Paper 144-2010

Hard-to-Find, But Powerful, PROC SQL Features
Kirk Paul Lafler, Software Intelligence Corporation, Spring Valley, California

Abstract

The SQL Procedure contains many powerful and elegant language features for experienced SQL users. This paper
introduces SQL topics that will help users unlock many features, options, and other hard-to-find gems in the SQL
universe. Topics include: conditional logic scenarios using case expressions; techniques on implementing table
integrity constraints; an in-depth analysis of indexes and their uses; complex queries with join and set operators;
integrating DICTIONARY tables with the macro language; and performance tuning techniques to improve query
processing.

Introduction

The SQL procedure is a wonderful tool for querying and subsetting data; restructuring data by constructing case
expressions; constructing and using virtual tables known as a view; access information from Dictionary tables; and
joining two or more tables to explore data relationships. Occasionally, an application problem comes along where the
SQL procedure is either better suited or easier to use than other more conventional DATA and/or PROC step
methods. As each situation presents itself, PROC SQL should be examined to see if its use is warranted for the task
at hand.

Example Tables

The examples used throughout this paper utilize a database of two tables. (A relational database is a collection of
tables.) The data used in all the examples in this paper consists of a selection of movies that I've viewed over the
years. The Movies table consists of six columns: title, length, category, year, studio, and rating. Title, category, studio,
and rating are defined as character columns with length and year being defined as numeric columns. The data stored
in the Movies table is depicted below.

MOVIES Table
Title | Length I Category I Year I Studio [Rating I

1 Brave Heart 177 Action Adventure 1995 Paramount Pictures R

2 Casablanca 103 Drama 1942 MGM / UA PG

& Christmas Yacation 97 Comedy 1983 Warner Brothers PG-13
4 Coming to America 116 Comedy 1988 Paramount Pictures R

5 Dracula 130 Horror 1393 Columbia TriStar R

6 Dressed to Kill 105 Drama Mysteries 1980 Filmways Pictures R

7 Forrest Gump 142 Drama 1994 Paramount Pictures PG-13
g Ghost 127 Drama Romance 1330 Paramount Pictures PG-13
9 Jaws 125 Action Adventure 1975 Universal Studios PG
10 Jurassic Park 127 Action 19393 Universal Pictures PG-13
11 Lethal Weapon 110 Action Cops & Robber 1987 Warner Brothers R

12 Michael 106 Drama 1997 Warner Brothers PG-13
13 | MNational Lampoon's 98 Comedy 1983 Warner Brothers PG-13

Yacation

14 Poltergeist 115 Horror 1982 MGM /7 UA PG

15 Rocky 120 Action Adventure 1976 MGM / UA PG

16 Scarface 170 Action Cops & Robber 1983 Universal Studios R

17 Silence of the Lambs 118 Drama Suspense 1991 QOrion R

18 Star Wars 124 Action Sci-Fi 1977 Lucas Film Ltd PG

19 The Hunt for Red October 135 Action Adventure 1989 Paramount Pictures PG

20 The Terminator 108 Action Sci-Fi 1384 Live Entertainment R

21 The Wizard of Oz 101 Adventure 1939 MGM / UA G

22 Titanic 194 Drama Romance 1997 Paramount Pictures PG-13

The data stored in the ACTORS table consists of three columns: title, actor_leading, and actor_supporting, all of

which are defined as character columns. The data stored in the Actors table is illustrated below.

ACTORS Table

Title Actor_Leading Actor_Supporting
1 Brave Heart Mel Gibson Sophie Marceau
2 Christmas Yacation Chevy Chase Beverly D'Angelo
3 Coming to America Eddie Murphy Arsenio Hall
4 Forrest Gump Tom Hanks Sally Field
5 Ghost Patrick Swayze Demi Moore
B Lethal Weapon Mel Gibson Danny Glover
7 Michael John Travolta Andie MacDowell
8 National Lampoon's Vacation Chevy Chase Beverly D'Angelo
9 Rocky Sylvester Stallone Talia Shire
10 Silence of the Lambs Anthony Hopkins Jodie Foster
11 The Hunt for Red Dctober Sean Connery Alec Baldwin
12 The Terminator Arnold Schwarzenegge Michael Biehn
13 Titanic Leonardo DiCaprio Kate Winslet

Constructing SQL Queries to Retrieve and Subset Data
PROC SQL provides simple, but powerful, retrieval and subsetting capabilities. From inserting a blank row between
each row of output, removing rows with duplicate values, using wildcard characters to search for partially known
information, and integrating ODS with SQL to create nicer-looking output.

Inserting a Blank Row into Output

SQL can be made to automatically insert a blank row between each row of output. This is generally a handy feature
when a single logical row of data spans two or more lines of output. By having SQL insert a blank row between each
logical record (observation), you create a visual separation between the rows — making it easier for the person
reading the output to read and comprehend the output. The DOUBLE option is specified as part of the SQL
procedure statement to insert a blank row and is illustrated in the following SQL code.

SQL Code

PROC SQL DOUBLE;
SELECT *

FROM MOVIES

ORDER BY category;
QUIT;

Removing Rows with Duplicate Values

When the same value is contained in several rows in a table, SQL can remove the rows with duplicate values. By
specifying the DISTINCT keyword prior to the column that is being selected in the SELECT statement automatically
removes duplicate rows as illustrated in the following SQL code.

SQL Code

PROC SQL;

SELECT DISTINCT rating
FROM MOVIES;

QUIT;

Using Wildcard Characters for Searching

When searching for specific rows of data is necessary, but only part of the data you are searching for is known, then
SQL provides the ability to use wildcard characters as part of the search argument. Say you wanted to search for all
movies that were classified as an “Action” type of movie. By specifying a query using the wildcard character percent
sign (%) in a WHERE clause with the LIKE operator, the query results will consist of all rows containing the word
“ACTION” as follows.

SQL Code

PROC SQL;
SELECT title, category
FROM MOVIES
WHERE UPCASE (category) LIKE ‘$ACTION%’ ;
QUIT;

Phonetic Matching (Sounds-Like Operator =*)

A technique for finding names that sound alike or have spelling variations is available in the SQL procedure. This
frequently used technique is referred to as phonetic matching and is performed using the Soundex algorithm. In Joe
Celko’s book, SQL for Smarties: Advanced SQL Programming, he traced the origins of the Soundex algorithm to the
developers Margaret O’Dell and Robert C. Russell in 1918.

Although not technically a function, the sounds-like operator searches and selects character data based on two
expressions: the search value and the matched value. Anyone that has looked for a last name in a local telephone
directory is quickly reminded of the possible phonetic variations.

To illustrate how the sounds-like operator works, let's search each movie title for the phonetic variation of “Suspence”
which, by the way, is spelled incorrectly. To help find as many (and hopefully all) possible spelling variations, the
sounds-like operator is used to identify select similar sounding hames including spelling variations. To find all movies
where the movie title sounds like “Suspence”, the following code is used:

SQL Code

PROC SQL;
SELECT title, category, rating
FROM MOVIES
WHERE category =* ‘Suspence’;
QUIT;

Case Logic

In the SQL procedure, a case expression provides a way of conditionally selecting result values from each row in a
table (or view). Similar to an IF-THEN construct, a case expression uses a WHEN-THEN clause to conditionally
process some but not all the rows in a table. An optional ELSE expression can be specified to handle an alternative
action should none of the expression(s) identified in the WHEN condition(s) not be satisfied.

A case expression must be a valid SQL expression and conform to syntax rules similar to DATA step SELECT-
WHEN statements. Even though this topic is best explained by example, let’s take a quick look at the syntax.

CASE <column-name>
WHEN when-condition THEN result-expression
<WHEN when-condition THEN result-expression> ..

<ELSE result-expression>
END

A column-name can optionally be specified as part of the CASE-expression. If present, it is automatically made
available to each when-condition. When it is not specified, the column-name must be coded in each when-condition.
Let's examine how a case expression works.

If a when-condition is satisfied by a row in a table (or view), then it is considered “true” and the result-expression
following the THEN keyword is processed. The remaining WHEN conditions in the CASE expression are skipped. If a
when-condition is “false”, the next when-condition is evaluated. SQL evaluates each when-condition until a “true”
condition is found or in the event all when-conditions are “false”, it then executes the ELSE expression and assigns
its value to the CASE expression’s result. A missing value is assigned to a CASE expression when an ELSE
expression is not specified and each when-condition is “false”.

”, “Fun”, “Scary”, or
is desired for each of the movies. Using the movie’'s category (CATEGORY) column, a CASE expression is
constructed to assign one of the desired values in a unique column called TYPE for each row of data. A value of
‘Exciting’ is assigned to all Adventure movies, ‘Fun’ for Comedies, ‘Scary’ for Suspense movies, and blank for all
other movies. A column heading of TYPE is assigned to the new derived output column using the AS keyword.

In the next example, let's see how a case expression actually works. Suppose a value of “Exciting

3

SQL Code

PROC SQL;
SELECT TITLE,
RATING,
CASE
WHEN CATEGORY = ‘Adventure’ THEN ‘Exciting’
WHEN CATEGORY ‘Comedy’ THEN ‘Fun’
WHEN CATEGORY ‘Suspense’ THEN ‘Scary’
ELSE ‘'
END AS TYPE
FROM MOVIES;
QUIT;

In another example suppose we wanted to determine the audience level (general or adult audiences) for each movie.
By using the RATING column we can assign a descriptive value with a simple Case expression, as follows.

SQL Code

PROC SQL;
SELECT TITLE,
RATING,
CASE RATING
WHEN ‘G’ THEN ‘General’
ELSE ‘Other’
END AS Audience_Level
FROM MOVIES;
QUIT;

Creating and Using Views

Views are classified as virtual tables. There are many reasons for constructing and using views. A few of the more
common reasons are presented below.

Minimizing, or perhaps eliminating, the need to know the table or tables underlying structure

Often a great degree of knowledge is required to correctly identify and construct the particular table interactions that
are necessary to satisfy a requirement. When this prerequisite knowledge is not present, a view becomes a very
attractive alternative. Once a view is constructed, users can simply execute it. This results in the underlying table(s)
being processed. As a result, data integrity and control is maintained since a common set of instructions is used.

Reducing the amount of typing for longer requests

Often, a query will involve many lines of instruction combined with logical and comparison operators. When this
occurs, there is any number of places where a typographical error or inadvertent use of a comparison operator may
present an incorrect picture of your data. The construction of a view is advantageous in these circumstances, since a
simple call to a view virtually eliminates the problems resulting from a lot of typing.

Hiding SQL language syntax and processing complexities from users

When users are unfamiliar with the SQL language, the construction techniques of views, or processing complexities
related to table operations, they only need to execute the desired view using simple calls. This simplifies the process
and enables users to perform simple to complex operations with custom-built views.

Providing security to sensitive parts of a table

Security measures can be realized by designing and constructing views designating what pieces of a table's
information is available for viewing. Since data should always be protected from unauthorized use, views can provide
some level of protection (also consider and use security measures at the operating system level).

Controlling change / customization independence

Occasionally, table and/or process changes may be necessary. When this happens, it is advantageous to make it as
painless for users as possible. When properly designed and constructed, a view modifies the underlying data without
the slightest hint or impact to users, with the one exception that results and/or output may appear differently.
Consequently, views can be made to maintain a greater level of change independence.

Types of Views

Views can be typed or categorized according to their purpose and construction method. Joe Celko, author of SQL for
Smarties and a number of other SQL books, describes views this way, "Views can be classified by the type of
SELECT statement they use and the purpose they are meant to serve." To classify views in the SAS® System
environment, one must also look at how the SELECT statement is constructed. The following classifications are
useful when describing a view's capalbilities.

Single-Table Views
Views constructed from a single table are often used to control or limit what is accessible from that table. These views
generally limit what columns, rows, and/ or both are viewed.

Ordered Views
Views constructed with an ORDER BY clause arrange one or more rows of data in some desired way.

Grouped Views

Views constructed with a GROUP BY clause divide a table into sets for conducting data analysis. Grouped views are
more often than not used in conjunction with aggregate functions (see aggregate views below).

Distinct Views
Views constructed with the DISTINCT keyword tell the SAS System how to handle duplicate rows in a table.

Aggregate Views

Views constructed using aggregate and statistical functions tell the SAS System what rows in a table you want
summary values for.

Joined-Table Views

Views constructed from a join on two or more tables use a connecting column to match or compare values.
Consequently, data can be retrieved and manipulated to assist in data analysis.

Nested Views
Views can be constructed from other views, although extreme care should be taken to build views from base tables.

Creating Views

When creating a view, its name must be unique and follow SAS naming conventions. Also, a view cannot reference
itself since it does not already exist. The next example illustrates the process of creating an SQL view. In the first
step, no output is produced since the view must first be created. Once the view has been created, the second step
executes the view, G_MOVIES, by rendering the view’s instructions to produce the desired output results.

SQL Code

PROC SQL;
CREATE VIEW G_MOVIES AS
SELECT title, category, rating
FROM MOVIES
WHERE rating = ‘G’
ORDER BY movie no;
SELECT *
FROM G_MOVIES;
QUIT;

Exploring Dictionary Tables

The SAS System generates and maintains valuable information at run time about SAS libraries, data sets, catalogs,
indexes, macros, system options, titles, and views in a collection of read-only tables called dictionary tables. Although
called tables, Dictionary tables are not real tables. Information is automatically generated at runtime and each table’s
contents are made available once a SAS session is started.

The contents from Dictionary tables permit a SAS session’s activities to be easily accessed and monitored through
the construction of simple queries. This becomes particularly useful in the design and construction of software
applications since the information can be queried and the results acted upon in a specific task such as in the
allocation of filerefs or librefs.

SAS users can quickly and conveniently obtain useful information about their SAS session with a number of read-only
SAS data views called DICTIONARY tables. At any time during a SAS session, DICTIONARY tables can be used to
capture information related to currently defined libnames, table names, column names and attributes, formats, and
much more. DICTIONARY tables are accessed using the libref DICTIONARY in the FROM clause of a PROC SQL
SELECT statement. The name of each DICTIONARY table and view along with its purpose are presented below.

DICTIONARY Tables and Purpose

DICTIONARY table Purpose
e e ——

CATALOGS
CHECK_CONSTRAINTS

COLUMNS

CONSTRAINT_COLUMN_USAGE

CONSTRAINT_TABLE_USAGE
DICTIONARIES

EXTFILES

FORMATS

GOPTIONS

INDEXES

LIBNAMES

MACROS

MEMBERS

OPTIONS
REFERENTIAL_CONSTRAINTS
STYLES
TABLE_CONSTRAINTS
TABLES

TITLES

VIEWS

Provides information about SAS catalogs.

Provides check constraints information.

Provides information about column in tables.

Provides column integrity constraints information.

Provides information related to tables with integrity constraints defined.
Provides information about all the DICTIONARY tables.

Provides information related to external files.

Provides information related to defined formats and informats.

Provides information about currently defined SAS/GRAPH software graphics
options.

Provides information related to defined indexes.

Provides information related to defined SAS data libraries.

Provides information related to any defined macros.

Provides information related to objects currently defined in SAS data libraries.
Provides information related to SAS system options.

Provides information related to tables with referential constraints.

Provides information related to select ODS styles.

Provides information related to tables containing integrity constraints.
Provides information related to currently defined tables.

Provides information related to currently defined titles and footnotes.

Provides information related to currently defined data views.

Displaying Dictionary Table Definitions

A dictionary table’s definition can be displayed by specifying a DESCRIBE TABLE statement. The results of the
statements and clauses used to create each dictionary table can be displayed on the SAS Log. For example, a
DESCRIBE TABLE statement is illustrated below to display the CREATE TABLE statement used in building the
OPTIONS dictionary table containing current SAS System option settings.

PROC SQL Code

PROC SQL;
DESCRIBE TABLE
DICTIONARY.OPTIONS;
QUIT;

SAS Log Results

create table DICTIONARY.OPTIONS
(
optname char (32) label='Option Name',
setting char(1024) label='Option Setting',
optdesc char(160) label='Option Description',
level char(8) label='Option Location’
);

Note: The information contained in dictionary tables is also available to DATA and PROC steps outside the SQL
procedure. Referred to as SASHELP views, each view is prefaced with the letter “V” and may be shortened with
abbreviated names. SASHELP views can be accessed by referencing the view by its name in the SASHELP library.
Please refer to the SAS Procedures Guide for further details on accessing and using dictionary views in the
SASHELP library.

Dictionary.COLUMNS

Retrieving information about the columns in one or more data sets is easy with the COLUMNS dictionary table.
Similar to the results of the CONTENTS procedure, you will be able to capture column-level information including
column name, type, length, position, label, format, informat, and indexes, as well as produce cross-reference listings
containing the location of columns in a SAS library. For example, the following code requests a cross-reference listing
of the tables containing the TITLE column in the WORK library.

Note: Care should be used when specifying multiple functions on the WHERE clause since the SQL Optimizer is
unable to optimize the query resulting in all allocated SAS session librefs being searched. This can cause the query
to run much longer than expected.

PROC SQL Code

PROC SQL;
SELECT *
FROM DICTIONARY.COLUMNS
WHERE UPCASE (LIBNAME)="WORK” AND
UPCASE (NAME) ="TITLE”;
QUIT;

Results

Column Column
Library | Member | Member | Column | Column | Column | Column | Number | Column | Column | Column | Index
Name |Name Type Name | Type Length | Position | in Table | Label Format | Informat | Type

Order in
Key | Extended | Not
Sequence | Type NULL? | Precision | Scale | Transcoded?

WORK | ACTORS | DATA | Title | char I 30 | 0 | 1 | | | |
0 [char | no | o I . I yes

WORK |[MOVIES [DATA [Tite Jehar | 30] 7] 1] | | [sivPLE
0 | char | no I . | ¥ I yes

Dictionary. TABLES

When you need more information about SAS files consider using the TABLES dictionary table. The TABLES
dictionary table provides detailed information about the library name, member name and type, date created and last
modified, number of observations, observation length, number of variables, password protection, compression,
encryption, number of pages, reuse space, buffer size, number of deleted observations, type of indexes, and
requirements vector. For example, to obtain a detailed list of files in the WORK library, the following code is specified.

Note: Because the TABLE Dictionary table produces a considerable amount of information, users should consider
specifying a WHERE clause when using.

PROC SQL Code

PROC SQL;
SELECT *
FROM DICTIONARY.TABLES
WHERE UPCASE (LIBNAME)="WORK"”;

QUIT;
Results
DBMS
Library | Member | Member | Member | Dataset | Dataset Number of Physical
Name | Name Type Type Label Type Date Created Date Modified Observations
Number | Type of Size

Observation of | Password | Compression Number of Percent | Reuse

Length | Variables | Protection | Routine Encryption | of Pages | File | Compression | Space Bufsize

Number of | Number of | Longest Maximum

Deleted Logical | variable | Longest | number of | Generation | Dataset Type of
Observations | Observations name label | generations number | Attributes | Indexes | Data Representation
Name of Charset Data Audit
Collating | Sorting | Sorted Representation | Data Trail
Sequence | Type | By Requirements Vector Name Encoding | Active?

Audit | Audit | Audit
Before | Admin | Error
Image? | Image? | Image? | Audit Data Image?

WORK | ACTORS |l);‘\']'.-'\ | | IDA'I'A |()‘).L\l.IG()4:15:4():lR|()9AUG()4:15:4():18 13
70| 3 | |NO IN() | 1 | 1(,3x4| ()|n0 | 8192
0 | 13 |o| 0 | 0 |) | ON | | NATIVE
181F101122220032220102320432012222003E00001003 | WINDOWS_32 | wlatinl no
01 Western
(Windows)
no | no | no | no
WORK |MOV1ES |1),\TA | | DATA l)*).:\lJ(iOs'l:lS:-i():lR|()9AU(’;O4:15:4():18 22
xxl ol--- |NO |No I 2|2457(>| ()In() | 8192
0 | 22 8 | 0 | 0 |) | ON | SIMPLE | NATIVE
181F101122220032220102320432012222003E00001003 | WINDOWS_32 | wilatinl 1o
01 Western
(Windows)
no | no | no l no

PROC SQL and the Macro Language

Many software vendors’ SQL implementation permits SQL to be interfaced with a host language. The SAS System’s
SQL implementation is no different. The SAS Macro Language lets you customize the way the SAS software
behaves, and in particular extend the capabilities of the SQL procedure. Users can apply the macro facility’s many
powerful features using the interface between the two languages to provide a wealth of programming opportunities.

From creating and using user-defined macro variables and automatic (SAS-supplied) variables, reducing redundant
code, performing common and repetitive tasks, to building powerful and simple macro applications, SQL can be
integrated with the macro language to improve programmer efficiency. The best part of this is that you do not have to
be a macro language heavyweight to begin reaping the rewards of this versatile interface between two powerful
Base-SAS software languages.

Creating a Macro Variable with Aggregate Functions

Turning data into information and then saving the results as macro variables is easy with summary (aggregate)
functions. The SQL procedure provides a number of useful summary functions to help perform calculations,
descriptive statistics, and other aggregating computations in a SELECT statement or HAVING clause. These
functions are designed to summarize information and not display detail about data. In the next example, the MIN
summary function is used to determine the least expensive product from the PRODUCTS table with the value stored
in the macro variable MIN_PRODCOST using the INTO clause. The results are displayed on the SAS log.

8

PROC SQL Code

PROC SQL NOPRINT;
SELECT MIN (LENGTH)
INTO :MIN_ LENGTH
FROM MOVIES;
QUIT;
$PUT &MIN_LENGTH;

SAS Log Results

PROC SQL NOPRINT;
SELECT MIN(LENGTH)
INTO :MIN_LENGTH
FROM MOVIES;
QUIT;
NOTE: PROCEDURE SQL used:
real time 0.00 seconds

%PUT &MIN_LENGTH;
97

Building Macro Tools

The Macro Facility, combined with the capabilities of the SQL procedure, enables the creation of versatile macro tools
and general-purpose applications. A principle design goal when developing user-written macros should be that they
are useful and simple to use. A macro that violates this tenant of little applicability to user needs, or with complicated
and hard to remember macro variable names, are usually avoided.

As tools, macros should be designed to serve the needs of as many users as possible. They should contain no
ambiguities, consist of distinctive macro variable names, avoid the possibility of naming conflicts between macro
variables and data set variables, and not try to do too many things. This utilitarian approach to macro design helps
gain the widespread approval and acceptance by users.

Column cross-reference listings come in handy when you need to quickly identify all the SAS library data sets a
column is defined in. Using the COLUMNS dictionary table a macro can be created that captures column-level
information including column name, type, length, position, label, format, informat, indexes, as well as a cross-
reference listing containing the location of a column within a designated SAS library. In the next example, macro
COLUMNS consists of an SQL query that accesses any single column in a SAS library. If the macro was invoked with
a user-request consisting of %COLUMNS(PATH,TITLE);, the macro would produce a cross-reference listing on the
library WORK for the column TITLE in all DATA types.

PROC SOL and Macro Code

$MACRO COLUMNS (LIB, COLNAME) ;
PROC SQL;
SELECT LIBNAME, MEMNAME
FROM DICTIONARY.COLUMNS
WHERE UPCASE (LIBNAME)="&LIB” AND

UPCASE(NAME)="&COLNAME” AND

UPCASE (MEMTYPE) ="DATA” ;
QUIT;
$MEND COLUMNS;
$COLUMNS (WORK , TITLE) ;

Results

The SAS System

Library
Name Member Name
WORK ACTORS
WORK MOVIES

Submitting a Macro and SQL Code with a Function Key

For interactive users using the SAS Display Manager System, a macro can be submitted with a function key. This
simple, but effective, technique makes it easy to run a macro with the touch of a key anytime and as often as you like.
All you need to do is define the macro containing the instructions you would like to have it perform, assign and save
the macro call to the desired function key in the KEYS window one time, and include the macro in each session you
want to use it in. From that point on, anytime you want to execute the macro, simply press the designated function
key.

For example, a simple PROC SQL query can be embedded inside a macro. You will not only save keystrokes by not
having to enter it over and over again, but you will improve your productivity as well. The following code illustrates a
PROC SQL query embedded within a macro that accesses the “read-only” table DICTIONARY.TABLES. The
purpose of the macro and PROC SQL code is to display a “snapshot” of the number of rows in each table that is
currently available to the SAS System. Once the macro is defined, it can be called by entering %NOBS on any DMS
command line to activate the commands.

PROC SOL and Macro Code

%MACRO nobs;
SUBMIT "PROC SQL; SELECT libname, memname, nobs FROM DICTIONARY.TABLES; QUIT;";
%MEND nobs;

To further reduce keystrokes and enhance user productivity even further, a call to a defined macro can be saved to a
Function Key. The purpose for doing this would be to allow for one-button operation of any defined macro. To
illustrate the process of saving a macro call to a Function Key, the %NOBS macro defined previously is assigned to
Function Key F12 in the KEYS window. Once the %NOBS macro call is assigned in the KEYS window, you will be
able to call the macro simply by pressing the F12 function key. The partial KEYS window is displayed below to
illustrate the process.

KEYS Window
Key Definition
F1 help
F2 reshow
F3 end;
F10 keys
F11 command focus
F12 %NOBS

10

Partial Output from Calling %NOBS

The SAS System

Number of
Library Physical
Name Member Name Observations
WORK ACTORS 13
WORK CUSTOMERS 3
WORK MOVIES 22
WORK PG_RATED_MOVIES 13
WORK RENTAL_INFO 11

PROC SQL Joins

A join of two or more tables provides a means of gathering and manipulating data in a single SELECT statement. A
"JOIN" statement does not exist in the SQL language. The way two or more tables are joined is to specify the tables
names in a WHERE clause of a SELECT statement. A comma separates each table specified in an inner join.

Joins are specified on a minimum of two tables at a time, where a column from each table is used for the purpose of
connecting the two tables. Connecting columns should have "like" values and the same datatype attributes since the
join's success is dependent on these values.

What Happens During a Join?

Joins are processed in two distinct phases. The first phase determines whether a FROM clause references two or
more tables. When it does, a virtual table, known as the Cartesian product, is created resulting in each row in the first
table being combined with each row in the second table, and so forth. The Cartesian product (internal virtual table)
can be extremely large since it represents all possible combinations of rows and columns in the joined tables. As a
result, the Cartesian product can be, and often is, extremely large.

The second phase of every join processes, if present, is specified in the WHERE clause. When a WHERE clause is
specified, the number of rows in the Cartesian product is reduced to satisfy this expression. This data subsetting
process generally results in a more manageable end product containing meaningful data.

Creating a Cartesian Product

When a WHERE clause is omitted, all possible combinations of rows from each table is produced. This form of join is
known as the Cartesian Product. Say for example you join two tables with the first table consisting of 22 rows and
the second table with 13 rows. The result of these two tables would consist of 286 rows. Very rarely is there a need to
perform a join operation in SQL where a WHERE clause is not specified. The primary importance of this form of join
is to illustrate a base (or internal representation) for all joins. As illustrated in the following diagram, the two tables are
combined without a corresponding WHERE clause. Consequently, no connection between common columns exists.

MOVIES ACTORS

Title Title

Length Actor_Leading
Category Actor_Supporting
Year

Studio

Rating

The result of a Cartesian Product is the combination of all rows and columns. The next example illustrates a
Cartesian Product join using a SELECT query without a WHERE clause.

SQL Code

PROC SQL;
SELECT *

11

FROM MOVIES, ACTORS;
QUIT;

Joining Two Tables with a Where Clause
Joining two tables together is a relatively easy process in SQL. To illustrate how a join works, a two-table join is
linked using the customer number (TITLE) in the following diagram.

MOVIES ACTORS

< Title «— = — | —Title
Length Actor_Leading
Category Actor_Supporting
Year
Studio
Rating

The next SQL code references a join on two tables with TITLE specified as the connecting column. In this example,
tables MOVIES and ACTORS are used. Each table has a common column, TITLE which is used to connect rows
together from each when the value of TITLE is equal, as specified in the WHERE clause. A WHERE clause restricts
what rows of data will be included in the resulting join.

SQL Code

PROC SQL;
SELECT *
FROM MOVIES, ACTORS
WHERE MOVIES.TITLE = ACTORS.TITLE;
QUIT;

Joins and Table Aliases

Table aliases provide a "short-cut" way to reference one or more tables in a join operation. One or more aliases are
specified so columns can be selected with a minimal number of keystrokes. To illustrate how table aliases in a join
works, a two-table join is linked in the following diagram.

MOVIES ACTORS

< Title -— = —| TTitle
Length Actor_Leading
Rating Actor_Supporting

The following SQL code illustrates a join on two tables with TITLE specified as the connecting column. The table
aliases are specified in the SELECT statement as qualified names, the FROM clause, and the WHERE clause.

SQL Code

PROC SQL;
SELECT M.TITLE,
M.LENGTH,
M.RATING,
A.LEADING_ACTOR
FROM MOVIES M, ACTORS A
WHERE M.TITLE = A.TITLE;
QUIT;

12

Introduction to Outer Joins

Generally a join is a process of relating rows in one table with rows in another. But occasionally, you may want to
include rows from one or both tables that have no related rows. This concept is referred to as row preservation and is
a significant feature offered by the outer join construct.

There are operational and syntax differences between inner (natural) and outer joins. First, the maximum number of
tables that can be specified in an outer join is two at a time. Like an inner join, an outer join relates rows in both
tables. But this is where the similarities end because the result table also includes rows with no related rows from one
or both of the tables. This special handling of “matched” and “unmatched” rows of data is what differentiates an outer
join from an inner join. Essentially the resulting set of data from an outer join process contains rows that “match” the
ON-clause plus any “unmatched” rows from either the left, right, or left-and-right tables.

An outer join can accomplish a variety of tasks that would require a great deal of effort using other methods. This is
not to say that a process similar to an outer join can not be programmed — it would probably just require more work.
Let’s take a look at a few tasks that are possible with outer joins:

e List all customer accounts with rentals during the month, including customer accounts with no purchase activity.
e Compute the number of rentals placed by each customer, including customers who have not rented.

e Identify movie renters who rented a movie last month, and those who did not.

Another obvious difference between an outer and inner join is the way the syntax is constructed. Outer joins use
keywords such as LEFT JOIN, RIGHT JOIN, and FULL JOIN, and has the WHERE clause replaced with an ON
clause. These distinctions help identify outer joins from inner joins.

Finally, specifying a left or right outer join is a matter of choice. Simply put, the only difference between a left and right
join is the order of the tables they use to relate rows of data. As such, you can use the two types of outer joins
interchangeably and is one based on convenience.

Exploring Outer Joins

Outer joins process data relationships from two tables differently than inner joins. In this section a different type of
join, known as an outer join, will be illustrated. The following code example illustrates a left outer join to identify and
match movie numbers from the MOVIES and ACTORS tables. The resulting output would contain all rows for which
the SQL expression, referenced in the ON clause, matches both tables and all rows from the left table (MOVIES) that
did not match any row in the right (ACTORS) table. Essentially the rows from the left table are preserved and
captured exactly as they are stored in the table itself, regardless if a match exists.

SQL Code

PROC SQL;
SELECT movies.title,
leading_actor,
rating
FROM MOVIES
LEFT JOIN
ACTORS
ON movies.title = actors.title;
QUIT;

The next example illustrates the result of using a right outer join to identify and match movie titles from the MOVIES
and ACTORS tables. The resulting output would contain all rows for which the SQL expression, referenced in the ON
clause, matches in both tables (is true) and all rows from the right table (ACTORS) that did not match any row in the
left (MOVIES) table.

13

SQL Code

PROC SQL;
SELECT movies.title,
actor_leading,
rating
FROM MOVIES
RIGHT JOIN
ACTORS
ON movies.title = actors.title;
QUIT;

Debugging SQL Processing

The SQL procedure offers a couple new options in the debugging process. Two options of critical importance are
_METHOD and _TREE. By specifying a _METHOD option on the SQL statement, it displays the hierarchy of
processing that occurs. Results are displayed on the Log using a variety of codes (see table).

Codes Description

sgxcrta Create table as Select
Sgxslct Select

sgxjsl Step loop join (Cartesian)
sgxjm Merge join

sgxjndx Index join

sgxjhsh Hash join

sgxsort Sort

sgxsrc Source rows from table
sqgxfil Filter rows

sgxsumg Summary stats with GROUP BY
sgxsumn Summary stats with no GROUP BY

In the next example a _METHOD option is specified to show the processing hierarchy in a two-way equi-join.

PROC SQL Code

PROC SQL _METHOD;
SELECT MOVIES.TITLE,
RATING,
ACTOR_LEADING
FROM MOVIES,
ACTORS
WHERE MOVIES.TITLE = ACTORS.TITLE;
QUIT;

Results

NOTE: SQL execution methods chosen are:
sqxslct
sqxjhsh
sgxsrc(MOVIES)
sqxsrc(ACTORS)

Another option that is useful for debugging purposes is the _TREE option. In the next example the SQL statements
are transformed into an internal form showing a hierarchical layout with objects and a variety of symbols. This internal
layout representation illustrates the converted PROC SQL code as a pseudo-code. Inspecting the tree output can
frequently provide a greater level of understanding of what happens during SQL processing.

14

PROC SQL Code

PROC SQL _TREE;
SELECT MOVIES.TITLE, RATING, ACTOR_LEADING
FROM MOVIES,
ACTORS
WHERE MOVIES.TITLE = ACTORS.TITLE;
QUIT;

Results

NOTE: SQL execution methods chosen are:
Tree as planned.
/-SYM-V- (MOVIES.Title:1 flag=0001)

/-0BJ----|
| | --SYM-V- (MOVIES.Rating:6 f1lag=0001)
| | --SYM-V- (MOVIES.Length:2 flag=0001)
| \-SYM-V- (ACTORS.Actor_Leading:2 flag=0001)
/-JOIN--- |
| | /-SYM-V- (MOVIES.Title:1 flag=0001)
| | /-OBJ----|
| | | | --SYM-V- (MOVIES.Rating:6 flag=0001)
| | | \-SYM-V- (MOVIES.Length:2 flag=0001)
| | /-SRC----|
| | | \ -TABL[WORK] .MOVIES opt=""
| | - -FROM- - - |
I I I /-SYM-V- (ACTORS.Title:1 flag=0001)
| | | /-0BJ----|
| | | | \ -SYM-V- (ACTORS.Actor_Leading:2
flag=0001)
| | \-SRC---- |
I I \-TABL[WORK] .ACTORS opt=""
I | --empty-
| | /-SYM-V- (MOVIES.Title:1)
| \-CEQ- - -- |
| \-SYM-V- (ACTORS.Title:1)
--SSEL--- |

If you have surplus virtual memory, you can achieve faster access to matching rows from one or more small input
data sets by using Hash techniques. The BUFFERSIZE= option can be used to let the SQL procedure take
advantage of hash techniques on larger join tables. The default BUFFERSIZE=n option is 64000 when not specified.
In the next example, a BUFFERSIZE=256000 is specified to utilize available memory to load rows. The result is faster
performance because additional memory is available to conduct the join reducing the number of data swaps the SAS
System has to perform from the slower secondary storage.

PROC SQL Code

PROC SQL _method BUFFERSIZE=256000;
SELECT MOVIES.TITLE, RATING, ACTOR_LEADING
FROM MOVIES, ACTORS
WHERE MOVIES.TITLE = ACTORS.TITLE;
QUIT;

15

Results

NOTE: SQL execution methods chosen are:
sqxslct
sgxjhsh
sqgxsrc(MOVIES)
sgxsrc(ACTORS)

Conclusion

The SQL procedure is a wonderful tool for SAS users to explore and use in a variety of application situations. This
paper has presented a few of the most exciting features found in PROC SQL. You are encouraged to explore PROC
SQL’s powerful capabilities as it relates to querying and subsetting data; restructuring data by constructing case
expressions; constructing and using views; accessing the contents from Dictionary tables; and joining two or more
tables to explore data relationships.

References
Lafler, Kirk Paul (2010), “Exploring Powerful Features in PROC SQL,” SAS Global Forum (SGF) Conference,
Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2009), “Exploring DICTIONARY Tables and SASHELP Views,” South Central SAS Users Group
(SCSUG) Conference (November 8" — November 10", 2009), Software Intelligence Corporation, Spring Valley,
CA, USA.

Lafler, Kirk Paul (2009), “Exploring DICTIONARY Tables and SASHELP Views,” Western Users of SAS Software
(WUSS) Conference (September 1% — September 4™, 2009), Software Intelligence Corporation, Spring Valley, CA,
USA.

Lafler, Kirk Paul (20092 “Explorlng DICTIONARY Tables and SASHELP Views,” PharmaSUG SAS Users Group
Conference (May 31% — June 3", 2009), Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (20082, “Kirk’s Top Ten Best PROC SQL Tips and Techniques,” Wisconsin lllinois SAS Users
Conference (June 26", 2008), Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2008), “‘Undocumented and Hard-to-find PROC SQL Features,” Greater Atlanta SAS Users Group
(GASUG) Meeting (June 11" 2008), Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2008) "Undocumented and Hard-to-find PROC SQL Features,” PharmaSUG SAS Users Group
Conference (June 1 - 4" , 2008), Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2008), ‘Undocumented and Hard-to-find PROC SQL Features,” Michigan SAS Users Group
(MSUG) Meeting (May 29" , 2008), Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2008) “Undocumented and Hard-to-find PROC SQL Features,” Vancouver SAS Users Group
Meeting (April 23" , 2008), Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2008), “Undocumented and Hard-to-find PROC SQL Features,” Philadelphia SAS Users Group
(PhilaSUG) Meeting (March 13", 2008), Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2007), “Undocumented and Hard-to-find PROC SQL Features,” Proceedings of the PharmaSUG
2007 Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul and Ben Cochran (2007), “A Hands-on Tour Inside the World of PROC SQL Features,” Proceedings
of the SAS Global Forum (SGF) 2007 Conference, Software Intelligence Corporation, Spring Valley, CA, and The
Bedford Group, USA.

Lafler, Kirk Paul (2006), “A Hands-on Tour Inside the World of PROC SQL,” Proceedings of the Thirty-first Annual
SAS Users Group International (SUGI) Conference.

Lafler, Kirk Paul (2005), “A Hands-on Tour of the 5 Most Exciting Features Found in PROC SQL,” Proceedings of the
Thirteenth Annual Western Users of SAS Software Conference.

Lafler, Kirk Paul (2005), “Manipulating Data with PROC SQL,” Proceedings of the Thirtieth Annual SAS Users Group
International (SUGI) Conference.

Lafler, Kirk Paul (2004). PROC SQL: Beyond the Basics Using SAS, SAS Institute Inc., Cary, NC, USA.

Lafler, Kirk Paul (2003), “Undocumented and Hard-to-find PROC SQL Features,” Proceedings of the Eleventh Annual
Western Users of SAS Software Conference.

16

Lafler, Kirk Paul (1992-2008). PROC SQL for Beginners; Software Intelligence Corporation, Spring Valley, CA, USA.
Lafler, Kirk Paul (1998-2008). Intermediate PROC SQL; Software Intelligence Corporation, Spring Valley, CA, USA.
SAS® Guide to the SQL Procedure: Usage and Reference, Version 6, First Edition (1990). SAS Institute, Cary, NC.

SAS® SQL Procedure User’s Guide, Version 8 (2000). SAS Institute Inc., Cary, NC, USA.

Acknowledgments

| would like to thank Steve Popernack, Programming Beyond the Basics (Advanced Tutorials) Section Chair, for
accepting my abstract and paper. I'd also like to thank Dr. LeRoy Bessler, Alix Riley, and Craig Wildeman for a
terrific conference.

Trademarks

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies.

About the Author

Kirk Paul Lafler is consultant and founder of Software Intelligence Corporation and has been using SAS since 1979.
Kirk provides IT consulting services and training to SAS users around the world. As a SAS Certified Professional, Kirk
has written four books including PROC SQL: Beyond the Basics Using SAS, and more than four hundred peer-
reviewed papers and articles. He has also been an Invited speaker and trainer at more than three hundred SAS
International, regional, local, and special-interest user group conferences and meetings throughout North America.
Kirk’s current interests include writing technical books and ebooks, conducting SAS training around the world, serving
on the sasCommunity.org Advisory Board; contributing SAS- and SQL-related topics; writing and supporting “Kirk’s
Korner of Quick and Simple Tips” for numerous SAS User Group newsletters and websites; and sharing his fun-filled
SASword Puzzles in SAScommunity.org.

Comments and suggestions can be sent to:

Kirk Paul Lafler
Software Intelligence Corporation
World Headquarters
P.O. Box 1390
Spring Valley, California 91979-1390
E-mail: KirkLafler@cs.com

Certified
Professional
Verstow &

17

