Blank / '' sum format=Blank. style=[cellwidth=8mm];

We want the columns in the second PROC REPORT to line up with those in the first one. The
header column width here is the same (45) and the sum of the “data” columns (Value, Pct,
MedianDays and Blank) is the same as above (12+13+13+8=46).

Notice also that we’ve made one more use of -2n. In the variable labels for ResolutionCode and MedianDays,
we've added a -2n to split the label. Note: in order to fit this all on the page some code has been removed that
is part of those labels. This additional information makes the use of the PROC REPORT SPLIT= option
unusable in this case.

ODS LAYOUT

Another method of putting more than one piece of output on the page is with ODS LAYOUT. LAYOUT enables
you to specify regions on the page that output will be written to. Exhibit 7 shows a report with output from one
PROC SQL, three PROC REPORTS and six PROC GCHARTS. How did we do this one?

The first table is generated with PROC SQL with nothing special added, except that STARTPAGE=NEVER is
set so that all the other output shows up on the same page. Then we start with LAYOUT. There are three
commands necessary to use ODS LAYOUT.

0ODS LAYOUT START;
0DS REGION X=xxx Y=yyy WIDTH=www HEIGHT=hhh;
ODS LAYOUT END;

START and END turn on and off the LAYOUT and REGION specifies the size and position of the page region to
write output to. There can be as many regions as you want on the page. There are some important region rules
to be aware of:

e regions are not transparent. If they overlap, the first one defined has that space on the page and will
overwrite the output beneath it.

o the size of the region is determined by the WIDTH and HEIGHT parameters, not the amount of data
sent to the region. If you have a large region set and only one row of data, the region is still large (and
may overlay other regions).

e outputis not sized to the region. If if doesn'’t fit, it is truncated. There is a log note warning you of this.

e LAYOUT is limited to one page. There is no spanning of regions or output to additional pages.

With those rules in mind, let’s look at the code for the three PROC REPORTSs in Exhibit 7.

10

ods layout start; We can have as many regions as we need.
In this case, all the regions have the same
size (2.5 by 3 in). The X and Y parameters
{PROC REPORT code} position the output on the page. Notice that
all the regions also have the same Y value,
so they will be aligned across the top.

ods region width=2.5in height=3in y=.1in x=0in;

ods region width=2.5in height=3in y=.1in x=2.65in;

{PROC REPORT code}
Note: the Y value is the distance from the

ods region width=2.5in height=3in y=.1in x=5.5in; top of the “printable area” to create the
region. Since the PROC SQL output has
already been sent to the page, the printable
area starts below that.

{PROC REPORT code}

ods layout end;

Notice that our regions do not overlap, the X value on each region is greater than the width of the previous
region. Also, as noted above, the Y value is set from the top of the page (O=top of printable area). This is
opposite of the Y position values in SAS/Graph, where 0 is the bottom of the page.

Beginning in version 9.2, SAS/Graph output is scaled to fit an ODS LAYOUT region. Be aware that though the
graphic image itself will scale, if you've specified font sizes for text in the graph, they will remain that size. Some
trial and error is often necessary to get the font sizes correct.

Even in version 9.3, ODS LAYOUT will still officially be pre-production. The code seems relatively stable and
syntax is unlikely to change, but keep that in mind. For more information on using ODS LAYOUT, see Dan
O’Connor and Scott Huntley’'s 2009 SAS Global Forum paper listed in the references section.

DATA _NULL_ REPORTING AND ODS PDF

Traditional DATA _NULL reporting, with PUT statements writing the desired output to a file or the output
window, has allowed SAS programmers to generate custom reports that can’t be created with a procedure.

Now that output can be sent directly to PDF, or any other ODS destination, and can be stylistically enhanced
with inline styles. Actually, if you have a data step with a FILE PRINT statement all you need to do is issue an
ODS PDF statement before and an ODS PDF CLOSE statement following the data step and the PDF document

will be created with the results.

ol - | &l & @ % -
ods pdf file='c:\temp\test.pdf'; = MRS = -
data _null_; enry 6.5

set sashelp.class(where=(sex eq 'M'));
file pr‘lnt; Jettrey 62.5
put Name @20 Height; \ye think of FILE PRINT as sending o
run; results to the output window. Actually, o
they will go to any open ODS

ods pdf close; destination. In this case, a PDF file. .

All the escape sequences discussed above (style, newline, nbspace, etc.) can be added to PUT statements, or
in the PUT or to the variable referenced in PUT statements and will be rendered in the PDF output. This makes
creating nice looking output quite simple.

1"

Another enhancement to data step reporting is the ODS= option on the FILE PRINT. This options associates
the data step output with a table template which allows you to create tabular output. You can actually create
output that looks like procedure output using a data step.

Even though it does not look very tabular, Exhibit 9 shows an example of a report created in a data step using a
table template. The table in this report has only one column and we’ll use a lot of embedded style attributes to
format the text the way we want it. This report could have been done with just the simple FILE PRINT and PUT
statements method mentioned above except for one thing This method is still restricted by the 256-character
LINESIZE limit and the lines in this report are more than 256 characters wide. Using the table template method
gets around that limit.

We start by modifying the style template that we’'ll use. This lets us set some global attributes that we won’t
have to repeat on each line of text and to set some general appearance attributes for the report.

proc template; We're going to create our own style template (MyJournal) that has all the attributes of the the
define style work.MyJournal; — parent template (Journal), except for the things we reference in the procedure.
parent=styles.Journal;

style Data from Cell / _ _
font = ("SAS Monospace®,7pt): Here we change just a couple things: S]]

» Change the default font for “data cells™(in this report, everything but the titles and
footnotes are data cells).

» By default, there would be some borders and lines — turn all those off.

style OQutput from Container /
rules = none _
frame = void;‘
run;

You can learn a lot more about using PROC TEMPLATE to create style templates in Cynthia Zender’s 2010
SAS Global Forum paper.

Normally, the FILE PRINT statement sends the results of PUT statements to the output window and/or any open
ODS destination.

The ODS= option on the FILE PRINT statement lists the variables that
will be included in the output “table.” In this report, there is only one
file print ods=(variables=(BigLine < variable per row. All the data and style information will be part of the
(label="~{style [font size=1pt] }'))); variable value.
Note: by default, the variable label is printed above the data column —
we'll set the label of the BigLine column to a blank space.

The default table template that is used is called BASE.DATASTEP.TABLE and most of the time you can use this
default. A different template can be specified with the TEMPLATE= parameter of the ODS= option, but you
need to understand the way table templates work and the information that they expect. Cynthia Zender's SUGI
30 paper (2005) has a number of great examples of creating tabular output in a datastep using table templates.

In this example, the variable BigLine is the only variable that will be put into the output table that the table
template will create. As you can see in Exhibit 9, a lot of information can be put on each line. Here we set up
the header for each agency in the report which will be at the top left of each page. All the style information and
data values are concatenated together in one big data value.

Note: The 4P inserts a page break in a PDF document.
BigLine = '~4P -

~{style [font_weight=bold font_size=9pt]Agency: } Remember, inthe template above we set the default font to 7pt
~{style [Tont_size=9pt]'|| SAS Monospace. For the first line of each agency, we want a 9pt
put(Bill_Agency Cd,$AgencyName.) | | font, with the header “Agency”in bold. We simply include all the
f newline 2} . style information in the value of the variable.

ut _ods_; < The PUT _ODS_ statement writes the value of BigLine to the

output destination.

This PUT statement looks different from what we usually see — there is no quoted text or variable names. The
_ODS _ specification is a reference back to the FILE PRINT statement. All the variables listed in the
VARIABLES parameter are written to the output file. In this example, there is only one variable, BigLine, listed
there and its value will be written to the PDF document.

12

4P~{style [font_weight=bold font size=9pt]Agency: }~{style [font size=9pt]Pixley }~{newline 2}

The value of BigLine is shown above, but in the PDF it is rendered

with the desired format attributes. Agency: Pixley Police Department

Following the agency header on each page are rows of information about each person booked into the jail by
that agency. The first row for each person has the booking number, name and dates of incarceration. We want
that row to have a gray background and, like the agency row, have header text in bold and the data values in
normal text. Again, we put all the necessary information into the value of BigLine and use PUT _ODS_ to write
it to the PDF document.

L . . , Just like we did above, the style information and data are
BiglLine = '~{style [Tont weight=bold background=cxfOT0T0]"'|| combined in the variable value and the PUT _ODS_ statement

put (BookingNum,10.) ||* }*[| writes it to the PDF.
put (InmateName,$45.) ||
'~{style [font_weight=bold]Book-Release: }'|| Note: the background color set in the first STYLE segment

BookRelease | | affects the whole cell. Since we have a single cell row, the
'| |Res_Status; entire row has the gray background.
put _ods_;

We similarly create a value of BigLine that has the arrest and charge information, with embedded styles, that will
go on the next line(s). The results are quite nice. Notice in the partial output below that all the style instructions

Agency: Pixley Police Department

2010009277 ADAMSON, JOHN Book-Release: 05/12/2010:19:14
Arr/Chg: 1/1 RESISTING ARREST Court/Case: TL/
Arr/Chg: 2/1 CRIMINAL MISCHIEF [LESS THAN $1,000] | Court/Case: TL/

have been rendered: font sizes are changed, the bold text is turned “on” and “off’ and that the gray background
is added to the first row of each person’s information. All of this is achieved by embedding the style information
in the variable values themselves.

THE FUTURE OF DATA _NULL_ REPORTING — THE REPORT WRITING INTERFACE

It's pretty cool to be able to create formatted, tabular reports from a data step. But, in the new world of DATA
NULL reporting you can define tables right in the data step code and have many different table on the same
page of output. Before we begin a discussion of the Report Writing Interface (RWI1), please understand that this
section is just to get your interest piqued. This is huge topic and you can get much more information in Dan
O’Connor’s 2009 SAS Global Forum paper listed in the references section. It contains 40 pages on this topic
alone.

The RWI uses a data step object called ODSOut. There are “methods” (like functions) of that object that will
create tables, rows, cells, text, page breaks, lines, etc. To use an ODSOut object it is first declared and given a
name — this only has to be done once in the data step and is routinely placed in a conditional section of code:

it _n_eq 1 then This gives us an ODSOut object named “obj” — we'll use that name
do; to reference methads that build our output.
declare odsout obj(); 4#——m—
<other statements> Again, the DECLARE statement only have to be executed once in
end; the data step.

Once the object is declared you can call methods that perform different tasks. For instance, with our object
“obj,” just a few of the possible methods are:

obj.table_start() - begins a table (there is a table_end method that closes a table)

obj.row_start() - begins a row in that table — you can have as many rows in the table as you want
(there is also a row_end method that closes a row)

obj.format_cell() - inserts a cell (column) into that row — you can have as many cells in a row as you

13

want, but each row must have the same number of cells
obj.format_text() - inserts a line of text (not part of a table)
obj.line() - puts a horizontal line on the page
obj.page() - inserts a page break

Note that all of these methods have parameters that can be placed in the parentheses. For example, the
Format_Cell method has a “text” parameter that specifies the text to be printed in the cell. You can specify style
attributes in most method calls as well, specifying cell borders, appearance of text, line widths, etc., with the
OVERRIDES parameter. The report shown in Exhibit 10 uses the RWI and each page can have as many as 20
or more separate tables.

The report contains information about inmates housed in a county jail that have used extra-fee services
(infirmary, psych unit, guarding at a hospital, etc.). It reports, by inmate, the charges that they have and the
details about the premium fee services. Each type of information presented has data elements and this makes
using a simple tabular output difficult. The RW1 is a perfect tool for this report because and we can use a
different table structure for each type of information. The segment of the report shown below contains six
separate type of output : a line, a text string and four tables.

*+—— A horizontal line

Coffelt, Marie S Inmate #: 0244970
Charge Information: Tables with
Booking #: 210021612 #1 ASSAULT Direct (MD) 06/26/2010 - 06/28/2010 o Inmate information (1 row)

#2 FTAIDWLS Warrant (MB) 0612612010 - 06128/2010 w—_____ ! ¢
» Gharge information (1 to many rows)
Premium Locations: e Premium location information (0 to many rows,
Booking #: 210021612 Infirmary 06/26/2010 - 06/28/2010 (Y)
L]

Guarding information (0 to many rows)
1:1 Guarding: /
Booking #: 210021612 06/26/2010 Guards: 1 Hours: 8

/ Formatted text string with final tally information
Billing Total: $1,242.37 Maintenance (days): $320.10 (3) Infirmary (days): $482.67 (3) 1:1 Guarding (hours): $439.60 (8)

So, how did we get those results? Let’s look at each of those types of output here. There is a horizontal line
between the set of data for each inmate.

if first.InmateNum then Getting the horizontal line is simple — the LINE() method draws a
do; horizontal line across the page. It's placed in a block of code that
<more code> runs on the first record of an inmates data.
obj.line(): There is an optional parameter, SIZE, for the LINE() method that
controls the thickness of the line. The color and line pattern cannot
<more code> be changed at this time.

The inmate information is put into a table, even though there is always only one row. The main reason for this is
to make the inmate numbers have the same horizontal justification from inmate to inmate. The report uses a
proportional font, so we can’t just pad the name with blanks before putting the inmate number. So, a single-row,
two-cell table is used.

The creation of a table is pretty straightforward:

obj.table start(overrides: 'frame=void rules=none'); = e Startthe table (turning off all the cell borders)
obj.row_start(); <= e Startthe first, and only, row
obj.format_cell(text: InmateName); « * [nsert a cell with the inmates name
obj.Tormat_cell(text: catx(' ','Inmate #:',InmateNum)): «—— * [nsers acell with the inmate number
obj.row_end(); « FEndthe row
obj.table end(); = « FEndthe table

The inmate information, like the LINE() method call, is also in the block of text that runs on the first record for
each inmate. Note that there are additional attributes, set in the OVERRIDE parameter, on the TABLE_START
and FORMAT_CELL calls that are not shown because of space here. They control things like the width of the
cell, the justification of the text, the font size and style, etc.

14

The charge data is also in a table, with a row for each charge that the inmate has. The components of the table
are split up a little bit here. The TABLE_START is called inside the first.InmateNum block, along with the line
and inmate information. The table rows and cells are built on each iteration of the data step and the
TABLE_END is called in a block of code for last.InmateNum.

if first.InmateNum then Along with the inmate information table, the start of the table of
do; / charges is placed inside the first.InmateNum block of code.
<more code>
Immediately following the start of the table, before we've started the
obj.table start(overrides: 'frame=void rules=none'); first row, we place a line of text, using the FORMAT_TEXT method,
obj.Tormat_text(text: ‘~{newline}Charge Information:'; <« that has the header for the section. We use the ~{newline} escape
end; sequence fo put a blank line between the inmate information table

and the start of the charge information.
obj.row_start();
it BookingNum ne PreviousBN then BN _Info = catx(' ','Booking #:',BookingNum);
else BN _Info = "';
obj.format_cell(text: BN_Info); ‘Nr every observation for the inmate, we create a row in the table. The row will
obj.Tormat_cell(text: ChargeInfo); have four cells (columns):
1. Booking number — notice that this is conditional and will only print on the

obj.format cell(text: TOW);

5) first record of each booking

bj.format_cell(text: Ch Dtlf\ X : . -

OD(? :owo;:z (;(-;e (tex argeDa :hr’\ . The charge information contains the charge number and description
j.row_ H \ The type of charge, including whether it 8 misdemeanor or felony

The date range that the charges were in effect

A

if last.InmateNum then
do;
<more code>
obj.table_end(); 44—
<more code>
end;

Finally, in a block of code for last InmateNum, we close the table of
charge information.

The tables for the premium location and guarding data are built in much the same way. If there is no data for
one or the other of those tables, nothing is printed.

Finally, also inside the block of code that runs for last.InmateNum, a line of text is written containing the
summary information. This is done with a FORMAT_TEXT method call similar to the way the “Charge
Information” header was done in the example above.

This is a very quick run-through of an RWI report. We have up to four tables per inmate, each with different
number of rows and columns. It's not the simplest example we could have run through, but it shows the power
of this technique. As with ODS LAYOUT, the Report Writing Interface is still pre-production and will be even in
version 9.3. However, this example shows it can still do quite a bit right now. Please take a look at Dan’s paper
for a lot of good examples and a more thorough coverage of the methods and options available.

CONCLUSION

This paper has presented a number of tips and tricks that you can use to enhance to look of your SAS output.
There are a number of other options available for ODS in general and PDF output in particular. I'd encourage
you to go to the SAS website where there is a wealth of information. Go to support.sas.com and click on
Communities and Base SAS. There you'll find FAQs, white papers, news and other information on ODS. Past
SUGI/SAS Global Forum papers are a wonderful resource for most any subject related to SAS. ODS-related
topics are no exception. Just a few that offer additional information on the topics covered in this paper are listed
in the following reference section.

REFERENCES
Lund, Pete, “PDF Can Be Pretty Darn Fancy: Tips and Tricks for the ODS PDF Destination,” Proceedings of the

Thirty-First Annual SAS Users Group International Conference, SAS Institute Inc. (Cary, NC), 2006.
(http://www2.sas.com/proceedings/sugi31/092-31.pdf)

O’Connor, Daniel, “The Power to Show: Ad Hoc Reporting, Custom Invoices, and Form Letters,” Proceedings of
the 2009 SAS Global Forum Conference, SAS Institute Inc. (Cary, NC), 2009.

15

http://www2.sas.com/proceedings/sugi31/092-31.pdf

(http://support.sas.com/rnd/base/datastep/dsobject/Power_to_show_paper.pdf - this is an updated version of the
paper presented at the conference)

O’Connor, Daniel and Huntley, Scott, “Breaking New Ground with SAS® 9.2 ODS Layout Enhancements,”
Proceedings of the 2009 SAS Global Forum Conference, SAS Institute Inc. (Cary, NC), 2009.
(http://support.sas.com/resources/papers/proceedings09/043-2009.pdf)

Kevin D. Smith, “PROC TEMPLATE Tables from Scratch,” Proceedings of the 2007 SAS Global Forum
Conference, SAS Institute Inc. (Cary, NC), 2007.
(http://www2.sas.com/proceedings/forum2007/221-2007.pdf)

Zender, Cynthia, “The Power of TABLE Templates and DATA _NULL _,” Proceedings of the Thirtieth Annual
SAS Users Group International Conference, SAS Institute Inc. (Cary, NC), 2005.
(http://www2.sas.com/proceedings/sugi30/088-30.pdf)

Zender, Cynthia, “SAS® Style Templates: Always in Fashion,” Proceedings of the 2010 SAS Global Forum
Conference, SAS Institute Inc. (Cary, NC), 2010.
(http://support.sas.com/resources/papers/proceedings10/033-2010.pdf)

AUTHOR CONTACT INFORMATION

Pete Lund

Looking Glass Analytics
215 Legion Way SW
Olympia, WA 98501
(360) 528-8970
pete.lund@lgan.com

ACKNOWLEDGEMENTS

SAS® is a registered trademark of SAS Institute, Inc. in the USA and other countries. Other products are
registered trademarks or trademarks of their respective companies.

16

http://support.sas.com/rnd/base/datastep/dsobject/Power_to_show_paper.pdf
http://support.sas.com/resources/papers/proceedings09/043-2009.pdf
http://www2.sas.com/proceedings/forum2007/221-2007.pdf
http://www2.sas.com/proceedings/sugi30/088-30.pdf
http://support.sas.com/resources/papers/proceedings10/033-2010.pdf

2 — Gaps between

data columns

Exhibit 1

spaq 10e1U0 3pnjoul few SEe1o] |

wL'0l OELL FLGE %E'e- TESL TlE oz WO'B- GPED LEES 585 og aLs

%LBE L'9LL €288 FLGL FO5g WE0Z- E'S95 §8FF == =] awo

wI'er L'D80 B'ETO0L FhbL 228 WT'El- LGHS EOEb oen £°50 aLw

T 2688 acl =} %S LEF LG .1 oe

wl'gk 080 OLO'L el 195 PGE GSGb 201 zL 5T
%I iF Gk L60°L FE 55 85) “%SeF gEl SO0k LEL 925 i =] 0cF =1 08 8c
WEER LGL A80°) ®woEl 85 0l wloy 880 LLO'L vl aLs B35 I £l z8 Iz
%I SF IFL == lu g FlEL La a3 “%L8F 889 SLO'L Swl BIS ¥ BEF LB 8L az
%TIb TEL Bi0') wE0l PO LL wL05 899 L00°1 L ¥ Wb'Gl- $I5 EbF e # 5T
Lt e LBO°L il 8 g ol % BF G40 800°L Swl 183 %WeEl- 0es il 4 SE GE ¥
%IT'3E TEL B30 %OTE- 90L TL WEGEF 040 0E8 Ll 235 GEG BTk 0 L8 £T
%2 LG LZL a0k e 28 Fli] ! “%e0E 8ee EGE crl 183 15 BLF ool 19 fatal
%ELF ETL GO0 WLET 85 £l w003 P20 DAE £hl 195 1Z3 sEb [ool ¥4
YI'@F 08L L60°L %0 ZT B85 ol %EBF Laa STOL B¥l 225 %WEGL- EFS LGF 8L 58 oz
%TOS GhL BLLL WELT LD wL WLTE PE0 OFOL z5l 085 WEbl- LB 53 oLt i gl
%ETE LR STL'E %EZT LB =14 WEGE 84D 0s0'L B¥l e 8] WOLL- 8BTS BEF BE g€ =1
WEPS GTL BLLL %Ll 85 5l wLOS 099 #ROL L ¥ otk og It il

T'EF 9EL 280°1 Z'Bl- EB az %LlS BB LEO'E FEL BES EEF e 08 at
W%LBF EbL BOL'L %85 £5 001 wI'sy 020 BOOL gkl 225 =Fad £6 zL gl
%SGk AL SLE'L %L AT BS =14 %LiF 202 oF0'L i=} flai=] 2FF 8 58 Fl
wOgk £l 8THL %EeT 85 ol Wiy bLL ESOL L3l 325 2ok 2L 9 £l
%ELlF 54 0oL’k %0 LE 85 az %EZTF 0T FIZO'L 4=} BlS 2FF [aF Lok A)
%LTE DL BOLL wE0T T8 5L woby bLL EEOL gbl &25 bht b ot Ll
%l 8F £G4 SOk’ WEEE LS az %E8iF 880 6207 L5l BIS =4 + F ot
wOBF ShL GLL'L WE05 L5 LI wE'sk 180 BEOL =5l 185 it zL 20 g
%l 8F 0G4 ETL'L %OFE 0S5 L %#6F 002 o¥0'L Ll BIS =1 4 LB EL g
WOPF GBL LEL'L WEEr £5 9L Wl'by TEL GS0L atl 108 [ols Le 28 L
%28F 58L EFL'L Fal T 55 €L %00 ELL 0z0'L FrL BG5S Fa - 8 5L g
WwEEF ZoL ZELL WEPE 85 8L wlagy BOL pSOL ozt 325 a0k b L5 5
%ETS 8) %I 0E 08 84 %A¥s 889 22071 i=} LEG = 15 B8E t
W05 S ZELL wOLE 85 9L wLlE 080 OS0L z5k oz ek It 50 3
= =R ZEL'L %S LT 85 L %5ES 889 850’k IFL 0og B5F i EL 4
%005 THL ELLL WEEE PTGl %503 830 BEOL asl 085 2tk 0 z5 L
sbueyy ooz SO0E sBueyn pooz GOOZ abueysy ooz S00E abueyy FOOZ SO0OZ aBueyn ro0Z GOOE abueyy yo0z GOOZ seseasy sbunjoog ssquegdsg
uaIa4 JusaIad Ju=nIag PUCCI N PUELICN] Jusasay
Jeio] SUDI1I81107) ,5pag ainiag abpiy sy 1§ saye - [1e uIep 1S |[epA - e urely
Alunwwos [e101qns

[eloigng

600Z Jequaidag
uonejndod ainaag Ajreg

suonoa.02 Jo Juawpedaqg AJunod ysiwoyous

1 — Superscript in
column headers

3 — Superscript in
footnote text

17

pete
Typewritten Text

pete
Rectangle

Exhibit 2

Arrestee Drug Abuse Monitoring (ADAM) Report
Drug Test Results, By Drug By Site
Adult Male Arrestees, 2000 through 2003 - Revised Weights
Primary City
Albany, NY
Albuguergue, MM B4.1% A% 36.5% 04% B.1% 20.4%
Anchorage, AK 57.0% 42.8%) 8% 0.0% 0.8% 11.5% v\
A il ~ 1 — Groups of
Birmingham, AL
rows

Chariccte. NC 83.3% .1 0.4% 17.58%
Chicago, IL E3.0% 40.0% 0.5% M
Cleveland, OH TOLE% 48.% 0.5% 238%
Dalas, TX 57.0% 38.2% 4.1% 18.8%
Denwer, CO 83.1% 40.8% s 19.4%
Des Moines, 14 58.2% 43.3% 21.3% 180%
Dietroit, M B5.0% AT.8% 0.0% 11.8%
Ft. Lavderdale. FL B1.8% 43.8% ; : 0.0% 14.8%
Honolulu, HI 82.0% 3.1% 12.3% 4.8% 0.1% 30.3% 222%
Houston, TX 50.3% 356% 0.9% 16.6'%
Inckanapols, IN 85.0% 47.8% 1.0% 208% 2 — lor
Kansas Cay. MO B.2% 40.0% 1.0% 2% gap 'CO °
Laredo, TX 2.1% 20.4% 0.0% 20.2% and size
Las Vegas. NV G2.0% % I2.4% 2008%
Los Angeles. CA Ba.4% 3.0 24.8% 253%
Manhastan, NY T5.5% 41.0% 0.2% 254%
Miami, FL 62.7% |a% D% 23T%
Minneapcis, MN 6a.2% 51.8% 2.8% 205%
New Crieans, LA TOA% 48.07% 1.0% 258%
Oklahoma City, 0K TO4% 53.8% 12.1% 243%
Omaha, NE BE.1% 47.8% 17.6% 21.5%
Philadelphia, P& TOE% 44.8% 0.2% 28.1%
Phoenx, AZ 80.0% 38.0% 26.4% 28.0%
Portland, OR B6.7T% 30.2% 21.0% 248%
Rio Amriba, MM TL% 4.4 1.8% 300%
Sacramento, CA 7% 40.2% 3.T% 284%
Salt Lake City, UT 55.1% [0 20.2% 1800%
‘San Antonio, TX 55.8% A% 2.3% 2000%
San Diego, CA 82.2% 38.3% 2% 214%
San Jose, CA 582% 35.6% 26.3% 213%
Seattle, WA B5.0% k) 10U6% 230%
Spokane, WA 831% 43.0% 23.7% 235%
Tampa, FL A% 45.2% 1.5% 10.4%
Tueson, AZ Baa% 44.0% Eh% 27 0%
Tuisa, 0K [0 51.8% 18.1% 23.%
Washingron, DC B4.2% ares 0.4% 18.0%
Woodbury, L& 40.E%, 20.8% 14.4% 10.8%
Median 5 0% 43.0% 2.3% 21.3%

* Results are suppressed if fewer than 25 amestess were tested fior a particular drug.

! The five drugs listed here are referred to as the NIDA-5, established by the National institute on Drug Abuse as a standard panel of commonly used illegal drugs.

18

pete
Rectangle

Exhibit 3

1 — Differential
text style

DASA-TA

Cutpatient Admissions
Admissions between September 2004 and August 2005

Public-Pay Clients - Statewide

SEF OCT NOV DEC JAN FEB MAR AFR MAY JUN JUL AUG/ 12.Momh 12.-Month
2004 2004 2004 2004 Z0D5 2006 2006 2006 2006 2005 Total Ureduplicated
K
R o; vovs s60 997 1072 98T 1226 1T 1086 LI s61 12702 11,688
IR Tel B30 EIl TAR BG4 TO0 1062 O16 506 1001 BEL GME LOMBS 2771
T — z 3 o 1 1 z z 1 o 3 o 16 16
RS EART R 235 1908 1772 L74] 1937 L7S9 2200 M5 ZLOE Z.126 LEZ6 1009 23203 0718
m 220 26 23 204 /G 242 T4 T 280 =e 10 1T 2,939 2748
127 165 120 128 MG 13 185 137 13 180 e EE 1561 1.454
/ 35T 457 388 M2 423 3IT5 472 &9 AN 34 286 275 4600 4.166
2 — Text
background Total Dutpatirns 2195 2365 2160 2083 2360 ZIM 2762 29M 243 2520 Z1I2 184 2TAIZ 24.863
matches Total Adult Outpatient Admissions
graph bars 2500 —
1838 e s
T
z2 #H =B =EHE B B ¥
Total Youth Qutpatient Admis sions
= 472
e

Number of Admissons
SEEEEREERE
|

== =B OB &£ 2B W OS8 N O& & 03

» Oirer SulsEter IRTLoet Detupd Cart EMAAROOTET AR WITA Oupatert

- Wilhie indvidus modaites e OF, I0F, eic) 1] morfh endupiicaie courts were cresbed &y couniryg e nemoer of wrigue Clent O rom TARGET admission records, sfhin Tope ~odalBes oriy.
=Tt 12 Mo udusioaies oounes B T o laseies Tatal Azull Duisasert’, "Toeal Yous Ouipalent ane Toeal O were i Bores the Indvicual sulpaberd mecaities Por B
-, cawnE wiin wil r s i the Sty wruploated teunl,

Run Dt 10082008 Fage 1082

19

pete
Rectangle

Exhibit 4

1 — Style info
embedded in data

\

B5L71

SO0TS00L

B35
5 £ =
Dam Q © L Qo
€ Qcfw®
I35 Eow
|74
N -
i iaewu Joj sAeq 200 1M10L
SO ZTE0-S0M B0 LESLB8 O LOFEIVM 5S4 0LTYIEE HHd OASH INSWIOYId WNDD € oo ¥ ITIEELE aaa
SOV P50/ LOVED LE51E8 O LOFEIVM 54 SELVIEE SHd HYY INSWIOWId WNOD T Auoweo 01 BHESE -
SOROBI-SOENS0 ERILLEOSD 0000045 YM & BAEZ AN 143HL 153N L
119y Byo40 By aEE] SENED 1HO MOL MIH smEg uvopdiasag By uosesy sAEQ IR TE]
SO0LZE0 (AMRQeSERY SOOTEOE0 '#ieq Bupjcon NEEEEER NOO BRI VY SRR
zz :mewu Joj s Aeq D00 MI0L
SO ZTE0-S0MR0ED S5rISE EB0EZLIMD DOOMMOOYM Sd 0LTYFEE SIS OASH INSWIOYId WNDD 2 Aoowvo Sl ZTERE aaa
SO/B0/E0-50/P 2RO FErLsE O LOFEIVM 54 SELWPEE SHd YEONAN3AYIEI | fuoweo LIE-U8 -
119y Byo40 By aEE] FENED 1HO MOL MIH smmg uvopdiasag Byg uoseRy SAEQ o -4
S00ZrZz60 meg esessy So0z/vze0 aeg Bupccn [voo I ve N
£ mewu) Joj sheg 30019101
5008 /60 IRLIRR O LOPEDWM 5S4 SELYFES SHd ZIISSY.HYY IWNTNd ROD) fuowes € OENrRTE asa
1a1y Byo4a By L1 5] FENT 1HO MOL MIH smmg uapdiasag Byg uosmy sAEQ O -l
sjeg ssessy 5002820 temq Bupjccg I CNOO NN VY SR
£ ‘@ewuy J0) sAeg 20019100
SOMELME0-S0PERD & B8 S5L0FE0M. 54 SEIYIEE SHd WYY LN O TWROD) Auoweo £l EVE-LE ™
119y Bys4a By s aENEY 1HO MOL MY smng uapdisasag Byg unsmy sAEg LI LT
SO0ZIENEO R0 9SOAY SO0ZVZ/R0 (9190 60T EANNNN NOO NN Ve ([
§ @Ewy so) s KA8g DO IEI0L
SOMELME0-S0 /800 BLSEe O5L0FE0M. 54 SELVIEE SHd HuEY INSWS O WNOD fuowyn 8 ELEB8 ™
a8y Bysaa Byn ase) asnEs 10 MOL Moy smag vopdusssq Bys uoseey sAEQ ©)-wiolq
SOOZTELED ‘MEQ SR SO0ZR0M0 wRO Buyccd IS CNDD I Ve N
4
5002 Joquwaoydes

uoday Bulpg 1el2qg arva

S10)JE|0IA 1PBIUOS SUOIJDAII0) JO Juswpedaq 81eIS WM

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

pete
Rectangle

Exhibit 5

1 — Multiple sets of
columns aligned

Fijo petug

oral
o6l
ol
O+
oL
oenl
o'se
ovs

wing

e

\

—

SO0 aRgQuny

%0 12

%05 StF
wWwes o0&

5L £49

WEITL EFLL
wFee 0F¥5'C
WOES SBL'F
%078 SEE'L
% M
FrEE
azel
ELge
29t ¥l
|ejo L
€002

]
SLo2
ol
0'es
ree
ol
0er
0e9

sdng

* POLIOLIS BB B EEED S B PUB SeEUG | Ut B eRED L Y BB B AED J0 SCRUNU SLE 8] LUBPeL e | ucingeed o) Buigy wog 8 ep usgp ey s eke g uepay

“Jenuss i ebuwys, ¥ 5 epdwrece - U o Bepd B PaAOEE 10U £ 1EY) UODNCSE 8FED AUE L840
“{a Bupnp rooo ey sEesjuEp e oy Supnpu) ssesoud ey e Aue TE pesERED B L) SSED AU DS LUSY)
EPUSA BLL B L1 PANOTAY B J8y) eeuo Auw ey

(e Bupng vese) winoo o wepd ey sseccud syl U Leym |0 sagcedea weed B I PaNOTA B 1Y) e 50 LU ey Apng
SINODS - WNeD Bysdng D eunog - (10 0 peuep e ved) pouau Am A UneD sopedng U PRSP Be0 tuopNE Ry

%20 22 0981 %L0 8
%ZS ZIs 09ll %Z'S E£lE
%19 805 08kl %lL'S F.il
] LG I Bl L <r
5L S5t5°1 0ll %Il 622
wLE 1992 S0 082 L
%815 060°S 0'SE “%SES S6ILE
w68l 1512 025 %v7Z8 ST6Y
% N shea op N
LIETE=g

0ERS SLE'S
¥i66 gea'9
Ligs8 agR's
et vl Silg's
oL £002 1snbBny
002 ubnoiy aLa

spoz 1snbny ybnouy) suopnjosay uo paseg

SINOOS - UN0S opedng [eaunog - LNog) Jopedng uj pegy eusjey :Bugy

00 w0 9l
0z %l's €5t

D2EL Wi9 ey
6% %6 059
0Z8 % l9L LLEL

0021 WOEE 04
Oer %905 06FE
0€9 %98L 0Z¥'S

wheg o._..w z
R e
006'9
gLl'a
Lin'a
gis's
00z ysnBny
ybnouy) aLa

Od O :sameg Sypa) sFe)

OVd 100G - eoypd wey Eusjey dELSE OV

0EZL %20
5082 %55
0otk %ZS
08 W
0°30L %851
USEl %802
UES wELS
00L %58l
wheg %
ue Pl
¥rL9
155D
1629
ole'e
aLi
5002

liodey Arewwins Buissasoid asen Auoja4 fiunon Bury

9Ee

2%
059
LiG

8T
6¥5'E
szav

*uoguyeq

100
el

186 81ED [BU) 151 JeyY
Bumes e1] o1 Jold
|ess|ws|q

165 81ED BUL 151 JeYY
Bumes 2L o1 Joud
eeld Ang

suojysods|g vopnjosey
j0 umopeeg

suopnjosay

sBuipiy

paubissy supaip esen
seusleHOvYd

2 — Indented

footnotes

21

pete
Rectangle

Exhibit 6

Access LA, Community Outpatient Penetration Rates - General Population

A. Operation Definition: The proportion of people in the general population who received publicly
funded Outpatient mental health services in the Fiscal Year by RSN.

Operational Measure: This is calculated by dividing the number people who recieved the outpatient
mental health services during a Fiscal Year by an estimate of the general population as of April Ist of

the calendar year.
Formulas:
Number of person receiving the outpatient mental health services during the Fiscal Year by RSN

Estimate of people in the general population in that Fiscal Year by RSN
Data Notes:

2002 and 2003 data excludes crisis hotline calls, 24-hour crisis services , and residential services as specified in the
January 2002 Data Dictionary. Reporting of these services varies across the state.

The State total is unduplicated clients across all RSN (ie., each person is only counted once in the State).

The RSN count shows the number of unduplicated clients within each of RSN (i.e., one person is counted in each RSN
in which they received services.).

Counts are of people. not admissions, episodes, or units of service.

Population are from the Washington State Office of Financial Management (OFM). The calendar year of estimate used
is the same as the analysis year. For example, for Fiscal Year 2004, Calendar year 2004 estimates would be used.

OFM releases complete population estimates every aliemate year. The intervening years were estimated by assuming a
constant rate of change between those years,

22

pete
Rectangle

Exhibit 7

Arrestee Drug Abuse Monitoring (ADAM) Report
Demographic and Sociodemographic Characteristics

ADAM Site: San Jose, CA

Interview Year: 2000 through 2003

Sample: Adult Male

Sample Size (unweighted): 2,164

Breakout Category: Mone

Analysis Weights: Revised Weights

Age Race Other Characferistics
Under 21 12.6% White 25.0% Unemployed 36.6%
21-25 20.9% Black 10.4% Ma High School Diploma 23.5%
26-30 16.3% Hispanic 50.6% Unstable Housing 11.3%
3135 13.9% Other 14.0% Mo Health Insurance 61.4%
36 and over 36.3%
Age Race

Under 21
21-25
28-30
31-35
38 and over

Employed HS Diploma Stable Housing Health Insurance

B ves
Mo

10052005

23

pete
Rectangle

Exhibit 8

Surveillance Demographics Report
For the Month-Year Reported’
Beginning 01/2005 and Ending 12/2010

Reporting Area: Guam
Site Name: All Sites

Mumber of

5 Year Age Group (calculated) Records Percent
0- 4 62 15.2%
5-9 30 7.3%
10 - 14 13 3.2%
15-19 19 4.6%
20-24 12 2.9%
25-29 22 5.4%
30 - 34 22 5.4%
35-39 21 5.1%
40 - 44 27 6.6%
45 - 49 34 B.3%
50 - 54 26 6.4%
55-59 38 0.3%
60 - 64 24 5.9%
65 - 69 14 3.4%
T0-74 17 4.2%
73-79 15 3. 7%
a0 - 84 o 1.2%
85 and older T 1.7%

1 0.2%

Number of

10 Year Age Group (calculated) Records Percent
0-9 92 22 5%
10-19 32 7.8%
20-29 34 8.3%
30 -39 43 10.5%
40 - 49 61 14.9%
50 -59 G54 15.6%
60 - 69 38 0.3%
70-79 32 7.8%
80 and older 12 2.9%

1 0.2%

" Report Includes verfied cases only

24

"z

pete
Rectangle

pete
Typewriter
Guam

Exhibit 9

Mayberry County Jail
Mt Pilot Inmate Premium Location Detail Report
June 2010
Bednar, Darren @ Inmate #: 0045258
Charge Information:
Booking #: 210019728 #1 FTATHEFT ¥Warrant (MB) OGN 2010 - 061 172010
Premium Locations:
Booking #: 210019728 Other Psych DEM02010 - DBM 12010
Blling Total; S:45.20 Maimenance (gays): 5213140 (2 Other Psych (days): $131.80 (2
Belue, Javier L Inmate #: 08444253
Charge Information:
Booking #: 210019850 #1 EXCLUSION Direct (MD) 051172010 (stll open)
Premium Locations:
Booking #: 210019858 Other Psych D&M 152010 - DEB0Z010
Bllling Total; 53.£52.00 Mammenance jdays): 52 134.00 (200 Owher Psych fdays): £1,316.00 (20)
Bowie, Carlos M Inmate #: 0012581
Charge Information:
Booking #: 210019724 #1 CRIM TRESPASS Direct (MD) 061 172010 - DEM 52010
Premium Locations:
Booking #: 210019724 Psych Unit D61 1/2010 - DBEM4:2010
(Other Psych DEMS2010 - DEMS2010
BIlng Total: 51,461.55 Mammenance (days): $533.50 (5) Psych Uni (days): $852.10 (4 Omher Psych (days): 9590 [1)
Bratcher, Donald K Inmate #: 0474276
Charge Information:
Booking #: 210020205 #1 DWLS 3 BMNOTE Direct (MD) 052072010 - DE2272010
#2 TRIP PERMIT VIO Direct (MD) 062072010 - DE222010
Premium Locations:
Booking #: 210020205 Other Psych DE20/2010 - DBR21/2010
Blling Total; S:45.20 Maimenance (gays): 5213140 (2 Other Psych (days): $131.80 (2
Busbee, Lonnie R Inmate #: 0125242
Charge Information:
Booking #: 210018888 #1 THEFT Direct (MD) 0502010 - DEM 82010
#2 CRIM TRESPASS Direct (MD) 0502010 - DEM 82010
Premium Locations:
Booking #: 210018888 Other Psych 0632010 - DEMBI2010
Blling Total: $2,554.50 Mammsnance (days): $1,000.50 (15) Omher Psych foays): $1,054.40 (10)
Coffelt, Marie § Inmate #: 0244970
Charge Information:
Booking #: 210021612 #1 ASSAULT Direct (MD) DE26/2010 - DE2852010
#2 FTADWLS Warrant (MB) DE/267/2010 - DE28/2010
Premium Locations:
Booking #: 210021612 Infirmary D6/26/2010 - DB2B/2010
1:1 Guarding:
Booking #: 210021612 082422010 Guands: 1 Hours: B
Blling Total; 51,242.37 Mammnance jdays): $320.10 (3) nfrmary (days): $452.87 (3) 1:1 Guarding (hours): $430.50 (5)

Moles-
= Charges shown are all b Pllol dhanges open during June.
Premium iotion days snd gusnding Rours shown ans only fose that ocounesd in Juns.

[Fun Davie- DBAZ00

Fage1of S

£90

Exhibit 10

+0°0Z OLOTILOE0 “Seg uny

il sbed

sfep oo 2l=L/8L QAHS 0LOZ/EL/90-0L0E/ L0/90 :ol-wody WEOTLD/MN F28E)/ 34n0) JININTSANI IHL H3IANN DNIAIED Li# :Bya/Jay
£73d 95:00:0L0E/6L/90-¥SiELI0LOG/FI/G0 i3TEa[ay-yooR SV19N00 “HINIWHIOW SLEG000L0E

sfep 00'g =L/¢ 357 0LOZ/60/90-0L0T/S0/90 *ol-wody VFOELLI/ NN =228/ 3JN0) JONINTSANI 3IHL H3IANN DNIATED LSL :Bya/Jay
5734 LEEGLIOLOT/60/90-9EGL:0LOG/S0/90 :3=eaTay-yooq AHHIL “073I4ENWW 6S60L00LOT

sfEep 00'0 =L/9 3574 0LOT/0E/90-0LOT/SE/90 *0L-wodd BEESFTOAN /AN #28E])/ JJnog 33MO30 AEIHL - L43HL L/L 2Buyn/aay
5734 LriGLi0LOE/0E/90-0E S0 0L0G/S5/90 FaseaTay-yooq NNITD “TI0MN BLEELO0LOE

sfep 00'E =2/0 d002 0LOZ/0E/90-0LOT/SE/90 +0L-wodd YISFELD/AN #28E])/ J4n0g 1834Ey BNILSIS3Y L/E :Bud/aay
NI SZIGLI0L0S/SE/00 faseaTay-joog AHOL '30¥H SLETLOOLOZ

sfEp 00'C =L/g ONOE 0LOZ/EE/90-0L0E/6L/90 #ol-wodq WESEVLD/NN #28E]/ 34n0) HIOHO S3LYVIOIA ATONIMONM - MOLLVIOIA HIOHO LHNOD - 3OMITOIA JILSINOD L/t :Bya/daay
£73H GOOL:0LOC/EC/I0-ECIETOLOS/BL/90 :3%eaTay-yood J3L "SNIH SL8LLOOLOZ

sfep 00'g =L/¢ 35T 0LOZ/0E/90-0L0ET/9T/90 *ol-wody YEEGELD/MN F2EE)/ 34n0) 2I78nd NI SNILWNIEN LSL :Bya/day
£73d L iGLi0L0E/0E/90-B0SL:0L0G/95/90 i3vealay-yooq WYITIIM "H3IN43H 9BEFLO00LOE

shep f9°L =£/¢ OLOZ/0E/90-0L0E/95/90 *ol-wodq WEEFELD/MN F28E)/ 34n0) 33530 QEIHL - L43HL L/E :Byn/aay
NI LOGEL:QLOS/9G/90 :asealay-jood M3HLWW "334434 LBETLOOLOE

sfEep 00'E =L/E 3574 0LOT/T0/90-0LOE/ LD/90 0L -wodd VIOLBD/AN #23E]/ JJanog * " "2I44WHL TWNLIEWH NY 38 0L aNnod L-03H0ATY HO JENS ISNIDITV/M JATHO L/ *Byd/Jay
5734 EL:BLIOLOS/E0/90-EL: LOCOLOG/95/G0 :aseaTay-yooq W5IHIHL "NOLSHIHIYIL LSE0LOOLOE

sfEp 00'C =L/ JAES 0LOZ/S0/90-0LOE/LD/90 *0L-wodd VEA0E LD/HNN +2%B]D/ 3IN0) 3ONTIOTA DILSINOA AD - £ LINWESY LML :Budfaay
S73H E¥:00:0L0S/90/90-¥L SL0LOG/EC/ED f3seaTay-yooq ITHIIH "3HH34ND £6.5000L02

sfep 0g'g =G/LL 35T 0LOZ/0E/90-0LOE/ ¥L/90 #ol-wodq YEFLVLD/NN $28B]/ 34n0) FINANTINI IHL HIONN DWIATHO LiL :Byn/aay

sfep 0O*EL=L/EL 3574 OLOT/EL/90-0LOT/ LD/90 *0L-wodd WEFLELD/AN $28B])/ 3anog JONIANTNI IHL H3AWN DNIATED LSL :Bud/aay
NI G0:EE:0L0G/0G/50 :asealay-joog AOOD "NV3A30 E68G000L0E

shep 0O'E =L/E 35T 0LOZ/8E/90-0L0E/9S/90 #ol-wod4 WESECOELD/MN #28E]/ 34N0) [£]120° 19" 9% MOH HLIM ATdNOD OL HO H32I440 A390 OL OL JHNIIVE LSL :Bydfday
S73H 81T 0L0S/8S/00-00 L1 0L0C/05/00 f3seaTay-yooq JINNDD "O0IZNT30 LGEZLOOLOZ

shep 00'E =£/9 ONOE 0L0Z/8E/90-0L0E/ES/90 #ol-wod4 WOLFTLD/MN #28B]/ 34n0) H3OHO S3LYIO0IA ATOMIMONM - NOILVIOIA H3OHO LHNGD - JINITOIA JILSIN0OD L/E DY/ day
£73d GLiFLI0LOZ/8E/90-¥L 0L 0L0G/EE/90 :3sEa[ay-yooq JINNDD *OIZNT130 9LLELO0LOE

sfep 00'L =3/8 d002 0LOZ/E0/90-0L0E/ L0/90 :el-wody WEGEGD/MN F2EE]/ 34n0] 33MH30 AEIHL - L43HL L/ :Byn/aay
£73d LO:SL:0LOS/E0/90-90:CL:0L0G/FD/G0 :3sEa[ay-yooq WHIN "3719I¥0 6E92000L02

siep QO'EL=L/EL HISN 0LOZ/EL/90-0LOE/ LO/00 *0)-wodq WAOLLLD/MN *28B)/ 34no) £ AlH3JOHd NITOLS 40 NOISSISE0L L/ :Byd/aay
1na SEIQD:OLOT/60/E0 :3%EaTay-yooq TI3SENH “AITANHE 98.1F000LOE

efep 00'e =L/8 OAES 0LOT/80/90-0L0T/L0/90 *0L-wodd YERSELD/AN *23B)/}ano] * " t0I44WHL TWNLIEWH NY 38 0L aNnod L-03H0ATY HO JENS ISNIDITV/M JATHO L/L *Byd/Jay
£713d 9t :00:0L08/60/90-0F LS 0L0G/LE/C0 :3sEalay-yooq JTWNOD “H3IHOLWHE B0LF000LOE

shep pg'e =5/L ONOE 0L0Z/80/90-0L0E/S0/90 #ol-wod4 QOLESET/¥D #28E]/ 34n0) LIHYAE3S 2I78MNd ¥ OL LNIWILYLS ONIOVITSIN HO 3ST94 ¥ ONINYW L/ :0yd/day
S73H LSt L00L0S/60/90-SECES0LOG/1D/O0 f3seaTay-yooq IWNHE *3IIHW LL90L00LOE

1uswiaedag 83TT0d aTTTAJ®100H :Kauaby

uodsy Buig Ajieg
neaing suoildaiion

32110 siays Aunod

Appendix A - ODS Style Attributes

Attribute Description HTML RTF PDF

ABSTRACT= Specify whether or not graph styles are used in CSS or LaTex style files. X
ACTIVELINKCOLOR= Specify the color for links that are active. X
ASIS= Specify how to handle leading spaces and line breaks. X
BACKGROUND= Specify the color of the background of the table or graph % X X
BACKGROUNDIMAGE= Specify an image to use as the background. X
BODYSCROLLBAR= Specify whether or not to put a scrollbar in the frame that references the body file. X
BODYSIZE= Specify the width of the frame that displays the body file in the HTML frame file. X
BORDERCOLOR Specify the color of the border if the border is just one color. X X
BORDERCOLORDARK Specify the darker color to use in a border that uses two colors to create a three-dimensional

effect. X X
BORDERCOLORLIGHT Specify the lighter color to use in a border that uses two colors to create a three-dimensional

effect. X X
BORDERWIDTH Specify the width of the border of the table. X
BOTTOMMARGIN= Specify the bottom margin for the document. X X X
BULLETS= Specify the string to use for bullets in the contents file. X
CELLHEIGHT= Specify the height of the cell. X X X
CELLPADDING= Specify the amount of white space on each of the four sides of the text in a cell. % X %
CELLSPACING= Specify the thickness of the spacing between cells. X X X
CELLWIDTH= Specify the width of the cell. X X X
CONTENTPOSITION= Specify the position of the frames in the frame file that displays the contents and the page

files. X
CONTENTSCROLLBAR= Specify whether or not to put a scrollbar in the frames in the frame file that displays the

contents and the page files. X
CONTENTSIZE= Specify the width of the frames in the frame file that display the contents and the page files.

X

CONTRASTCOLOR= Specify the alternate colors for maps. The alternate colors are applied to the blocks on region

areas in block maps. X X X
DROPSHADOW= Specify whether to use a drop shadow effect for text in a graph. X %
ENDCOLOR= Specify the end color for a gradient effect in a graph. X
FILLRULEWIDTH= Cause a rule of the specified width to be placed into the space around the text (or entire cell if

there is no text) where white space would otherwise appear. X
FLYOVER= Specify the text to show in a tool tip for the cell. X X
FONT_FACE= Specify the font to use. X X X
FONT_SIZE= Specify the size of the font to use. X X X
FONT_STYLE= Specify the style of the font. X X X
FONT_WEIGHT= Specify the font weight. X X X
FONT_WIDTH= Specify the font width compared to the width of the usual design. X X X
FONT= Specify a font definition. X X X
FOREGROUND= Specify the color of text or data items X X X
FRAME= Specify the type of frame to use on an HTML table. X X X
FRAMEBORDER= Specify whether or not to put a border around the HTML frame for an HTML file. X
FRAMEBORDERWIDTH= Specify the width of the border around the HTML frames for an HTML file. X
FRAMESPACING= Specify the width of the space between HTML frames for HTML files. X
GRADIENT_DIRECTION= Specify the direction of the gradient effect in either the X or Y axis direction to influence the

graph background, legend background, charts, walls, floors, etc. X X X
HREFTARGET= Specify the window or frame in which to open the target of the link.
HTMLCLASS= Specify the name of the stylesheet class to use for the table or cell. X
HTMLCONTENTTYPE= Provide the value of the content type for pages that you send directly to a web server rather

than to a file. X
HTMLDOCTYPE= Specify the entire doctype declaration for the HTML document, including the opening

"<IDOCTYPE" and the closing ">". X
HTMLID= Specify an ID for the table or cell. X
HTMLSTYLE= Specify individual attributes and values for the table or cell. X
IMAGE= Specify the image to appear in the background. This image can be positioned or tiled. X X X
INDENT= Set a numeric value to use as the indention depth. X
JUST= Specify justification. X X
JUST= Specify the image's horizontal positioning. X X
LEFTMARGIN= X X

Specify the left margin for the docurr;n_lent.

pete
Rectangle

Appendix A - ODS Style Attributes

Attribute Description HTML RTF PDF

LINESTYLE= Specify the line type to use in a graph. You can use SAS/GRAPH line types -46. X X X
LINETHICKNESS= Specify the thickness (width) of a line that is part of a graph. X X X
LINKCOLOR= Specify the color for links that have not yet been visited. X X X
LISTENTRYANCHOR= Specify whether or not to make this entry in the table of contents a link to the body file. X
LISTENTRYDBLSPACE= Specify whether or not to double space between entries in the table of contents. X
MARKERSIZE= Specify the size of the symbol used to represent data values. X X
MARKERSYMBOL= Specify the symbol used to represent data values. X X X
NOBREAKSPACE= Specify how to handle space characters. X X
OUTPUTHEIGHT= Specify the height for graphics in the document. % X
OUTPUTWIDTH= Specify the width of the table or of the graph or line thickness. % X X
OVERHANGFACTOR= Specify an upper limit for extending the width of the column. X X
PAGEBREAKHTML= Specify HTML to place at page breaks. X
POSTHTML= Specify the HTML code to place after the HTML table or cell. %
POSTIMAGE= Specify an image to place after the table or cell. %
POSTTEXT= Specify text to place after the cell or table. % X
PREHTML= Specify the HTML code to place before the HTML table or cell. %
PREIMAGE= Specify an image to place before the table or cell. %
PRETEXT= Specify text to place before the cell or table. X
PROTECTSPECIALCHARACTERS= Determine how less-than signs (<), greater-than signs (>), and ampersands (&) are

interpreted. X X X
RIGHTMARGIN= Specify the right margin for the document. X
RULES= Specify the types of rules to use in a table. % X
STARTCOLOR= Specify the start color for a gradient effect in a graph. X X
TAGATTR= Specify text to insert in the HTML X
TOPMARGIN= Specify the top margin for the document. X X
TRANSPARENCY= Specify the level of transparency for a graph. X X
URL= Specify a URL to link to. X X
VISITEDLINKCOLOR= Specify the color for links the visited links. X X
VJUST= Specify vertical justification. % X X
WATERMARK= Specify whether or not to make the image that is specified by BACKGROUNDIMAGE-= into a

"watermark." A watermark appears in a fixed position as the window is scrolled. X

Using Styles in...
PROC REPORT
can be placed on PROC REPORT,
DEFINE or COMPUTE statements

PROC TABULATE
can be placed on the CLASS,
VAR and CLASSLEYV statements
or as a BOX= option value

PROC TABULATE
as part of a TABLE definition

PROC PRINT
can be placed on the PROC PRINT

or VAR statements

Escape sequences

STYLE=[style attributes]
STYLE(HEADER)=[style attributes]
STYLE(COLUMN)=[style attributes]

STYLE=[style attributes]

[STYLE=[style attributes]] note extra brackets

STYLE=[style attributes]
STYLE(HEADER)=[style attributes]
STYLE(COLUMN)=[style attributes]

AS={style attributes} assuming * as ODS ESCAPECHAR

28

pete
Rectangle

	63-2010 Paper Portion
	Exhibits for 2010 Version
	PDF Can be Pretty Darn Fancy.pdf
	New Exhibits
	Drawing1
	Page-1
	Page-2
	Page-3

	PDF Can be Pretty Darn Fancy

