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ABSTRACT 
PROC MIXED PROVIDES A SINGLE TOOL FOR ANALYZING A LARGE ARRAY OF MODELS USED IN 
STATISTICS, ESPECIALLY EXPERIMENTAL DESIGN, THROUGH THE USE OF REML ESTIMATION.  A 
STRATEGY FOR IDENTIFYING MIXED MODELS IS FOLLOWED BY A DESCRIPTION OF REML  
ESTIMATION ALONG WITH A SIMPLE EXAMPLE THAT ILLUSTRATES ITS ADVANTAGES.   A 
COMPARISON OF SOME OF THE AVAILABLE TESTS FOR VARIANCE COMPONENTS IS GIVEN 
ALONG WITH SEVERAL EXAMPLES, BOTH REAL AND ARTIFICIAL, THAT ILLUSTRATE THE VARIETY 
OF MODELS HANDLED BY PROC MIXED.  

INTRODUCTION 
Mixed models include a wide array of useful statistical approaches, some new and some quite old.  SAS® 
PROC MIXED uses an estimation method similar to maximum likelihood called REML estimation.  This is a 
relatively new method and with it comes some new looking output similar to the traditional analysis of 
variance table but with some added features that give useful information related to both traditional models 
and more interesting cases such as random coefficient models, panel data in economics, repeated 
measures (closely related to panel data) and spatial data. This paper attempts to provide the user with a 
better understanding of the ideas behind mixed models.  
 
The first section of the paper explains the difference between random and fixed effects and gives a checklist 
for deciding which effects you have.  Mixed models, as the name implies, can have some of each. The next 
section uses a simple experimental design, the randomized complete block, to investigate the differences 
between treating block effects as fixed and treating them as random, both in the presence of fixed treatment 
effects.  It includes the definition and computation of so-called “BLUPs “and the intraclass correlation 
coefficient. The next section formalizes the general mixed model and reviews the concept of REML versus 
maximum likelihood (ML) estimation.  ML (maximum likelihood) and REML are compared in the context of 
the randomized complete block design.  Following this a discussion of several suggested tests for the 
presence of random effects is given along with a small Monte Carlo study comparing these in the context of 
a randomized complete block design.  In the next section an unbalanced data set with random and fixed 
effects is shown and analyzed in both PROC GLM and PROC MIXED for comparison purposes.  The paper 
ends with a random coefficient model using a study on activity levels in bears.   
 
RANDOM OR FIXED?  
Imagine a clinical trial involving doctors within hospitals.  Each doctor has 3 patients with a certain disease 
and assigns then to drugs O (old) N (new) and C (control) at random, one patient for each drug.  Now if 
there is a fourth drug, the researcher surely could not say anything about the performance of this new 
untested drug based on the results for the other three.  On the other hand, the readers would be quite 
disappointed if the researcher found the new drug better than the old but then stated that this only holds for 
the 20 doctors (from 4 clinics) used in the study.  Unless one of them is my doctor I have no interest in such 
a result.  Nevertheless there may be a doctor effect so that the researcher needs to include doctor as a 
source of variation.  One possibility is to imagine the doctors (and clinics) used as a random sample from a 
population of doctors (clinics) whose effects are normally and independently distributed with some doctors 
having effects less than average and some more than average.  It would then be only the variation in the 
doctor effects that would be of interest and the reader would, as with any sample, assume that inference 
was for the population of doctors from which the researcher sampled.  In this example drugs are fixed 
effects while doctors and clinics are random effects.   
 

I present, below, a table that I use as a checklist to distinguish fixed versus random effects.  Going through 
this checklist one thinks of doctors as being a random sample form a larger population, though often true 
randomization and sampling from a complete list of doctors is not actually done.  The same applies to 
clinics.  In contrast, the drugs were no doubt selected because they were the only items of interest.   
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  RANDOM FIXED 

Levels selected at random from conceptually 
infinite collection of possibilities  finite number of possibilities 

Another 
Experiment 

would use different levels from same 
population would use same levels of the factor 

Goal estimate variance components estimate means 

Inference 
for all levels of the factor (i.e., for 
population from which levels are 
selected)* 

only for levels actually used in the 
experiment* 

(* an exception is when Y has a polynomial relationship to some X - usually X would be considered fixed 
even though the polynomial can predict at any X)  

In row 2 of the table, suppose a researcher from another state saw the results and wanted to replicate the 
experiment.  This new experiment would surely use the same drugs if it were a true check on the first 
experiment, but would likely use a different sample of clinics and doctors (from the same large population). 

While the supervisor of the clinic may be interested in specific doctor means and an insurance company 
might be interested in clinic means, the nature of the experiment as described does not focus on means but 
rather simply admits that there are variance components for the doctor and clinic factors and estimates 
these variance components.  On the other hand, direct comparison of drug means is surely of interest here.  
This illustrates the line of the above checklist labeled “Goal”.  

Finally there is the issue of the scope of inference.  As stated above there would be no thought that this 
experiment would inform the reader about an untested fourth drug, but surely the scope of inference for 
doctors and clinics should extend beyond just the 4 clinics and 5 doctors per clinic used.   

Example 1:  Using some made up data for illustration, here is a run with PROC MIXED.  Here we look at 
twins from 20 families.  We train one twin in SAS programming using method A and the other with method B.  
At the end of the training we give a programming task and record the time it takes to come up with a 
correctly running solution, this being our response variable TIME. This experiment can be thought of as a 
randomized complete block design with families serving as blocks, or equivalently, a paired t test with twins 
paired up by families.  The treatment is the training method. Figure 1 is a plot with labels indicating training 
method, family number on the horizontal axis and programming time on the vertical axis.  

Figure 1:  Programming Times 

 



Our data set needs variables FAMILY, TWIN, METHOD, and the response variable TIME. Here is the SAS 
program and part of the output: 

PROC MIXED DATA=TWINS;  
CLASS FAMILY METHOD;  
MODEL TIME = METHOD;  
RANDOM FAMILY;  
 
                           The Mixed Procedure 
 
                          Covariance Parameter 
                                Estimates 
 
                          Cov Parm     Estimate 
                          family        21.2184 
                          Residual      40.8338 
 
                      Type 3 Tests of Fixed Effects 
 
                            Num     Den 
              Effect         DF      DF    F Value    Pr > F 
              method          1      19       9.60    0.0059 
 
Our main goal was to compare the training methods. You see strong evidence that they differ based on the 
Type 3 F tests.  The family variance component is 40.8 while the twin to twin (within family) variance 
component is 21.2.  One might ask how much of such ability to learn is inherited.  The variance components 
give a way to estimate this using the so-called intraclass correlation coefficient.  A regular correlation 
coefficient can be computed from two columns of numbers, but in the twins case, which twin goes in column 
1 and which in column 2?  One can’t use the training method for this decision as it is a question of native 
ability, not of training method.  Were the experiment to be rerandomized, a different twin from some pairs 
would get assigned to method 1 as compared to the twin being assigned to treatment 1 now. So it is unclear 
how to construct the columns and each different construction will give a different correlation.  
 
Calculation 1: The intraclass correlation coefficient.  
To resolve this problem, consider the model to be Yijk = μ + Mi + Fj + eijk where Fj represents a family j 
effect (variance estimated at 21.2) and eijk represents the effect of individual twin k.  Now the difference 
between two twins, one from each family, involves a difference of random effects, namely Fj+eijk – Fj - ei’j’k’ 
and the variance of this is 2(σ2

F+σ2) where σ2
F and σ2 are the family and individual variance components 

respectively.  The estimate of this is  2(21.2+40.8) = 2(62). The difference between siblings involves the 
same family so the F parts cancel out and we have eijk –ei’jk’ with variance 2σ2 and its estimate 2(40.8).  
Now if the ability to program (i.e. the required intelligence and logical ability) has a genetic component we 
expect the difference in programming times between siblings to vary less than that between unrelated 
people.  The ratio 40.8/62, about 2/3, is the relevant ratio.  About 2/3 of the variation we see comes from 
individual characteristics and 1/3 from family effects. As the within pairs variation decreases, the genetic 
component appears stronger and this ratio gets close to 0.  Subtracting the ratio from 1 gives a correlation-
like statistic that would be close to 1 when the genetic component is strong and near 0 when siblings differ 
about as much as a randomly selected pair of individuals.  This intraclass correlation 1/3 is a very simple 
and unsophisticated way to measure heritability.  The intraclass correlation then is an estimate of  
σ2

F /(σ2
F+σ2).   

 
Calculation 2: Best Linear Unbiased Predictor (BLUP) 
Suppose, for some reason, I want to measure the effect of family j.  Without careful thought, one might think 
that a simple difference between the family j mean and the overall mean would work, but let’s think again.  
The two times that are averaged for family j represent the family effect Fj plus the average of two individual 



effects.  Even if there were no family effects, there would be a largest family mean which would differ from 
the overall mean only because of individual differences in people. It would not be fair for the family with the 
highest mean to boast of its great genes. It could be some individual effects, like a good night’s sleep, or 
even just lucky guesswork that day that caused these two siblings to do well.  So what would be a good 

estimate of the family effect F1?  The deviation Dj of the family j sample mean from the overall mean Y  
would be clear of training method effects and of the overall mean.  This difference Dj would be Fj plus the 
mean of two e’s so its variance σ2

F+σ2/2 would be approximated as 21.2 + 40.8/2 = 41.6.  Suppose I wanted 
to find the best multiplier for the difference Dj  (between the family j mean and the overall mean) as an 
estimate of Fj.  If that multiplier is 1 then I just use the difference Dj between the family mean and the overall 
mean as my estimate.  
 
Let the multiplier mentioned above be b.  To find the best multiplier, meaning that which minimizes E{ Fi + 
bDj )2 } =  E{Fi+ b(Fj + (eij1 + eij2)/2)2 } = (1-b)2σ2

F + b2σ2/2.  This is minimized when -2(1-b) σ2
F + 

2bσ2/2 = 0, that is, when b =  σ2
F/(σ2

F+σ2/2).  Notice that this b is less than 1 so the difference Dj between the 
family j mean and the overall mean is shrunken toward 0 and the modified value bDj is called the BLUP 

(standing for Best Linear Unbiased Predictor) of the family effect Fj. Adding the overall mean Y gives  

Y +bDj as the BLUP of the family j mean.  As another example, if teachers in a school system with highly 
varying student quality are evaluated based on student test performance, much of the rating will be the “luck 
of the draw” in terms of which students a teacher gets.   
 
While PROC GLM also has a random statement, its models are estimated as though all effects are fixed.  
Thus the variable FAMILY would be treated as fixed and the difference Dj between the family j mean and the 
overall mean would be the GLM estimate of the family j effect Fj.  No BLUP calculation would be done.  In 
PROC GLM, the LSMEAN statement delivers the estimate of the overall mean plus the family j effect.  In this 
balanced data the overall mean of the 40 observations is 39.981 and the mean of the two family 1 

observations is 35.625 so D1 is -4.356.  In contrast to this, the BLUP is Y + 0.510D1 = 39.981 + 0.510(-
4.356) = 37.76 where the estimated b based on the PROC MIXED variance component estimates is 
21.2/(21.2 + 40.8/2) = 0.510. The LSMEAN statement in PROC MIXED is used for fixed effects and to get 
the BLUPS, a series of ESTIMATE statements can be used.  
 
To complete the BLUP discussion, here is some code and partial output comparing the LSMEANS form 
PROC GLM with the BLUPs from PROC MIXED.  The numbers above should appear for family 1 within 
roundoff error.   
 
 
ODS OUTPUT ESTIMATES=BLUPS; 
 
PROC MIXED DATA=TWINS;  
CLASS FAMILY METHOD;  
MODEL TIME = METHOD;  
RANDOM FAMILY;  
ESTIMATE "1 " intercept 1 | family  1; 
ESTIMATE "2 " intercept 1 | family  0 1; 
 
             (etc.)        
 
ODS OUTPUT LSMEANS=GLMMEANS;  
PROC GLM DATA=TWINS; CLASS FAMILY METHOD;  
MODEL TIME = FAMILY METHOD;  
LSMEANS FAMILY;    
 
 
The outputs can be compared to the calculations above for family 1.  
 
 
 
 



 
From PROC MIXED:  
 
                            Estimates 
 
                         Standard 
    Label    Estimate       Error      DF    t Value    Pr > |t| 
 
    1         37.7612      3.3024      19      11.43      <.0001 
    2         34.5760      3.3024      19      10.47      <.0001 
    3         45.5330      3.3024      19      13.79      <.0001 
                               (etc.) 
    20        42.6663      3.3024      19      12.92      <.0001 
 
 
 
From PROC GLM:  
                        The GLM Procedure 
                       Least Squares Means 
 
                                          Standard 
        family     time LSMEAN           Error    Pr > |t| 
 
        1           35.6250000       4.5185064      <.0001 
        2           29.3750000       4.5185064      <.0001 
        3           50.8750000       4.5185064      <.0001 
                                  (etc.)  
        20          45.2500000       4.5185064      <.0001 
 
 
 
Not only are the LSMEANS further from the overall mean 39.981 but in addition their standard errors are 
different than those of the BLUPs.  The estimated family and individual variance components are the same 

in both cases, however PROC GLM, by considering blocks fixed, uses  40.8338/2  as a standard error 
whereas the BLUP, being an optimal combination of the overall mean and the family 1 mean has a smaller 
standard error.  
 
To illustrate what is happening here, the datasets GLMMEANS and BLUPS are merged and transposed by 
family to give a dataset amenable to plotting.  The resulting plot in Figure 2 has a horizontal reference line at 
the overall mean and larger red dots for family 1 to illustrate the hand calculations above.  
 
 
 
 
 
 
 
 
 
 
 



Figure 2. LSmeans (left) and BLUPS 
 
 

 
 
 
THE GENERAL MIXED MODEL AND REML ESTIMATION: 
The model for the first 6 observations in the twins data can be expressed as  
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

25.55
50.46
00.30
75.28
00.33
25.38

=  +   +  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

2

1

101
011
011
101
011
101

M
M
μ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

3

2

1

100
100
010
010
001
001

F
F
F

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

6

5

4

3

2

1

e
e
e
e
e
e

 
which has the matrix form Y = Xβ + Zγ���e.  Had we used PROC GLM, our design matrix would join X 
and Z side by side to get a 6x6 matrix with the coefficient vector consisting of β stacked on top of γ. The 
variance matrix for e would be Iσ2.  In the mixed model, X contains only the fixed effects and its nature is 
determined by the MODEL statement.  The Z matrix contains the random effects, family in this example, 
which are assumed to have some distribution with variance covariance matrix G and the error vector e is 
assumed to have some variance matrix R where neither of these could be, but does not have to be, a 
diagonal matrix.  The structure of G is specified by the RANDOM statement and that of R by the REPEATED 
statement.  For these first 3 families these matrices would be 
 



                       G =    and R =  2
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For all 20 families G would be I  where now I is a 20x20 rather than 3x3 matrix and likewise R would be a 
40x40 matrix for these 40 observations.  

2
Fσ

 
There are two common kinds of estimation, ML = maximum likelihood and REML = residual (or restricted) 
maximum likelihood. To illustrate and compare these, an extremely simple example will be used.   
 
Suppose a sample of 4 observations, 10, 11, 12, and 15, is available to estimate the mean and variance of a 
normal population.  These observations along with some normal distributions are shown in figure 3.   
 
Figure 3: A sample of 4 points. 
 

 
 
The green curve there (leftmost peak) has mean 10 which seems too far to the left.  The others have mean 
12.  The green and black (lowest peak) curves appear to display more variation than the four points, shown 
as diamonds near the bottom, suggest. The blue (highest peak) and red (next highest) curves look 
reasonable for the 4 points shown.  The mean of 10, 11, 12 and 15 is 12.  The deviations are -2, -1, 0, and 3 
with sum of squares SSq = 4+1+0+9=14.  The blue curve has variance SSq/n = 14/4 and the red one 
SSq/(n-1) = 14/3 . For any given distribution, a set of points has a “likelihood” defined as the product of the 
given probability density function values at each of the points.  For each curve shown we take the product of 
the heights of the 4 vertical lines where they cross the curve. Thus for each curve there is a “likelihood” that 
the point came form that distribution.  Looking at the blue curve, the four heights seem about the same or 
larger than for any of the other 3 curves so their product would exceed any of the other products, indicating 
that, if these were the only choices, we would pick blue.  Finding the maximum likelihood over all possible 
normal curves gives us the maximum likelihood estimators of the mean and variance and as it happens, the 
blue curve is exactly that.   
 



Now the mean of the population from which these data came would not likely be the same as the sample 
mean and the sample mean minimizes the sum of squared deviations, that is, any other mean than 12 would 
make that sum of squares larger.  This means that the average squared deviation from the sample mean is 
larger than the average squared deviation from the population mean.  This means that we have a biased low 
estimate of the true population variance by using maximum likelihood, and this is why we usually divide by 
the degrees of freedom, n-1 (3 in our example) rather than n (4 for our example). That gives an unbiased 
estimate of the variance.  
 
The problem above stems from having to estimate the mean.  Were the mean known, we would compute 
differences from that known mean and compute a better sum of squares. There is a way to get 3 
observations from this distribution that have known mean 0.  We can do it by contrasts.  Three contrasts with 
their means and variances are shown below:  
 
 Z1 = (Y1 �+ Y2 − Y3 − Y4)/2,    Mean  04321 =−−+ μμμμ , Variance 4σ2/4  
 Z2 = (Y1 − Y2 − Y3 + Y4)/2,    Mean  0 , Variance σ2� 
 Z3 = (Y1 − Y2 �+ Y3 − Y4)/2,    Mean  0, Variance σ2 
 
These contrasts are orthogonal to each other.  A fourth orthogonal linear combination, namely the sum of 
the 4 Y values, can be computed, but it involves the unkown mean and thus will not be used.  We now have 
n-1 = 3 observations, for our data they are  
 
              ( 10+11-12-15 )/2  = -3  
 ( 10-11-12+15 )/2  �=  1� 
 ��( 10-11+12-15 )/2  = -2  
 
The sum of squares here is 9+1+4 = 14, the same as when we used the estimated mean.  The average 
squared deviation here is 14/3 because we had to eliminate one contrast for estimating the mean.  Thus 
14/3 is the REML estimate of the variance which can be recognized as the usual unbiased estimate of the 
true error variance.  Likewise with 5 treatment groups and 20 observations in a standard ANOVA, we would 
eliminate 5 of 20 orthogonal contrasts leaving 20-5 or 15 orthogonal contrasts to compute the REML or 
Residual Maximum Likelihood Estimate.  The red curve in Figure 3 uses this REML estimate for the 
variance.  Clearly it does not maximize the usual likelihood but it does maximize the residual likelihood. The 
normal density formula is  
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and for each of the 4 densities one can insert the mean and variance into f(y) then evaluate this at the 4 Y 
data points or the 3 Z contrasts then multiply these 4 (or 3) numbers together to compute the likelihood.  
Here are the results for the 4 curves (labeled by the curve color) for each of our two methods: 
 
Likelihoods for 4 data points:  
red=0.0002595289  blue=0.000279844   green=0.0000638847  black=0.0000160913 
 
Likelihoods for 3 REML contrasts:  
red=0.0014053317  blue=0.0013123199  green=0.000640541 black=0.0002420086 
 
As expected the red curve (variance 14/3) maximizes the REML likelihood while the blue curve (variance 
14/4) maximizes the likelihood.  
 
Once the 4 observations or the 3 contrast values are inserted into the likelihood (residual likelihood) the 
result is a function of μ and σ2 (or just σ2) that can be plotted against various values of μ and/or σ2 to find a 
maximum.  Instead one often plots -2ln(L) where L is one of the two forms of likelihood and looks for a 
minimum.  The reason for this is that in large samples, the difference between -2ln(L) for a full model and 
 -2ln(L) for a reduced model is approximately a Chi-square under the null hypothesis corresponding to the 
restriction provided the restriction sets the parameter to a value strictly inside the interior of the parameter 
space. The degrees of freedom is the number of restricted parameters.  On both likelihood plots, the 80th 
percentile of a Chi-square with 2 (ML) or 1(REML) degrees of freedom is computed and added to the 
minimum -2ln(L) for that plot.  When -2ln(L) exceeds this number it is reset to that number, providing an 



upper “ceiling” to both plots.  The set of points for which -2ln(L) is not truncated, then, forms a type of 95% 
confidence region for the model’s parameters in that this is the set of parameters that would not be rejected 
with a 20% level hypothesis test. This kind of test that compares likelihoods is called a “likelihood ratio test” 
and is very common in statistics.  
 
On each plot (figures 4 A and B) the σ2 estimates for both likelihoods are shown.  Recall that these are 
4.667 for REML and 3.5 for ML.  It should be obvious which one minimizes the plot shown and the other 
serves to illustrate how far apart are the two estimates for this very small sample.  
 
 
Figure 4 A and B: REML likelihood (left, A) and ML (right, B)  
 
          

 
 
 
 
RANDOM EFFECTS: VARIANCE COMPONENT TESTS  
Usually the focus of interest in mixed models is on the fixed effects.  However it is sometimes of interest to 
test a random effect.  Notice again that the likelihood ratio test is justified for restrictions that set a parameter 
to a value strictly inside its parameter space.  Since variances are positive, 0 is on the boundary of the 
parameter space so a test that a variance is 0 is not justified by likelihood ratio theory.  It is also fairly 
common to do a test that, roughly speaking, is an approximation to the likelihood ratio test. Again speaking 
loosely, this test assumes the log likelihood is approximately quadratic in a region near the maximum.  It is 
referred to as a “Wald test” after its inventor and it still has the interior of the parameter space restriction.  
The plots we have seen are clearly not exactly quadratic, but still have a somewhat parabolic (quadratic) 
shape.  The Wald test is available in PROC MIXED with the COVTEST option. For such variance 
component tests, the Wald test is very approximate and should only be used when many levels of the 
random effects have been observed.  Further, one can fit the full and reduced model and compute the 
likelihood ratio test from the -2 log Likelihoods that appear in both outputs.  For REML variance component 
tests, the same fixed effects should appear in both the full and reduced models.   
 
The following SAS programs and partial outputs illustrate these tests for a hypothetical data set on times to 
death of tumor affected rats.  Nine rats from each of 10 families (genetic lines) are randomly assigned to 9 
dose levels of a drug and times to death reported.    
 
Three things are done. First the full model is fit in REML adding the COVTEST option. Next the reduced (no 
family effect) model is fit and the two -2 log Likelihood values are used to construct a likelihood ratio test. 
Despite previous comments lauding PROC MIXED for its handling of random effects as compared to PROC 
GLM, there is still the advantage in GLM that the F test for random effects are exactly distributed as F for 
simple models like this with balanced data.  Recently a TYPE3 option has been added to PROC MIXED that 
enables it to reproduce these exact F tests in the cases in which they are justified. Here we will just use 
PROC GLM to produce the F tests.  
 
 
 



 
Program 1 
 
PROC MIXED DATA=MICE COVTEST;  
CLASS FAMILY DOSE;  
MODEL TIME = DOSE;  
RANDOM FAMILY; 
 
Program 1 partial output 
 
                        The Mixed Procedure 
 
                  Covariance Parameter Estimates 
 
                               Standard         Z 
      Cov Parm     Estimate       Error     Value        Pr Z 
 
      family         8.3191      7.0243      1.18      0.1181 
      Residual      57.6759      9.6127      6.00      <.0001 
 
                          Fit Statistics 
 
               -2 Res Log Likelihood           586.5 
 
The Wald test Z=1.18 does not find a family variance component at the 5% level.  
The statistic -2 Res Log Likelihood  =  586.5 associated with this full model will be compared to that of the 
reduced model.  
 
Program 2 
 
PROC MIXED DATA=MICE;  
CLASS FAMILY DOSE;  
MODEL TIME = DOSE; 
 
Program 2 partial output 
 
                    Covariance Parameter 
                           Estimates 
                     Cov Parm     Estimate 
                     Residual      65.9951 
 
                        Fit Statistics 
             -2 Res Log Likelihood           589.9 
 
The likelihood ratio test is 589.9-586.5 =  3.4 and for a Chi-square with 1 degree of freedom we can compute 
the p-value 0.065196 for this result.  While we still do not find a family variance component at the 5% level 
we come a lot closer to doing so here than with Wald.  Results in Self and Liang (1987) suggest that in the 
case a single variance component is restricted to 0 under the null hypothesis, the boundary effect implies 
that the p-value can be divided in half, giving p-value 0.0376 and implying that there is a family variance 
component. In setting several parameters to their boundary values, the complexity of Self and Liang’s 



results make it extremely difficult to compute the proper adjustment. Finally, we look at the exact F test from 
PROC GLM, which could be reproduced in PROC MIXED with the proper METHOD=TYPE3 option.  
 
Program 3:  
 
PROC GLM DATA=MICE;  
CLASS FAMILY DOSE;  
MODEL TIME = DOSE FAMILY;  
run; 
 
Program 3 partial output:  
 
Dependent Variable: time 
 
                             Sum of 
Source             DF       Squares   Mean Square  F Value  Pr > F 
Model              17   5761.155556    338.891503     5.88  <.0001 
Error              72   4152.666667     57.675926 
Corrected Total    89   9913.822222 
 
Source             DF   Type III SS   Mean Square  F Value  Pr > F 
DOSE                8   4568.222222    571.027778     9.90  <.0001 
family              9   1192.933333    132.548148     2.30  0.0249 
 
The F test is not only exact, it also gives the strongest evidence yet of a family effect (p-value 0.0249).  
Notice that this difference is not because of different error estimates.  The MSE here, 57.6759, is exactly the 
same as the corresponding residual variance component estimate from PROC MIXED.  Using expected 
mean squares, the PROC GLM estimate of the family variance component is (132.548148-57.675926)/9 = 
8.31913, the same as PROC MIXED.  
 
The question now arises as to whether this behavior is typical.  To investigate, we use 1000 runs of the 
model above, putting out the COVTEST values as well as the GLM values, for family variance component 
equaling the error variance times 0, 0.25, 1, 4, 9, and 16.   
 
Figure 5: Wald p-values vs. F p-values 
 

 
 



 
In Figure 5  are the P-values for the Wald Z test, divided by 2.  These are plotted against the p-values for the 
F test and a different symbol is used for each block standard deviations 0, 1/6, 1/4, 1/2, 1, 2, and 3.  The 
crosshairs are at 0.05 on each axis.  Note that they all seem to lie along a smooth curve.  
 
In the upper left quadrant are points that would reject the 0 block effects hypothesis with F but not with the 
Wald Z, even after dividing by 2.  The lower right quadrant is empty indicating that Z never found block 
effects when F did not.  Also notice that all the points seem to lie along the same curve of rejection 
probabilities.  The different symbols suggest that as the actual block variance grows, the p-values move left 
along this curve so that more and more fall into the lower left quadrant indicating rejection by both F and Z 
(that is, increasing power).  To see this effect more clearly, in Figure 6 the sets of points for the different 
block standard deviations were shifted by moving the sets of points with smaller standard deviations to the 
left and with larger to the right.  The horizontal axis no longer retains much meaning but with the collections 
of points thus spread, it is clear how the larger standard deviations (lower right sets of points in magenta 
circles and orange diamonds) are moving both tests into their rejection regions (left and below the 
crosshairs) while the smaller block standard deviations (small black dots toward the upper left) have only a 
few points falling into the lower left quadrant where both tests reject the hypothesis of no block variability.  
The sizes of the plot symbols also increase with increasing block standard deviation.  
 
 
 
Figure 6: Wald p-values vs. Shifted F p-values 
 

 
 
 
The proportion of points falling left of the vertical crosshair (F) or below the horizontal (Z) gives the empirical 
power of the test.  Graphing this power for the F test, the Z test with the dividing by 2 rule, as well as the 
likelihood ratio test with the dividing by 2 rule against the block standard deviation produces the power plot, 
figure   7 . 
 
 
 
 
 
 
 
 
 
 



Figure 7: Powers of F, Wald, and Likelihood Ratio Tests 
 
 

 
 
The connected black dots are the F test results while the green diamonds, which are about the same as the 
dots, are the likelihood ratio results. The red circles are the Wald Z tests and we see that the Z test has 
somewhat less power.  As the number of blocks drops, the difference between Z and the other two becomes 
much more dramatic.  My recommendation is to use F when available (Type III method in PROC MIXED) as 
it has an exact F distribution under the null hypothesis.   
 
UNBALANCED DATA 
A nice feature of MIXED is that you use the same code whether the data are balanced or not.  To illustrate, I 
use another artificial dataset.  Suppose I have 3 types of earplugs to test on a noisy factory floor.  My 
concern is with temporary hearing loss after an 8 hour shift in the factory.  I can test each ear separately and 
want to do a randomized complete block study using workers in a shift as blocks, but unless I can find 
workers with 3 ears, I cannot get complete blocks.  I enlist 7 workers (blocks, random effects) and assign 
each to 2 different ear plugs. Here are the data, including hearing loss and which ear was used.  
Each row has 2 nonmissing values (2 ears per worker) 
 
  
Table of Temporary Hearing Losses 
 
 Plugs  

-------------- 
 Workers  

         I          II    III 

   A 25 L - 22 R 
   B 19 L  8 R  - 
   C  -  7 L  7 R 
   D 29 R 23 L  - 
   E  - 16 R  14 L 
   F 16 R  -  12 L 
   G 25 L 24 R  - 

 
 
 
 
 
 
 
 
 
 
 
PROC GLM treats WORKER as fixed for the estimation part, even if you have issued a random statement.  
In the analysis of variance table, then, the Type III F test for PLUG would be adjusted for WORKER, that is, 
it is a completely within worker comparison.  For example, using only workers with plugs I and II we compare 
(19+29+25)/3 to (8+23+24)/3, a difference of (73-55)/3 = 6 and this estimate does not involve worker effects 
(but it is also not the best estimate delivered by PROC GLM where blocks are treated as fixed). There is 
information in comparing the sum of Worker A’s numbers (Plug I + Plug III), 47 to that of worker E (Plug 
II+Plug III), 30.  The difference, 47-30=17, estimates the Plug I versus Plug II difference but the error therein 



involves the difference of two worker effects plus the difference of errors for the two workers whereas in 
PROC GLM, the comparison  has a standard error not involving worker effects because they have been 
mathematically eliminated.  PROC MIXED automatically combines the information between and within 
blocks in an optimal way. In this particular example this is just enough to drop the p-value for Plugs from just 
above 0.05 (GLM) to just below (MIXED).  Here is the code and partial output:  
 
 
proc glm;  class plug worker;   
model loss = worker plug;  Random Worker; 
Estimate "I vs III - GLM" Plug -1 0 1;  run; 
proc mixed;  class plug worker;  
model Loss=Plug;  Random Worker;  
Estimate "I vs III - Mixed" Plug -1 0 1; run; 
 
 
Relevant GLM output:  
 
Dependent Variable: Loss 
 
                               Sum of 
 Source              DF       Squares   Mean Square  F Value  Pr > F 
 
 Model                8   666.3705357    83.2963170    13.50  0.0054 
 Error                5    30.8437500     6.1687500 
 Corrected Total     13   697.2142857 
 
 Source              DF   Type III SS   Mean Square  F Value  Pr > F 
 
 worker               6   451.9062500    75.3177083    12.21  0.0074 
 plug                 2    62.6562500    31.3281250     5.08  0.0625 
 
                                    Standard 
Parameter             Estimate         Error    t Value    Pr > |t| 
I vs III - GLM     -4.81250000    1.96353476      -2.45      0.0579 
     
The Type I and III sums of squares are not the same.  Type III is the one to use here.  It just fails to show 
Plug effects at the 0.05 level. The RANDOM statement has no effect on any of this.  An estimate of the 
difference in hearing loss between plugs I and III also shows no significance.  
 
 
Relevant MIXED output: 
  
 
                     Covariance Parameter 
                            Estimates 
 
                      Cov Parm     Estimate 
 
                      worker        37.5785 
                      Residual       6.1674 
 



                  Type 3 Tests of Fixed Effects 
 
                        Num     Den 
          Effect         DF      DF    F Value    Pr > F 
 
          plug            2       5       5.79    0.0499 
 
                            Estimates 
 
                             Standard 
Label              Estimate     Error    DF   t Value  Pr > |t| 
 
I vs III - Mixed    -5.2448    1.9347     5     -2.71    0.0422 
 
The F test and I vs. III estimate are now significant.  The estimate itself is different as it combines within and 
between block information.  The standard error is also slightly different. The residual variance estimates, 
6.1688 and 6.1674, differ slightly as well.  In unbalanced data this is typical and unlike what we saw for the 
balanced data. The estimate of the worker variance component from GLM using expected mean square 
information (not shown) is (75.3177 – 6.1688)/1.8333 =  37.7177, slightly differing from the 37.5785 given by 
PROC MIXED.    
 
RANDOM COEFFICIENT MODELS 
PROC MIXED also allows the estimation of an overall relationship, a line for example, relating Y (let’s say 
blood pressure) to X (dose of a drug) over all patients.  In many cases, each patient has their own line and it 
might make sense to think of the slopes and intercepts from these lines as including random deviations from 
the overall slope and intercept.  In the case of lines, for data with Y and X positive, one might expect patients 
with higher than average slopes to have lower than average intercepts.  Thus the 2x2 covariance matrix 
between the slope and intercept deviations would be expected to show a negative covariance off the 
diagonal.  There would be no reason to expect the slopes and intercepts to have the same variance either 
so a 2x2 unstructured matrix would usually be fitted to the model, using the REPEATED statement in 
PROC MIXED.  
 
As a last example, here are some real data and a random coefficients model with a small twist: the fitted 
function has to be periodic to make sense.  
 
Example:  Black Bears 
A study of activity levels in black bears was done by Francesca Antonelli, a visiting researcher in zoology at 
North Carolina State University in 2001 who kindly shared the data used here.  Black bears were 
anesthetized and fitted with transmitter collars. These collars allowed the researcher to monitor the bear 
activity in terms of movement. Movement above a certain level was categorized as VA – Very Active and an 
assessment of the activity category was made every 5 minutes for each of 12 bears for a lilt over 10 days 
(2884 observations per bear). 
 
In modeling these data some interesting features must be accounted for. Interest lies in describing the within 
day pattern of activity for the bears.  First, the time of day would not be useful as a linear predictor.  As time 
goes from 0 to 24 hours in 5 minute steps, either a linear increase or decrease will result in an unreasonable 
discontinuity as we pass the midnight point going into the next day.  We need a periodic function of period 
24 hours if the model is to be believable.  One possibility is to use sin(2πjt/24).  When j is 1 this goes 
through one cycle per day, j=2 gives 2 per day etc.  The problem with just using sines is that for a given 
amplitude, the predicted response is then forced to be half way between its high and low value exactly at 
midnight.  This is unreasonable for many situations.  To fit the data well, it may be necessary to move the 
sine wave right or left in addition to adjusting its amplitude to fit the data.  This gives something called a 
sinusoid – it is a shifted sine wave with the shift being called a “phase” shift.  
 
A fact from trigonometry is that  sin(A+B) = cos(B)sin(A) + sin(B)cos(A) so if the rotation angle is A = 2πjt/24 
and the phase shift B (we would also have an amplitude C) then we see that Csin(2πjt/24 + B) = 



[Ccos(B)]sin(2πjt/24) + [Csin(B)]cos(2πjt/24) or β1 sin(2πjt/24) + β2 cos(2πjt/24).  For example, 
Figure  8  shows, using black dots, a sine wave of period 1 day.  
 
FIGURE 8: PURE SINUSOIDS 
 

                              
 
It is easy to create variables S= sin(2πjt/24)  and C= cos(2πjt/24) in the data set then regress Y on S and C.  
The results are: 
 
                                Analysis of Variance 
 
                                        Sum of           Mean 
    Source                   DF        Squares         Square    F Value    Pr > F 
 
    Model                     2     7212.84270     3606.42135      Infty    <.0001 
    Error                   574              0              0 
    Corrected Total         576     7212.84270 
 
                                 Parameter Estimates 
 
                              Parameter       Standard 
         Variable     DF       Estimate          Error    t Value    Pr > |t| 
 
         Intercept     1       10.00000              0      Infty      <.0001 
         S             1        3.48353              0      Infty      <.0001 
         C             1        3.58678              0      Infty      <.0001 
 
The fit is perfect (0 error sum of squares) and both the sine and cosine are needed. Since 3.5868/3.4835 is 
the tangent of the phase shift angle and is just over 1, the phase shift must be a little over 45 degrees.  The 
figure also shows, in green, the sum of the black sinusoid with a second that goes through 2 cycles per year.   
The result is another periodic function with period 24 hours but now having a little more interesting pattern. 
The multiple period per day waves, like the one added to the black sinusoid, are called harmonics of the 
fundamental frequency. With enough harmonics (2 per day, 3 per day, 4 per day …) we can get arbitrarily 
close to any reasonably smooth periodic function.  
 
With this background in mind, we fit a model with a fundamental sine wave and a few harmonics, this being 
thought of as a fixed effect diurnal pattern across all bears, and then sinusoidal deviations for each individual 
bear.  We will assume these random coefficients, be they sines or cosines, high or low frequency, come 
from the same normal distribution. Different variances for different frequencies could also be tried and would 



be a sensible approach but with a large number of effects to be estimated.  Convergence problems can 
occur as models grow more complex. These can be data problems or the result of accidentally introducing 
an exact dependency in the model.  For illustration, we stick with the simple model.  Using a single variance 
component for all the trigonometric components, we: 
 

(1) Use the repeated statement interacting all of our sines and cosines (continuous    
     variables) with the class variable BEAR 
 

 (2) Force a structure IσTrig
2 on these deviations by specifying TYPE=TOEP(1).  

 
We use σtrig

2 to denote the common variance of all the trigonometric function random coefficients. A Toeplitz 
matrix has a “striped” appearance like this:  
 

a b c
b a b
c b a

⎛ ⎞
⎜ ⎟
⎜
⎜ ⎟
⎝ ⎠

⎟  and TOEP(1) in SAS means that only the first letter (a) is nonzero. 

 
Here is the model statement  
 
ods output solutionR=BLUPbear;  
proc mixed data=bears covtest;  
   class bear;    
   model Y = s1--c4/solution outpm=means outp=pbear;  
   random bear;  
   random s1*bear c1*bear s2*bear c2*bear s3*bear  
          c3*bear s4* ar c4*bear be  
          /type=toep(1) solution; run; quit; 
 
Here s1 and c1 are the fundamental sine and cosine waves with the other s and c variables giving 3 
harmonics. The command outpm=means creates a dataset with the fixed sinusoid common to all bears as 
well as upper and lower confidence limits.  That plot is shown in Figure 9 
 
Figure 9: Bear Diurnal Activity Levels – Fixed Part. 
 

 



The command outp=bear creates a dataset that adds in the random effects, adjustments to the curve, for 
each bear.  These are not the same as would be obtained by fitting sinusoids to each bear as these have 
had the same kind of BLUP adjustment shown earlier.  A plot of these individual bear curves is shown below 
in Figure 10.   Some bears have activity patterns differing somewhat what from the norm. Finally, because 
the response is 0-1, the pattern indicates a probability of being very active at any given time.  Thus a logistic 
approach, a generalized linear mixed model, is an alternative and perhaps preferred method for modeling 
these data.  
 
Figure 10: Bear Diurnal Activity Pattern with Individual (BLUP) Effects. 

 
Having called for solutions and using ODS to output them, we can print those with p-values less than 
0.0001.  These identify bears that have somewhat different patterns than average.   We find several of 
these.  There are more than 10,000 data points going into the model and thus we expect good statistical 
power for our tests.  Even small magnitude effects can be statistically significant.  
 
It should also be noted that the 0-1 response variable was not transformed with a logistic function as would 
be done in logistic regression.  Nevertheless, the predictions from the model fall into the 0-1 range nicely.  
The following list shows the individuals that are different than the average bear. 
 
                                              StdErr 
      Obs    Effect     bear    Estimate        Pred      DF     tValue     Probt 
 
        1    bear       192      -0.1189     0.02872    11E3      -4.14    <.0001 
       22    s2*bear    396      0.08687     0.02339    11E3       3.71    0.0002 
       24    s3*bear    396      -0.1047     0.02339    11E3      -4.47    <.0001 
       40    s2*bear    414      -0.1601     0.03248    11E3      -4.93    <.0001 
       42    s3*bear    414       0.1308     0.03248    11E3       4.03    <.0001 
       60    s3*bear    432      -0.1094     0.03247    11E3      -3.37    0.0008 
       65    s1*bear    437     -0.09941     0.02134    11E3      -4.66    <.0001 
       91    bear       465      -0.1702     0.03234    11E3      -5.26    <.0001 
       94    s2*bear    465       0.1461     0.03246    11E3       4.50    <.0001 
      101    s1*bear    491      0.09137     0.02340    11E3       3.91    <.0001 
 



 
CONCLUSIONS 
PROC MIXED uses REML estimation and thus has some nice properties in terms of getting 
reasonable estimates of variance components, computing BLUPs, and automatically adjusting 
fixed effects tests for complex variance structures. Interesting kinds of models that would not be 
possible to fit without computer intensive methods, can now be fit. A rather broad set of statistical 
models fit into the MIXED framework.  
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