
1

Paper 072-2010

Eliminating Redundant Custom Formats (or How to Really
Take Advantage of PROC SQL, PROC CATALOG, and the DATA STEP)

Philip A. Wright, University of Michigan, Ann Arbor, MI

ABSTRACT

Custom formats are an invaluable asset to the SAS
®
 programmer. Their functionality provides for much more than

simply a mechanism for explicitly labeling values in a dataset. There can be, however, a major limitation—the DATA
STEP can only accommodate 4,096 formats at a time. It is unlikely that a SAS programmer would generate this many
formats in code, but this is not the only method that generates formats. PROC IMPORT and other third party data
conversion programs may well generate a distinct custom format for every variable in a data set, and data sets with
more than 4,096 variables are not uncommon. Oftentimes, however, these formats can be quite redundant—the
same coding scheme was used for many similar variables. Eliminating redundant custom formats may well get you
below the 4,096 limit. PROC SQL, PROC CATALOG, and the DATA STEP are the tools that can be used to eliminate
the redundant formats. Eliminating redundant formats should not be of concern for only those exceeding the 4,096
limit, but also be of concern for any SAS user with custom formats—“Eliminating redundant formats is always best.”—
Rick Langston, SAS’ PROC FORMAT developer, at the Michigan SAS User’s Group One Day Conference, May
2010.

This version of the paper departs slightly from previous versions; It incorporates some suggestions from Larry Hoyle,
as well as not utilizing formats-associated datasets until processing is nearly complete: rather than keeping variable
names associated with formats, a ‘crosswalk’ dataset is used to replace a dataset’s redundant FORMATS CATALOG
associations with the non-redundant FORMATS CATALOG using PROC DATASETS.

INTRODUCTION

SAS formats are much more than value labels for variables in a dataset. Formats can be used to recode variable
values, used in lieu of table lookups, and even used to customize code at run time. Their widest use, however, is to
render values of dataset variables in a manner much more descriptive than the values themselves. The use of
formats is usually not problematic for smaller datasets but can be problematic when datasets comprise 4,096
variables or more: Automated production routines and third party data conversion programs often generate a distinct
format, usually named after the variable itself, for every variable in the dataset and, as there is a limit of 4,096 formats
(hereafter termed the limit) specified when DATA STEP code and other procedures (such as PROC DATASETS) are
compiled, exceeding the limit with larger datasets is comparatively easy.

It is also fairly easy to designate the use of more than the limit in a large dataset by non-automated methods;
designating the use of more than the limited number of formats can be done with PROC DATASETS as long you do
not designate more than the limit in each distinct procedure invocation. You will, however, quickly find out when you
are using a dataset with more than the limit—specifying a dataset that exceeds the formats limit will generate the
following error:

ERROR 81ERROR 81ERROR 81ERROR 81----59: Limit of 4096 formats or informats in use in a single step has been 59: Limit of 4096 formats or informats in use in a single step has been 59: Limit of 4096 formats or informats in use in a single step has been 59: Limit of 4096 formats or informats in use in a single step has been

exceeded.exceeded.exceeded.exceeded.

This error (as with all errors) will stop the DATA STEP in its tracks. Oftentimes, however, some of these formats
actually generate the same rendered strings as other formats and are, therefore, redundant. This is especially true
when the formats were generated by an automated process or third party program. Eliminating redundant custom
formats using a series of PROC SQL, PROC DATASETS, PROC CATALOG, and DATA STEPs has the potential to
get below the 4,096 format limit.

GENERATING A DATASET COMPRISED OF CUSTOM FORMAT DETAILS

Any standard use of a dataset with more than a combination of 4,096 informats and/or formats will generate the error
message. The formats catalog itself, however, is not restricted to the limit. We also want to be careful not to modify
either the original dataset or formats catalog and will instead use copies. The original dataset and formats catalog
should be saved in a permanent library before we work with copies in the WORK library.

1. Initialize the folder/directory containing the COPIES of the dataset and FORMATS catalogue as the
permanent library ‘USER’:

libname USER 'D:\My Documents\My SAS Files' ;

2

2. Once you have initialized a library which contains the copy of the FORMATS catalog with the redundant
formats, you are then ready to use PROC FORMAT with the cntlout option to generate a dataset comprised
of custom format metadata. We also make sure it is sorted as needed:

proc format

 library = USER

 cntlout = _FORMAT_METADATA

;

quit ;

proc sort

 data = _FORMAT_METADATA

;

by

 fmtname type start end label

;

run ;

 Format metadata comprises the following data:

 Variable Type Len Label

 1 FMTNAME Char 32 Format name

 2 START Char 16 Starting value for format

 3 END Char 16 Ending value for format

 4 LABEL Char 8 Format value label

 5 MIN Num 3 Minimum length

 6 MAX Num 3 Maximum length

 7 DEFAULT Num 3 Default length

 8 LENGTH Num 3 Format length

 9 FUZZ Num 8 Fuzz value

10 PREFIX Char 2 Prefix characters

11 MULT Num 8 Multiplier

12 FILL Char 1 Fill character

13 NOEDIT Num 3 Is picture string noedit?

14 TYPE Char 1 Type of format

15 SEXCL Char 1 Start exclusion

16 EEXCL Char 1 End exclusion

17 HLO Char 11 Additional information

18 DECSEP Char 1 Decimal separator

19 DIG3SEP Char 1 Three-digit separator

20 DATATYPE Char 8 Date/time/datetime?

21 LANGUAGE Char 8 Language for date strings

3. The non-uniqueness of the values for these variables identifies a redundant format. Accordingly, we next
generate a key for each format from these values using BY FMTNAME processing within a DATA STEP; we
concatenate each key value to the previous key value by fmtname until we reach the last record for that
fmtname. Once we have concatenated the last value for the fmtname, we output a fmtname record with a
newly-generated custom_format_string.

 * GENERATE CUSTOM FORMAT STRINGS FOR EACH CUSTOM FORMAT ;

 options nosource ;

 data

 _custom_format_strings (

 keep = fmtname type custom_format_string string_length

 where = (missing(custom_format_string) NE 1)

)

 ;

3

 set

 _FORMAT_METADATA (

)

 ;

 by

 fmtname

 ;

 attrib

 CUSTOM_FORMAT_STRING

 length = $ &_MAX_STRING_LEN

 format = $CHAR1024.

 label = 'Custom Format String'

 STRING_LENGTH

 length = 8

 format = comma12.0

 label = 'String Length'

 ;

 retain

 custom_format_string (' ')

 format_count (0)

 ;

 * NOW PRESERVING LEADING BLANKS FOR PROPER SORTING OF

 CHARACTER-RENDERED NUMERIC VALUES ;

 custom_format_string =

 catt(

 '|',

 custom_format_string, '|',

 start, '|',

 end, '|',

 strip(label), '|',

 put(length, 8.0), '|',

 put(noedit, 1.0), '|',

 type, '|',

 sexcl, '|',

 eexcl

)

 ;

 if (last.fmtname)

 then do ;

 format_count ++ 1 ;

 string_length = length(trim(left(custom_format_string))) ;

 if (string_length GE %eval(&_MAX_STRING_LEN - 1)) then put

 'WARNING: POTENTIAL STRING LENGTH OVERUN: ' FORMAT_COUNT= ;

 output ;

 custom_format_string = ' ' ;

 end ;

 run ;

4. We then use PROC SQL to quickly find the length of the longest custom_format_string and export it to a
MACRO varaiable. The MACRO variable is subsequently used to optimize the length of the
custom_format_string variable.

 * EXPORT MAXIMUM STRING LENGTH TO MACRO VARIABLE ;

 proc sql noprint ;

 select

 strip(put(max(string_length),5.0))

 into

 :_maximum_string_length

 from

 _custom_format_strings

 ;

Read and concatenate a
delimited custom format
metadata record value for
each fmtname.

Generate and output a record once each metadata
variable value for a fmtname has been concatenated.

We make sure we have enough
room for long strings by initializing
the Program Data Vector with the
attrib statement prior to the set
statement.

4

 quit ;

 %put _MAXIMUM_STRING_LENGTH: &_MAXIMUM_STRING_LENGTH ;

 * OPTIMIZE LENGTH OF CUSTOM FORMAT STRING ;

 data

 _CUSTOM_FORMAT_STRINGS (

 label = '_CUSTOM_FORMAT_STRINGS'

)

 ;

 attrib

 fmtname label = 'Format Name' length = $ 32

 type label = 'Variable Type' length = $ 1

 custom_format_string label = 'Custom Format String'

 length = $ &_MAXIMUM_STRING_LENGTH

 format = %nrbquote($CHAR%trim(&_MAXIMUM_STRING_LENGTH).)

 ;

 set

 _CUSTOM_FORMAT_STRINGS (

 drop = string_length

)

 ;

 run ;

5. custom_format_string cannot be used for indexing as the range in values can be too extensive. That leaves
us with sorting by custom_format_string and generating an index for fmtname, which we will eventually use
for some BY processing.

 proc sort

 data = _custom_format_strings

 out = _custom_format_strings (

 index = (fmtname)

)

 ;

 by

 custom_format_string

 fmtname

 type

 ;

 run ;

6. It is often the case that the first fmtname in a series of redundant formats is suitable for all the redundant
formats. We will prepend the varnum for each format to the custom format records so that the format
associated with the first variable in the dataset will be the set of records used to generate a unique format.

 proc sql ;

 create view

 _ordered_custom_format_strings

 as select

 variables.varnum,

 strings.fmtname as fmtname,

 variables.type as type,

 strings.custom_format_string as custom_format_string

 from

 _CUSTOM_FORMAT_STRINGS strings

 left join

 _FORMATTED_VARIABLE_METADATA variables

 on

 (cats(strings.fmtname,'.') EQ compress(variables.format,'$'))

 and (strings.type EQ upcase(substr(variables.type,1,1)))

5

 order by

 custom_format_string,

 varnum

 ;

 quit ;

7. We now have everything we need to generate a dataset comprised of unique format strings:

 data

 _unique_format_strings

 ;

 set

 _ordered_custom_format_strings

 ;

 by

 custom_format_string

 ;

 if (first.custom_format_string) then output ;

 run ;

8. It is now another occasion to use PROC SQL. We have a dataset which includes both the fmtname of non-
redundant formats and only the first fmtname of the redundant formats. We can use the fmtnames from this
dataset to select a unique set of custom format metadata records from the set of records initially extracted
from the formats catalog with PROC FORMAT:

 proc sql ;

 create table

 _unique_format_values_info

 as select

 *

 from

 _FORMAT_METADATA

 where

 fmtname in (

 select

 fmtname

 from

 _UNIQUE_FORMAT_STRINGS

)

 order by

 fmtname,

 type,

 start,

 end

 ;

 quit ;

9. The _unique_format_values_info records contain all the information we need to generate a FORMATS
catalogue comprised of unique formats. We do, however, need to get rid of the formats that are still in the
catalog:

proc catalog

 catalog = USER.FORMATS

 kill

;

quit;

This code is a bit misleading—it does not delete the catalog. Instead it merely deletes any entries in the
catalog.

6

10. Once the FORMATS catalog is emptied, it is just as easy to re-populate it with the metadata information for
unique format entries as it was to extract initially extract the metadata:

 proc format

 library = USER

 cntlin = _UNIQUE_FORMAT_VALUES_INFO

 ;

 quit ;

11. We now have a FORMATS catalog that does not contain any duplicated formats. But what about the
dataset? We need to generate a ‘crosswalk’ dataset that maps the redundant format names to the list of
unique format names:

 proc sql ;

 create table

 _FORMAT_CROSSWALK

 as select distinct

 _custom_format_strings.fmtname as fmtname,

 _custom_format_strings.type as type,

 _unique_format_strings.fmtname as unique_fmtname

 from

 _custom_format_strings custom

 left join

 _unique_format_strings unique on

 (custom.custom_format_string EQ unique.custom_format_string)

 ;

 create table

 _NUMBERED_FORMAT_PAIRS

 as select

 variables.varnum,

 variables.name,

 variables.type,

 crosswalk.unique_fmtname

 from

 _FORMATTED_VARIABLE_METADATA variables

 left join

 _FORMAT_CROSSWALK crosswalk

 on

 (compress(variables.format,'$.') EQ crosswalk.fmtname)

 and (upcase(substr(variables.type,1,1)) EQ crosswalk.type)

 order by

 varnum

 ;

 quit ;

12. The DESCRIPTOR portion of the dataset also needs updating so that it uses only the unique formats. It is
at this point where we use PROC SQL, SAS’ dictionary tables, and the crosswalk dataset to get around the
‘ERROR 81-59: Limit of 4096’ Error. SAS’ dictionary tables have everything we need to generate new
FORMAT statements, and the crosswalk dataset has the specifications for the variable names, the
redundant format names, and the unique format names. The first step to do this is to export the format
statements to an indexed array of macro variables:

 data _NULL_ ;

 set

 _NUMBERED_FORMAT_PAIRS

 end = end_of_dataset

 ;

 call symput('_varname_' || strip(put(_N_,6.0)), strip(name)) ;

7

 if type EQ 'char' then

 call symput('_fmtname_' || strip(put(_N_,6.0)),

 strip(cats('$',unique_fmtname,'.'))

)

 ;

 else call symput('_fmtname_' || strip(put(_N_,6.0)),

 strip(cats(unique_fmtname,'.'))

)

 ;

 if end_of_dataset then call symput('_pairs_n', strip(put(_N_,6.0))) ;

 run ;

13. We finally are able to use PROC DATASETS to issue the format specifications that are currently stored as a
series of indexed macro variables:

proc datasets

 library = USER

 nolist

;

%put NOTE: CLEARING OLD VARIABLE--FORMAT PAIRINGS. ;

modify

 memname

;

format _ALL_ ;

run ;

%put NOTE: SPECIFYING NEW VARIABLE--FORMAT PAIRINGS. ;

modify

 memname ;

;

format

%do _i = 1 %to &_PAIRS_N ;

 &&_VARNAME_&_I &&_FMTNAME_&_I

%end ;

;

run ;

quit ;

CONCLUSION

Even though there is a limit of 4,096 formats and it can be easy to exceed this limit with datasets comprising more
than this number of variables, it is also possible to eliminate redundant custom formats and re-associate the variables
with a collapsed set of custom formats. As with most things SAS, the preceding method is not necessarily the only
method of eliminating redundant custom formats. This method does, however, highlight the use of PROC SQL to
gain access to the metadata of datasets whose use of more than the formats limit would generate an error when used
with the DATA STEP and other SAS procedures. In addition, standard SQL routines can be used to identify and
eliminate redundant formats when based on keys generated from select format metadata variables generated by
PROC FORMAT. The DATA STEP and PROC DATASETS, when used with the smaller metadata datasets,
generate the intermediate datasets utilized by PROC SQL. Both PROC CATALOG and PROC DATASETS are used
to manage the processing.

There are a couple of steps the author would like to add should he ever finds the time: The generation of a recursive
macro that will determine the least number of format metadata fields required to generate unique keys; the generation
of a macro that will generate versions of both the pre- and post-processed datasets (or sub-sampled datasets)
comprised of only formatted values for subsequent comparison; and the generation of a macro that will recast labels
to appropriate upper-lower case strings based on standard labeling conventions.

REFERENCES

• Bilenas, Jonas V (2008), “I Can Do That With PROC FORMAT,” Proceedings of SAS Global Forum 2008.
http://www2.sas.com/proceedings/forum2008/174-2008.pdf

• Carpenter, Arthur L. (2004), “Building and Using User Defined Formats,” Proceedings of the 29
th

 annual SAS
Users Group Conference.
http://www2.sas.com/proceedings/sugi29/236-29.pdf

This macro code merely loops
through each indexed format
assignment statement.

8

• Karp, Andrew H. (2005) “My Friend the SAS Format,” Proceedings of the 30
th
 annual SAS Users Group

Conference.
http://www2.sas.com/proceedings/sugi30/253-30.pdf

• Lund, Pete (2001), “More than Just Value: A Look into the Depths of PROC FORMAT,” Proceedings of the 26
th

SAS Users Group Conference.
http://www2.sas.com/proceedings/sugi26/p018-26.pdf

• Patton, Nancy K. (1998) “In & Out of CNTL with PROC FORMAT,” Proceedings of the 23
rd

 annual SAS Users
Group Conference.
http://www2.sas.com/proceedings/sugi23/Coders/p68.pdf

• Shoemaker, Jack (2001) “Eight PROC FORMAT Gems,” Proceedings of the 26
th

 annual SAS Users Group
Conference.
http://www2.sas.com/proceedings/sugi26/p062-26.pdf

ACKNOWLEDGMENTS

I would like to thank Rick Langston for his encouragement of my production of this paper, the staff of ICPSR for their
support, and the participants in the Michigan SAS Users group for their encouragement and suggestions.

ABOUT THE AUTHOR

Phil Wright graduated from the University of Michigan in 1986 with a Bachelors degree in Psychology. He first sat
down in front of a PC when his first research project purchased their first PC and asked him to learn their word
processing application (FinalWord) and then teach it to the rest of the staff. He has been in front of a PC ever since.
Phil has been using SAS for over 15 years; specializing in the conversion of legacy data files, data management,
reporting, PROC SQL, ODS, and Macro programming.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Philip A. Wright
Enterprise: Inter-university Consortium for Political and Social Research (ICPSR),
 The Institute for Social Research (ISR),
 University of Michigan
Address: P.O. Box 1248
City, State ZIP: Ann Arbor, Michigan 48106-1248
Work Phone: 734-615-7886
Fax: 734-647-8200
E-mail: pawright@umich.edu
Web: http://www.icpsr.umich.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

