
1

Paper 131-2010

Mashups Can Be Gravy: Techniques for Bringing the Web to SAS®

Jack Fuller, COMSYS LLC, Portage, MI

ABSTRACT

A mashup is an agglomeration of disparate content. While popular terminology tends to associate mashups with
web-based data, physician John Snow demonstrated an early example of mashing content in 1854 when he
identified the source of a London cholera outbreak by mapping cholera patients with their water sources. The guilty
culprit turned out to be an infected water pump handle in Soho. Web based mashups have transitioned from
metasearch engines like Dogpile® and Webcrawler® to Google™ maps detailing winery tours and public restrooms
to Yahoo!® Pipes™ which allows users to define their own mashups.

SAS® has long facilitated moving information from SAS to the Web. This paper will explore mashup techniques for
enabling the movement of information in the other direction: from the Web to SAS.

INTRODUCTION

I first became interested in accessing web-based information while browsing the web and reading different financial
analyses. Most of these would perform some analysis and then discuss the results. I wondered why I couldn’t do
my own analyses using SAS analytics. The specific analysis which precipitated my inquiry involved comparing stock
prices to their historical growth rates. Finding a method for actually bringing the data into SAS presented my first
and most obvious obstacle.

This paper presents real world examples, from the simple to the complex, to explore various techniques which I have
used to bring Web based data into SAS: first, by accessing structured text data such as Comma Separated Values
(CSV) and Extensible Markup Language (XML) files; second, by accessing unstructured text data such as HTML
documents; and finally, by bringing everything together with an example which includes retrieving local tax records,
computing some descriptive statistics and then displaying the results using Google Earth.

ACCESSING STRUCTURED TEXT DATA

One of the most straightforward methods for accessing Web based information is to simply access structured text
files. These can generally be brought into SAS with minimal coding.

RETRIEVING HISTORICAL CSV STOCK QUOTES FROM YAHOO! FINANCE

The key points for accessing web based CSV data can be summarized as:

• Specify a FILENAME statement with the URL option which points to the appropriate web URL

• Specify a comma delimiter for the FILENAME statement in a data step

For example, the following code retrieves CSV monthly historical stock quotes General Electric (GE) from Yahoo
(note that the adjusted closing price (adjClose) has already taken into account stock splits and dividends):

filename foo url 'http://ichart.finance.yahoo.com/table.csv?s=GE&g=m’;

data WORK.quotes;

 length ticker $5 date open high low close volume adjClose 8;

 infile foo delimiter=',' firstobs=2;

 input date : yymmdd10. open high low close volume adjClose;

 format date mmddyy10.;

 retain ticker "GE";

run;

filename foo;

2

Running the above code creates the data set shown in Figure 1.

Figure 1

GE Historical Stock Quotes from Yahoo!

We can then use SAS code to address the original question of how the actual price compares to its predicted price
(see Figure 2). Further investigations could address questions such as: what is the expected return if the price does
revert to its predicted value?

Figure 2

Time Series Logarithmic Plot of GE Stock’s Price (generated using PROC SGPLOT)

3

XML FILES: USING YAHOO! WEB SERVICES FOR GEOCODING

The key points for accessing web based XML data can be summarized as:

1. Create an XML map which describes the XML format

2. Specify a FILENAME which points to the XML map

3. Specify a FILENAME which uses the URL access method and points to the URL which contains the XML data

4. Specify a LIBNAME with the same name as the FILENAME which points to the XML data and which uses the
XML access method and XMLMAP option

For example, the following XML map describes the XML which is returned by Yahoo! web services when geocoding
an address for latitude and longitude.

<?xml version="1.0" encoding="windows-1252"?>

<!-- ## -->

<!-- 2009-08-20T13:21:09 -->

<!-- SAS XML Libname Engine Map -->

<!-- Generated by XML Mapper, 902000.3.6.20090116170000_v920 -->

<!-- ## -->

<!-- ### Validation report ### -->

<!-- ## -->

<!-- XMLMap validation completed successfully. -->

<!-- ## -->

<SXLEMAP name="yahooGeoMap" version="1.2">

 <!-- ## -->

 <TABLE name="Result">

 <TABLE-PATH syntax="XPath">/ResultSet/Result</TABLE-PATH>

 <COLUMN name="Latitude">

 <PATH syntax="XPath">/ResultSet/Result/Latitude</PATH>

 <TYPE>numeric</TYPE>

 <DATATYPE>double</DATATYPE>

 </COLUMN>

 <COLUMN name="Longitude">

 <PATH syntax="XPath">/ResultSet/Result/Longitude</PATH>

 <TYPE>numeric</TYPE>

 <DATATYPE>double</DATATYPE>

 </COLUMN>

 <COLUMN name="Address">

 <PATH syntax="XPath">/ResultSet/Result/Address</PATH>

 <TYPE>character</TYPE>

 <DATATYPE>string</DATATYPE>

 <LENGTH>32</LENGTH>

 </COLUMN>

 <COLUMN name="City">

 <PATH syntax="XPath">/ResultSet/Result/City</PATH>

 <TYPE>character</TYPE>

 <DATATYPE>string</DATATYPE>

 <LENGTH>32</LENGTH>

 </COLUMN>

 <COLUMN name="State">

 <PATH syntax="XPath">/ResultSet/Result/State</PATH>

 <TYPE>character</TYPE>

 <DATATYPE>string</DATATYPE>

 <LENGTH>2</LENGTH>

 </COLUMN>

 <COLUMN name="Zip">

 <PATH syntax="XPath">/ResultSet/Result/Zip</PATH>

4

 <TYPE>character</TYPE>

 <DATATYPE>string</DATATYPE>

 <LENGTH>10</LENGTH>

 </COLUMN>

 <COLUMN name="Country">

 <PATH syntax="XPath">/ResultSet/Result/Country</PATH>

 <TYPE>character</TYPE>

 <DATATYPE>string</DATATYPE>

 <LENGTH>2</LENGTH>

 </COLUMN>

 </TABLE>

</SXLEMAP>

In order to use Yahoo! web services, it is necessary to have an APPID token. This can be obtained by creating a
Yahoo! account and then requesting one. Google uses a similar methodology for allowing access to their web
services. In order to run the following code, you will need to replace highlighted <appID> with a valid token:

filename sxlemap 'C:\Projects\yahooGeoXMLMap.map';

filename foo url

'http://local.yahooapis.com/MapsService/V1/geocode?appid=<appID>&output=xml&city=WAS

HINGTON&state=DC&street=1600%20PENNSYLVANIA%20AVE';

libname foo xml xmlmap=sxlemap access=READONLY;

data WORK.geocode;

 set FOO.result;

run;

libname foo;

filename foo;

Running the previous code produces a data set with geocoding information for 1600 Pennsylvania Avenue in
Washington, DC (see Figure 3).

Figure 3

Geocoding Information Retrieved From Yahoo! Web Services

Both the CSV and XML files consist of text with a known structure. The next level of complexity consists of text files
where the structure needs to be specified.

ACCESSING UNSTRUCTURED TEXT DATA

The key points for accessing unstructured text data can be summarized as:

• Examine the underlying text (e.g. HTML) to determine an appropriate pattern

• Use Perl to actually parse the HTML with a Regular Expression

• Specify a FILENAME statement with the PIPE option which points to a Perl program which will do the work of
parsing the HTML

• Specify a delimiter when using the FILEREF in a data step

5

Working with Web based unstructured text files can be much more difficult because it essentially involves screen
scraping (i.e. parsing) the desired text from HTML source code. The first step is to examine the HTML source code
and look for a pattern. The following example is from Yahoo! Finance’s key statistics page for GE (blue highlighting
indicates text that we want to match, violet highlighting indicates text that we want to capture):

<tr>

 <td class="yfnc_tablehead1" width="75%">

 Market Cap (intraday)⁵:

 </td>

 <td class="yfnc_tabledata1">

 170.88B

 </td>

</tr>

Essentially, we want to parse table cells which have a cascading style sheet class of “yfnc_tablehead1” for the
descriptions and table cells which have a cascading style sheet class of “yfnc_tabledata1” for the actual data. We
could use the following regular expression to parse the information from the text (violet highlighting indicates the
portion of the regular expression text used for buffer capturing):

<td.+?class=\"yfnc_tablehead1\"[^>]*?>([^<:\n]*).+?<td.+?class=\"yfnc_tabledata1\"[^

>]*?>(?:<span.*?>)?([^<:\n]*)

• “(?:” is used to specify grouping without capturing: e.g. “(?:<span.*?)”

• “?” must be used to ensure lazy evaluation of some of the quantifiers: e.g. “<td.+?”

However, the problem with simply looping through the HTML file and applying the regular expression is that SAS
wants to retrieve the HTML line by line and there is no way of knowing which portion of the regular expression is on
which line. It could consist of ten lines (as in the example) or it could all be on one line. What is needed is a method
of applying our regular expression across newline boundaries.

LEVERAGING PERL

One solution is to leverage Perl to process the HTML text prior to its entry to the SAS system. The key idea is that
Perl can provide access to a greater set of regular expression modifiers which can then be used to handle newline
boundaries:

• m modifier : treat the start and end of line anchors so that they can match anywhere in the string

• s modifier : treat “.” as matching any character (including a newline)

The following Perl program takes two arguments:

• the URL to use as input

• the regular expression which will be applied to the URL

It then cycles through the URL while returning the capture buffers of all of the matches as tab delimited text:

#!/usr/bin/perl -w

use LWP::Simple;

Ensure the correct number of arguments

die "Incorrect number of command line arguments\n" if (@ARGV ne 2);

Retrieve the url

my $url = get($ARGV[0]) || die "Unable to open url\n";

Loop thru the url

while ($url =~ m{$ARGV[1]}gsmi) {

 my $sep = "";

 # Loop thru the capture buffers

 for (my $i=1; $i <= $#-; $i++) {

6

 print "$sep" . "${$i}";

 $sep = "\t";

 }

 print "\n";

}

RETRIEVING KEY FINANCIAL STATISTICS FROM YAHOO!

If we save the previous Perl program in “C:\Projects\screenScrape.pl”, we can then use the following code to retrieve
the key statistics for GE from Yahoo! finance:

filename foo pipe

'C:\Projects\screenScrape.pl "http://finance.yahoo.com/q/ks?s=GE"

"<td.+?class=\"yfnc_tablehead1\"[^>]*?>([^<:\n]*).+?<td.+?class=\"yfnc_tabledata1\"[

^>]*?>(?:<span.*?>)?([^<:\n]*)"';

data WORK.keyStats;

 length stat value $64;

 infile foo dsd dlm='09'x truncover;

 input stat value;

run;

filename foo;

This returns the data set in Figure 4.

Figure 4

GE Key Statistics Financial Data from Yahoo!

These techniques for importing data from the Web into SAS can be used in more elaborate mashups where the
main limiting factor is not one of inaccessibility but only one of imagination.

FINAL EXAMPLE COMBINING TAX RECORDS, SAS STATISTICS AND GOOGLE EARTH

For our final example, we will create a mashup by pulling a list of tax parcel IDs, querying the tax information for
each parcel ID, performing a few simple analytics and then creating a Keyhole Markup Language (KML) document to
display the results in Google Earth.

PULLING A LIST OF TAX PARCEL IDS

The first step is to retrieve the list of parcel IDs from the online tax records. The following code leverages our Perl
program to return a list of parcel IDs for houses on “Bay Ridge”.

7

options noQuoteLenMax;

/* NOTE: “\x22” is used in place of an actual double quote in order to allow more

straightforward quoting */

filename foo pipe

'C:\Projects\screenScrape.pl

"http://www.kalcounty.com/equalization/parcel_search.php?op=search&by=property_addre

ss&search_str=bay%20ridge"

 "<tr\s.+?<td\s+class=\x22text-

small\x22>\s*<a\s+href=\x22[^\x22]+\x22>\s*(.+?)\s*"';

data WORK.taxInfo;

 length parcelNo $32;

 infile foo dsd dlm='09'x noprint truncover;

 input parcelNo;

run;

filename foo;

QUERYING THE TAX INFORMATION FOR EACH PARCEL ID

Once we have the list of parcel IDs, we can then query the online records for the specific tax information by using the
FILEVAR option on the FILENAME statement.

data WORK.taxInfo(drop=_:);

 length _fileVar $256 _year $4;

 retain _year;

 if (_n_=1) then do;

 _prxLblBadChar = prxparse("s/['.]//i");

 _prxLblNBSP = prxparse('s/ / /i');

 _prxLblNum = prxparse('s/^(\d+)\s*(.+?)\s*$/$2 $1/i');

 _prxTxtBR = prxparse('s/
/,/i');

 _prxTxtNBSP = prxparse('s/ / /i');

 retain _prx:;

 end;

 set WORK.taxInfo;

 length label $32 text $64;

 _fileVar = catx(' ', "C:\Projects\screenScrape.pl",

quote(cats("http://www.kalcounty.com/equalization/parcel_detail.php?parcel_id=",

parcelNo)),

quote("<td\s+class=\x22label\x22>\s*(.+?)\s*:?\s*</td>\s*<td\s+class=\x22text\x22.*?

>\s*(.*?)\s*</td>"));

 infile foo pipe filevar=_fileVar dsd dlm='09'x noprint truncover end=_atEnd;

 *** Loop until there are no more label/text pairs ***;

 do while (NOT _atEnd);

 input label text;

 *** Clean the label ***;

 if prxmatch(_prxLblNum, label) then do;

 _year = prxposn(_prxLblNum, 1, label);

 label = prxchange(_prxLblNum, -1, label);

 end;

 else if NOT missing(_year) then do;

 label = catx(' ', label, _year);

 _year = ' ';

 end;

 label = prxchange(_prxLblBadChar, -1, label);

 label = prxchange(_prxLblNBSP, -1, label);

 label = strip(label);

 *** Clean the text ***;

8

 text = prxchange(_prxTxtBR, -1, text);

 text = prxchange(_prxTxtNBSP, -1, text);

 text = strip(text);

 OUTPUT;

 end;

run;

This produces a data set (see Figure 5) which contains the tax records in a vertical format.

Figure 5

Tax Information for Bay Ridge

The data can then be transposed up while converting a few columns from character to numeric.

proc transpose data=WORK.taxInfo out=WORK.taxInfo(drop=_:);

 by parcelNo notsorted;

 id label;

 var text;

run;

data WORK.taxInfo(drop=_:);

 set taxInfo (rename=(sev_2008=_SEV_2008 sev_2009=_SEV_2009));

 SEV_2008 = input(compress(_sev_2008, ' ,'), ?? best.);

 SEV_2009 = input(compress(_sev_2009, ' ,'), ?? best.);

run;

This returns a data set with one record per parcel.

PERFORMING A FEW SIMPLE ANALYTICS

The analytics for this example consist of simple rankings: actual ranking and percentile ranking. Further analysis
could include such statistics as the year over year increase and the ratio of taxable value to actual value.

9

proc rank data=WORK.taxInfo out=WORK.taxInfo ties=mean;

 var sev_2009;

 ranks priceRank;

run;

proc rank data=WORK.taxInfo out=WORK.taxInfo ties=low groups=100;

 var sev_2009;

 ranks pricePct;

run;

proc sort data=WORK.taxInfo;

 by owners_name;

run;

CREATING A KEYHOLE MARKUP LANGUAGE (KML) DOCUMENT

The final step in our example is to generate the actual KML. KML is a flavor of XML which is used by Google Earth
to add value (e.g. pushpins and annotations) to Google Earth.

• We could use Yahoo! web services to retrieve the latitude and longitude but in this case we will just let Google
Earth implicitly handle the geocoding.

• We could also use the bidirectional XML access method in SAS 9.2 to generate the KML, but in this case we will
instead use DATA NULLs; the XML access method would have wrapped the descriptions with CDATA tags and
thus rendered them as straight text instead of as HTML.

The following code creates the three elements which will be sent to KML: name, description (with HTML) and
address.

data WORK.taxInfo(drop=_:);

 if (_n_=1) then do;

 _prxName = prxparse('s/\s*&\s*/ and /i');

 retain _prx:;

 end;

 set WORK.taxInfo nobs=nobs;

 *** The name ***;

 length name $64;

 retain name '';

 *** The description ***;

 length description $256;

 description = catx('
',

 prxchange(_prxName, -1, owners_name),

 '<hr>',

 catx(' : ', '2009 SEV', put(sev_2009, dollar8.)),

 catx(' ', catx(' of ', put(priceRank, best.), put(nobs, best.)),

 cats('(', put(pricePct, best.), '%)')),

 '<hr>'

);

 *** The address ***;

 length address $256;

 address = catx(',', property_address, '49009');

run;

The final step is to actually generate the KML document. The “Camera” element specifies the initial camera
placement.

filename kmlOut "C:\Projects\neighborhood.kml";

data _null_;

 file kmlOut;

 put @1 '<?xml version="1.0" encoding="windows-1252" ?>';

 put @1 '<kml xmlns="http://www.opengis.net/kml/2.2">';

 put @3 '<Document>';

 put @5 '<Camera>';

 put @7 '<longitude>-85.659944</longitude>';

10

 put @7 '<latitude>42.218317</latitude>';

 put @7 '<altitude>1000</altitude>';

 put @7 '<altitudeMode>relativeToGround</altitudeMode>';

 put @5 '</Camera>';

 put @5 '<Folder>';

 STOP;

run;

data _null_;

 file kmlOut mod;

 set WORK.taxInfo;

 put @7 '<Placemark>';

 put @9 '<name>' name +(-1) '</name>';

 put @9 '<description>' description +(-1) '</description>';

 put @9 '<address>' address +(-1) '</address>';

 put @7 '</Placemark>';

run;

data _null_;

 file kmlOut mod;

 put @5 '</Folder>';

 put @3 '</Document>';

 put @1 '</kml>';

 STOP;

run;

filename kmlOut;

Once Google Earth has been installed on your machine, all that remains is to double click “neighborhood.kml” to
display the results of our mashup (See Figure 6).

Figure 6

Using Google Earth to View Tax Information for the Neighborhood

11

CONCLUSION

I hope this paper has encourages you to think about SAS in a different way. SAS can be used to not only bring
information to the Web; it can also be used to add value to information that is already on the Web. All that is needed
is a little imagination.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Jack Fuller
Enterprise: COMSYS Services LLC
Address: 5220 Lovers Lane
City, State ZIP: Portage, MI 49002
Work Phone: 269.553.5126
Fax: 269.553.5198
E-mail: jfuller@comsys.com
Web: www.comsys.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

