
1 

Paper 17-2010 

 
Building Match Code Using SAS® 

David Li, Prime Therapeutics, Eagan, MN 
 

Abstract  
 
Business analysis frequently entails joining data from different sources.  Oftentimes, the linkage must be made based 
on a customer’s name and address data.  A SAS name and address match code can accomplish this task and move 
the project forward without interruption.   
 
This paper highlights three concepts: (1) modular design, (2) looped sequential processing, and (3) the parsing of 
data elements.  SAS Macros can compactly implement the basic match code.  They organize the code modules and 
perform a sequence of tasks against a single input record at a time.  Macros also manipulate the parsing and 
transforming of text strings into the final match code.  The programming techniques necessary to move a data 
element through the various stages are discussed in detail.   
 
This paper details the process of parsing a sub element from a specific variable of a data set, converting a data set 
variable into a macro variable, and storing a macro variable value as a record within a data set, and provides other 
useful tips as well. 
 

Introduction  
 
Business analysis is employed in many different sectors to forecast customer behavior.  In the retail sector, 
merchants attempt to predict which customers will make another purchase.  Telecom carriers want to know which 
subscribers will churn (cancel service).  In healthcare, pharmacy benefit managers (PBMs) want to identify which 
members will use the mail channel to fill their prescriptions.  All of these businesses need a great deal of information 
about their customers to build the best predictive models.   
 
Analytics cannot take place without data.  Grouping all relevant information about a customer is an important data 
management activity.  The bulk of the information for analysis usually comes from internal transaction data.  
However, some external data are very predictive.  The insurance industry’s use of credit information to predict driver 
behavior is a prime example.  Name and address matching is frequently utilized to link information from diverse 
sources.  Once disparate customer information has been joined, it can be analyzed using a universal customer 
identifier.    
 
Similar examples of the need for comprehensive customer data are readily found in banking, nonprofits, and other 
industries.  Accurate customer data is needed not only for analytics, but also for operational efficiency in customer 
service centers, the creation of customized marketing messages, modeling of customer lifetime values, and mailing of 
private health information.  Finally, the combined data set yields an information value greater than the sum of its 
parts.  High value analytic processes such as predictive modeling, forecasting, and healthcare benefit design are all 
ravenous consumers of data.   
 

The Basic Concept 
 
Match code creates a standard view for different renderings of the same information.  Its algorithm must account for 
different name and address formats and deal with transcribing errors.  The probability of a correct match is increased 
by focusing on the initial of the last name, the numeric part of the address, and the 5-digit zip code.   
 
The general matching process is described as follows: 
 

1. Count the number of records in an input file. 

2. Loop through the input file and process each record individually. 

3. Convert specific variable values in the record into macro variables. 

4. Modify the macro variables in accordance with the match code logic. 

5. Combine components into one match code per record. 

6. Save the match code results to the output file. 

7. Repeat the sequence for all input files. 

8. Join the different data files using the match code. 

 
The match code building process starts with two or more differing customer data files.  Each of these files contains 
some non-overlapping information that we wish to combine to create a new view of the customer.  To match the files 
based on name and address, last name (LastName), address (Address), and zip code (ZipCd) are used to build the 



2 

match code.  These three data elements allow accurate matching at the household level.  Additional data fields may 
be needed to link the generated match code to other data tables.  
 
A sample input file may look like the data table below. 
 
LastName ZipCD  Address    UniqueID 
LANE  55408 3241 E CALHOUN CIRCLE 001 
SMITH  55666 12584 PARK AVE  002 
 
A data preparation step is needed here, so that the letters are all capitalized and special characters removed.  It is 
considerably easier to prepare the data as a separate step than to try and anticipate all possible variations.   
 

Building Macro Modules 
 
To implement the match code algorithm, macro modules are first sketched out using pseudo code.  From an initial 
rough outline, details are iteratively developed to refine the coding tasks.  The design of the main macro module 
greatly influences the fit of the other components.  This code starts by determining how many times to call a yet 
unknown process, “process each record,” to create the match code.  Then it stores the returned values.   
 
%macro MatchBld(dsin, dsout); 

      Count the number of records (N). 

      Create a do loop to process the input file N times. 

          Process each record. 

          Create a temporary table, once, to hold the processed outputs. 

          Insert data into the temporary table one record at a time. 

      End do loop. 

      Create the output data set containing the final match code. 

%mend; 

 
Once the programming logics have been worked out in the pseudo code, SAS coding can begin.  The %MatchBld 
(Match code Build) macro obtains two pieces of information from its macro parameters.  The input data set name 
(dsin or data set in) tells the program where to find the name and address data for processing.  The output data set 
name (dsout or data set out) tells it where to write the results of the newly created match code.   
 
The SQL Procedure’s SELECT INTO statement is used to produce a count of how many records are in the input data 
set.  It converts the count from a descriptive statistic into a value held by a macro variable, NCNT.  The NOPRINT 
option is chosen to prevent the default output from being displayed.   
 
NCNT tells the Do Loop how many times to call the macro that will “process each record.”  The LastName and 
Address variables are modified separately and then stored together in an output data set.  We will cover these 
processes in more depth later. 
 
The match code is designed to process each record sequentially.  In each sequence, it transforms three (3) different 
input variables into a single match code variable.  The %ObsLp (Observation Loop) macro is used to “process each 
record.”  It routes the variables through additional macro modules that modify the different input variables into match 
code components.  The modified results are returned to the main macro, %MatchBld, for final assembly.   
 
A temporary data table is created when %MatchBld’s Do Loop is executed.  To create the table only once, the macro 
statement %IF, %THEN and %ELSE is applied to branch off the first pass-through, where the table creation takes 
place.  After the first pass, the INSERT INTO SQL statement saves the modified LastName and Street Address 
values.  It also converts the macro variables &LNCSTNT and &ADDRCSTNT back into variable values to be stored 
as a data file record. 
 
%macro MatchBld(dsin, dsout); 

      proc sql noprint; 

            select count(*) into:NCNT from &dsin; 

      quit; 

      %do i=1 %to &NCNT; 

      %ObsLp(&dsin, &i); 

            %if &I=1 %then %do; 

                  proc sql noprint; 

                        create table MODWORD (LNCSTNT char(32), ADDRCSTNT char(200)); 

                        insert into MODWORD values("&LNCSTNT", "&ADDRCSTNT"); 

                  quit; 

            %end; 

            %else %if &I>1 %then %do; 



3 

                  proc sql noprint; 

                        insert into MODWORD values("&LNCSTNT", "&ADDRCSTNT"); 

                  quit; 

            %end; 

      %end; 

   . 

   .  (Additional data step statements) 

   . 

%mend; 

 

Looped Sequential Processing  
 
Only two of the three input variables, LastName and Address, need to be modified for the match code.  The 5-digit zip 
code, ZipCd, is incorporated into the match code as is, for a specific name, address, and zip code combination.  
Therefore, when creating macro variables from data set variables, our code design calls for LastName and Address 
to be the first step in the looped sequential processing.  These transformation tasks are coordinated by the looping 
macro, %ObsLp. 
 
Creating Macro Variables 

 
Since this match code algorithm is written in SAS Macro, it needs to be able to transition seamlessly between SAS 
data set variables and SAS macro variables.  It creates macro variables from the data set and other inputs through 
four common macro variable creation methods: 
 

1. Passing parameters into a macro module. 

2. Applying SELECT INTO SQL statement. 

3. Applying CALL SYMPUT statement. 

4. Applying %LET statement. 

 
In %MatchBld, we have already encountered methods #1 and #2.  The looping macro, %ObsLp, reads in the ith 
record each time it is called from the input data set.  It then uses the CALL SYMPUT statement to create macro 
variables &LN and &ADDR1 from the data set record.  It calls two more macros, %LNMOD (Last Name Modified) and 
%ADDRMOD (Address Modified), to process the newly created macro name and address variables.  The macro 
variables are then passed as parameters to the new macros. 
 
%macro ObsLp(dsin, i); 

data _NULL_; 

      set &dsin (firstobs=&i obs=&i); 

      call symput('LN', LN); 

      call symput('ADDR1', ADDR1); 

run; 

            %LNMOD(&LN); 

            %ADDRMOD(&ADDR1, ADDROUT); 

%mend; 

 
Since the 5-digit ZipCd is used as is, there is no need to create a transforming macro for it.   
 

Parsing Data Elements 
 

The actual match code building activities are performed in the two macros, %LNMOD and % ADDRMOD.  A generic 
phonetic algorithm generates the LastName match code component.  It uses the first letter of the last name, 
eliminates the second duplicate consonant letter, and converts the 2nd through 6th characters into a predefined 
numeric equivalent.  Then the address variable is transformed at the word level.   
 
In order to affect these changes, LastName is decomposed into individual letters while Address is decomposed into 
individual words.  Parsing out sub elements of LastName and Address and then reconstitute the results is the final 
piece of the puzzle in building match code. 
 
Working with the LastName Variable  

 
The %LNMOD macro dissects the word (text string) and eliminates the duplicate consonant.  It counts the word 
length and uses the count to iterate through a Do Loop and parse out each letter.  Each letter is inserted into a 
temporary SAS data set “letterlist” as a record.  Thus, if the last name is “SMITH,” then the data set “letterlist” would 
contain five records, as shown in the table below.   
 



4 

Letterlist 
S 
M 
I 
T 
H 
 
The INSERT INTO statement from PROC SQL is used to create an individual record of the letters from the  
&WORDIN (Word In) macro variable.  When calling a function within the macro environment, %SYSFUNC is invoked 
to execute the standard SAS functions “LENGTH” and “SUBSTR.”  A SAS data step with a RETAIN statement 
handles the identification of duplicate letters.   
 
The final macro creation method, %LET, can be found in the macro %LNMOD.  
 

%MACRO LNMOD(WORDIN); 

      %global LNCSTNT; 

      %let WORD_LENGTH=%sysfunc(length(&WORDIN)); 

      %do I=1 %to &WORD_LENGTH; 

            %let LETTER=%sysfunc(substr(&WORDIN, &I, 1)); 

            %if &I=1 %then %do; 

                  proc sql noprint; 

                        create table letterlist (LETTER CHAR(32)); 

                        insert into letterlist values("&LETTER"); 

                  quit; 

            %end; 

            %else %if &I>1 %then %do; 

                  proc sql noprint; 

                        insert into letterlist values("&LETTER"); 

                  quit; 

            %end; 

      %end; 

      data letterlist; 

            set letterlist; 

            retain LAST_LETTER; 

            if _N_ = 1 then do; 

                  LAST_LETTER=LETTER; 

                  MOD_LETTER=LETTER; 

            end; 

            else if _N_>1 then do; 

                  if upcase(LAST_LETTER)=upcase(LETTER) then MOD_LETTER=""; 

                  if upcase(LAST_LETTER) ne upcase(LETTER) then MOD_LETTER=LETTER; 

                  LAST_LETTER=LETTER; 

            end; 

            NAME=MOD_LETTER; 

            if NAME ne ""; 

            keep NAME; 

      run; 

      %WordBld(letterlist);  

      %let LNCSTNT=&XVARNM; 

%MEND; 

 
This data set is then processed to reconstitute the letters into a single modified word through the word built macro, 
%WordBld (Word Build).  This technique calls for using CALL SYMPUT to convert each letter’s values, (represented 
in the data set “letterlist”), into a series of macro variables.  The modified last name is realized from variable 
concatenation and compression (removing the blanks).   
 
Building the LastName Match Code Component  

 
The %WordBld macro is a very useful macro routine.  It elegantly creates a series of macro variables from the values 
of a data set and counts the number of records at the same time.  This new arrangement of information allows a 
quick Do Loop to concatenate the letters into a single word text string.  
 
%MACRO WordBld(dsin); 

      %GLOBAL XVarnm; 

      %let XVarNM =; 

      %let N = 0; 



5 

      DATA _NULL_; 

            SET &dsin; 

            if _N_ > 0 then do; 

                  call symput("X_"||LEFT(_N_), NAME); 

                  call symput("N", _N_); 

            end; 

      RUN;  

      %if &N > 0 %then %do; 

            %do i = 1 %to &N; 

                  %let XVarNm = &XVarNm. &&X_&i.; 

            %end; 

            %let XVarNm = %sysfunc(compress(&XVARNM)); 

      %end; 

%MEND; 

 
Working with Address Variable 

 
After the last name has been processed, the looping macro %ObsLp sends the address value to macro %ADDRMOD 
for similar processing.  Using the same concept as employed in the %LNMOD macro, the address value variable is 
parsed into a new temporary data set.   
 
The macro %Decompose (Decompose) decomposes an Address sentence (text string) into its component words.  
The insight that made this macro possible is that we can determine the number of words in a sentence by counting 
the number of spaces between words.  By counting the spaces and adding one (1), we arrive at the number of words 
in an address text string.  Once the word count is established, the CREATE TABLE statement from PROC SQL is 
used to create a SAS data set that holds each word of the Address sentence as an observation.   

 
%MACRO DECOMPOSE(LISTIN, DSOUT); 

%LET I = 1; 

%LET cdh = 0; 

%if %sysfunc(compress(&listin)) = "" %then %let wordcount = 0; 

%else %do; 

      %let wordcount = %eval(%length(%sysfunc(trim(&listin))) -  

                        %length(%sysfunc(compress(&listin))) + 1); 

%end; 

%if &wordcount = 0 %then %do; 

      PROC SQL NOPRINT; 

            CREATE TABLE &DSOUT. (CATEGORY CHAR(100)); 

      QUIT; 

      %let cdh=1;  

%END; 

%else %DO %UNTIL (&cdh = 1); 

    %LET WORD = %SCAN(&LISTIN, &I); 

      %if &i>&wordcount %then %let cdh=1;  

      %ELSE %DO; 

            %IF &I=1 %THEN %DO; 

                  PROC SQL NOPRINT; 

                        CREATE TABLE &DSOUT. (CATEGORY CHAR(100)); 

                        INSERT INTO &DSOUT. VALUES("&WORD."); 

                  QUIT; 

            %END; 

            %ELSE %IF &I. > 1 %THEN %DO; 

                  PROC SQL NOPRINT; 

                        INSERT INTO &DSOUT. VALUES("&WORD."); 

                  QUIT; 

            %END; 

      %LET I = %EVAL(&I + 1); 

      %END; 

%END; 

%MEND; 

 
The output of the %Decompose macro is modified to standardize the street name conventions.  If the street name 
has a numeric component such as “First” or “Second”, these are changed to “1ST” or “2ND.”  The common 
representations for a route are changed to “RT.”  All directional destinations and the typical surface road designation 
(i.e., Street, Road, Ave, etc.) are eliminated.  After the transformation, the word build macro, %WordBld, is once 
again called upon to rebuild the transformed address word. 



6 

 
%macro ADDRMOD(ADDR1, dsin); 

%global ADDRCSTNT; 

%DECOMPOSE(&ADDR1, &dsin); 

proc sql; 

      create table addrout1 as 

      select  

      case when upcase(CATEGORY)="ROUTE" then "RT" 

            when upcase(CATEGORY)="RR" then "RT" 

            when upcase(CATEGORY)="RFD" then "RT" 

            when upcase(CATEGORY)="FIRST" then "1ST" 

            when upcase(CATEGORY)="SECOND" then "2ND" 

            when upcase(CATEGORY)="THIRD" then "3RD" 

   . 

   .  (Additional conversion statements) 

   . 

        else CATEGORY 

        end as NAME 

      from &DSIN 

      where upcase(trim(CATEGORY)) not in ("RURAL", "E", "N", "W", "S", "NE", "SW", 

"SE", "NW", "AVE", "AVENUE", "BLVD", "HWY", "RD", "ROAD", "ST", "STREET", "TNPK", 

"DR", "DRIVE", "TRL", "TRAIL", "CIR", "CIRCLE", "PL", "PLACE", "LANE", "LN", "CT", 

"COURT", 

. . .,  "PLAZA", "PARKWAY", "PKWAY"); 

quit; 

%WordBld(addrout1); 

%let ADDRCSTNT=&XVARNM; 

%mend; 

 

Putting It Together 
 
Once the component parts have been transformed, they are assembled in the %MatchBld macro.  The algorithm is 
built out of the Base SAS data step and should reflect the specific match code algorithm logic that is being 
implemented.  The basic phonetic transformation rules have been around for quite some time, starting with the US 
Census conducted in the late 1800’s.  Many other phonetic schemes have been developed over time.   
 
The result of this match code application is shown below.  The 5-digit zip code, the 6-digit modified last name, and 5-
digit modified address are concatenated together to form the MatchCode output. 
 
LastName        ZipCD            Address            UniqueID           MatchCode 
LANE           55408    3241 E CALHOUN CIRCLE      001        55408L500003241C 
SMITH             55666    12584 PARK AVE                     002        55666S5300012584 
 

Conclusion  
 
While this paper takes you through the process of building a SAS Macro program that solves a real world problem, 
the focus of the discussion is on the various techniques employed to manipulate data elements.  SAS is one of the 
most versatile analytical tools and one of the reasons is its ability to assemble and transform data. 
 
In summary, this paper illustrates the techniques utilized to: 
 

1. Process individual records from an input file outside of a data step. 
2. Create macro variables that contain the record count for an input file. 
3. Extract the value of a specific variable at a specific observation and pass it to a SAS Macro.  
4. Parse out the sub element of a variable and make it available for additional transformation. 
5. Create a series of macro variables with a single CALL SYMPUT statement. 
6. Reconstitute a series of variables into a single text string. 

 
These techniques are demonstrated in the context of building a name and address matching application.  I find that 
analyzing an actual piece of working SAS code is the best way to learn and retain SAS skills, because we then learn 
in context with readymade examples. 
 

Contact Information 
 
Your comments and questions are valued and encouraged.  Contact the author at: 



7 

 
David Li 
Prime Therapeutics LLC 
1305 Corporate Center Drive 
Eagan, MN 55121 
Phone: (612) 777-4873 
Fax: (612) 777-4403 
E-mail: dli@primetherapeutics.com 
Web: http://www.primetherapeutics.com 
 
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are 
trademarks of their respective companies. 


