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ABSTRACT

This paper explains how statistical thinking and statistical process monitoring, which have been practiced in manufac-
turing for the past thirty years, are proving valuable for process improvement in business environments that range from
health care to financial services. Basic examples drawn from real scenarios introduce the statistical concepts and show
how to get started with SAS/QC® software. The concepts also apply to complex systems that involve large volumes
of multivariate data with multiple sources of variation. The examples demonstrate the use of graphical displays, cre-
ated with ODS Statistical Graphics, for visualizing and analyzing the variation in a process and for explaining results to
clients and management.

THE AMERICAN QUALITY REVOLUTION

Thirty years ago, an NBC television documentary ignited a revolution in American industry with a provocative title,
“If Japan Can ... Why Can’t We?” The documentary explained how Japanese manufacturers in the automotive and
electronics industries had overtaken their American competitors by using a management system that emphasized
continuous improvement of quality. Viewers were surprised to learn that it was an American statistician, Dr. W. Edwards
Deming, who had taught Japanese companies to apply statistical thinking and statistical methods as the foundation for
a systematic approach to manufacturing. In an interview during the documentary, Dr. Deming explained, “Statistical
thinking and statistical methods are to Japanese production workers, foremen, and all the way through the company,
a second language. In statistical control you have a reproducible product hour after hour, day after day. And see how
comforting that is to management: they now know what they can produce, they know what their costs are going to be.”

The documentary launched Dr. Deming into national prominence as a widely sought-after management consultant
and speaker. At his seminars, the message he preached was that top management—not the work force—is directly
responsible for 85% of all problems, and he presented 14 principles for management, which he later expanded in his
book Out of the Crisis. Deming was once asked whether he could reduce his 14 principles to a single sentence, and
his response was, “It’s all about understanding variation.”

Continuous improvement requires that management measure, understand, and act upon the variability in business
processes. “Statistical thinking”—a term that Deming often used—starts with the recognition that all processes are
subject to variability and that improvement comes about through understanding and reducing variability. Wheeler and
Polling (1998) explain that “instead of focusing on outcomes, such as expenses and profits, this better way focuses on
the processes and systems that generate the outcomes. Rather than trying to directly manipulate the results, it works
to improve the system that causes the results. Rather than distorting . . . the data, it seeks to use the data to understand
the system as a basis for improving the system.” More recently, Hoerl and Snee (2002) have defined statistical thinking
as the integration of process thinking, understanding of variation, and data-based decision making.

Figure 1 Beads Used by Deming to Demonstrate Variability
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UNDERSTANDING AND ACTING ON PROCESS VARIATION

Although Deming did not teach statistical methods in his seminars, his management principles were based on the work
of Walter A. Shewhart (1891–1967), a pioneer in the field of industrial statistics, who made fundamental contributions to
the understanding of variation in manufacturing processes. Shewhart recognized that every process displays variation,
and he distinguished two types of variation: chance cause variation, which is naturally present in all processes, and
assignable cause variation, which is sporadic and not present at all times. By eliminating assignable cause variation,
the process can be brought into a state of statistical control, which provides the stability that is essential for predicting
future output and assessing improvements. In 1924, Shewhart introduced the control chart as a statistical technique
for deciding when assignable causes are present.

In order to emphasize the levels of accountability for acting on the two types of variation, Deming renamed chance cause
variation as common cause variation and assignable cause variation as special cause variation. Deming stressed that
it is the responsibility of top management to address common cause variation because only at this level can the entire
system be improved. On the other hand, workers, supervisors, and middle managers have direct knowledge of special
causes of variation and are best equipped to fix these problems.

Interest in Deming’s management philosophy declined following his death in 1993, but his emphasis on statistical pro-
cess control (SPC) has had a lasting influence on manufacturing practice. This is especially the case in the automotive,
electronics, and semiconductor industries, where control charts and process capability analysis are standard tools. At
some companies the Six Sigma movement, which began in the 1980s, has succeeded in spreading the implemen-
tation of SPC and related methods through a systematic approach to quality management which relies on executive
sponsorship, training, consulting, and teamwork.

IS THE QUALITY REVOLUTION OVER?

In recent years, the Six Sigma approach has been criticized for promoting process improvement at the expense of
innovation and productivity. The cover article of the June 6, 2007, issue of BusinessWeek faulted the introduction of Six
Sigma at 3M for disrupting the company’s culture of innovation (Hindo 2007). While the article clearly acknowledged
the role of statistical analysis in helping to “produce better quality, lower costs, and more efficiency,” it questioned
the relevance of the Six Sigma approach in the current economy, where new ideas and designs, rather than quality,
are driving competition. The article concluded that “while process excellence demands precision, consistency, and
repetition, innovation calls for variation, failure, and serendipity.”

Has the quality revolution come to an end? Recent headlines about safety recalls by a Japanese automotive manufac-
turer demonstrate once again that quality and reliability require continuous improvement of internal processes, and that
the responsibility for leading this effort lies with top management (Maynard 2010). In many industrial settings, the need
for basic statistical thinking and SPC is growing, and more advanced statistical techniques are being developed to deal
with increasingly complex manufacturing processes (Ramirez and Tobias 2007), massive volumes of process data that
are collected automatically, and new regulatory requirements (Peterson et al. 2009).

At the same time, the power of statistical thinking and statistical process improvement is being demonstrated in business
environments that range from health care to financial services. This paper discusses several of these applications using
examples from actual scenarios.

HEALTH CARE: A NEW FRONTIER FOR QUALITY IMPROVEMENT

Improving the quality of patient care is a major component of health care reform in the United States. Hospitals and
other health care providers face the challenges of retaining qualified staff and containing costs. Institute of Medicine
studies show that over half of medical deaths in hospitals are preventable, and statewide data reveal variability in
hospital quality. In 2000, a landmark publication titled To Err Is Human (Institute of Medicine 2000) exposed the impact
of hospital errors. A follow-up report, Crossing the Quality Chasm (Institute of Medicine 2001), listed six areas in which
health care systems perform at low levels:

� avoiding unintended injuries to patients

� providing evidence-based services where needed

� ensuring that patients’ values are respected

� reducing harmful delays that affect both patients and providers

� avoiding waste of materials and time

� providing a consistent level of care to all patients
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In order to improve performance in these areas, many hospitals have turned to the quality management philosophies
of W. Edwards Deming, Joseph Juran, and others.

Although the health care industry generates large amounts of patient-specific data, few organizations are able to use
these data to identify unusual variability in staff and physician performance, cost of care, and preventable incidents that
affect the outcome of a patient’s care. SAS® Performance Management for Healthcare provides the ability to access
multiple data sources and create analysis-ready data (SAS Institute Inc. 2009). Statistical process control can then be
used to identify variability due to special causes and focus further study to reduce variability. These techniques lead
to improvements in quality of care, reduction of costs, opportunities to grow market share, and negotiation of better
third-party payment.

In their 1990 book Curing Health Care, Berwick, Godfrey, and Roessner illustrated the basic tools of quality improvement
and especially the use of SPC for improving hospital processes. Since then these applications have grown rapidly.
Although an overview of the literature is outside the scope of this paper, several publications are especially relevant to
the topics considered here. Benneyan (2001a, b) introduced specialized control charts for monitoring adverse effects.
Woodall (2006) surveyed the use of control charts in health care. The 20th anniversary issue of Quality Engineering is
dedicated to statistical quality control in health care: some of the articles in this issue focus on control chart methods
(Limaye, Mastrangelo, and Zerr 2008) and other articles cover topics in syndromic surveillance (Tsui et al. 2008).

Rodriguez and Lewellen (2004), recently updated by Rodriguez and Ransdell (2010), provide examples that explain
the use of SAS/QC software to analyze health care data with a variety of SPC methods. The two examples that follow
are borrowed from this paper and illustrate how to construct a basic control chart.

Example 1: Basic u Chart for Rate of CAT Scans

This example introduces the use of the SHEWHART procedure in SAS/QC software to construct a u chart, which is one
of several standard control charts for count data. In manufacturing, u charts are typically used to analyze the number
of defects per inspection unit in samples that contain arbitrary numbers of units. In general, the event that is counted
need not be a defect. A u chart is applicable when the counts can be scaled by some measure of opportunity for the
event to occur, and when the counts can be modeled statistically by the Poisson distribution. The SHEWHART syntax
for this example is described in detail since it extends to other charts that can be constructed with the procedure, as
indicated in subsequent examples.

A health care provider uses a u chart to analyze the rate of CAT scans performed each month by each of its clinics.
Figure 2 shows data collected for Clinic B and saved in a SAS data set named ClinicB.

Figure 2 SAS Data Set ClinicB

CAT Scan Data for Clinic B

month nscanb mmsb days nyrsb

JAN04 50 26838 31 2.31105
FEB04 44 26903 28 2.09246
MAR04 71 26895 31 2.31596
APR04 53 26289 30 2.19075
MAY04 53 26149 31 2.25172
JUN04 40 26185 30 2.18208
JUL04 41 26142 31 2.25112
AUG04 57 26092 31 2.24681
SEP04 49 25958 30 2.16317
OCT04 63 25957 31 2.23519
NOV04 64 25920 30 2.16000
DEC04 62 25907 31 2.23088
JAN05 67 26754 31 2.30382
FEB05 58 26696 28 2.07636
MAR05 89 26565 31 2.28754

The variable nscanb is the number of CAT scans performed each month, and the variable mmsb is the number of
members enrolled each month (in units of “member months”). The variable days is the number of days in each month.
The following SAS statements compute the variable nyrsb, which converts mmsb to units of “thousand members per
year”:

data ClinicB; set ClinicB;
nyrsb = mmsb * ( days / 30 ) / 12000;

run;

Note that nyrsb provides the measure of opportunity.
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The following statements create the u chart in Figure 3:

ods graphics on;
ods listing style=statistical;

title 'U Chart for CAT Scans per 1,000 Members: Clinic B';
proc shewhart data=ClinicB;

uchart nscanb * month / subgroupn = nyrsb tests = 1 to 4 nohlabel
testnmethod = standardize nolegend
odstitle = title;

label nscanb = 'Rate per 1,000 Member-Years';
run;

The ODS GRAPHICS ON statement enables ODS Statistical Graphics, causing SAS/QC procedures to produce ODS
Graphics output instead of traditional graphics. This statement remains in effect for subsequent examples in this paper.
(You can disable ODS Graphics with the ODS GRAPHICS OFF statement.) For an introduction to ODS Graphics, refer
to Rodriguez (2008, 2009). The STYLE= option in the ODS LISTING statement specifies that the graphs be produced
with the STATISTICAL style.

The PROC SHEWHART statement invokes the SHEWHART procedure, and the DATA= option specifies the input data
set. The UCHART statement requests a u chart. After the keyword UCHART, you specify the count variable (in this
case, nscanb), followed by an asterisk and the variable that identifies the sample (in this case, month).

You can specify options for analysis and graphical presentation after the slash (/) in the UCHART statement. Refer to
SAS Institute Inc. (2008) for details on syntax and statistical methods. The SUBGROUPN= option specifies the number
of “opportunity” units per sample. You can use this option to specify a fixed number of units or (as in this case) a variable
that provides the number of units for each sample. The TESTS= option requests tests for special causes, also referred
to as runs tests, pattern tests, and Western Electric rules. For example, Test 1 flags points outside of the control limits.
The TESTNMETHOD=STANDARDIZE option applies a standardization method to adjust for the fact that the number of
units varies from sample to sample.

The NOHLABEL option suppresses the label for the horizontal axis (which is unnecessary since month has a datetime
format), and the NOLEGEND option suppresses the default sample size legend. The LABEL statement assigns a label
to the variable nscanb, which is displayed on the vertical axis. The ODSTITLE= option incorporates the title specified in
the TITLE statement into the graph.

Figure 3 Basic u Chart
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In Figure 3, the upper and lower control limits are 3� limits estimated by default from the data; the limits vary because
the number of opportunity units changes from month to month. The increase in the rate of CAT scans for March 2004
is interpreted as common cause variation because it lies within the control limits, whereas the increase for March 2005
should be investigated.

You can use the SHEWHART procedure to create a wide variety of control charts. Each of the standard chart types
is created with a different chart statement (for example, you use the PCHART statement to create p charts). Once
you have learned the basic syntax for a particular chart statement, you can use the same syntax for all the other chart
statements.

Example 2: Control Limits for a u Chart with a Known Shift in Rate

This example illustrates the construction of a u chart in situations where the process rate is known to have shifted,
requiring multiple sets of control limits.

A health care provider uses a u chart to report the rate of office visits performed each month by each of its clinics. The
rate is computed by dividing the number of visits by the membership expressed in thousand-member years. Figure 4
shows data collected for Clinic E and saved in a SAS data set named ClinicE.

Figure 4 SAS Data Set ClinicE

Office Visit Data for Clinic E

month _phase_ nvisite nyrse days mmse

JAN04 Phase 1 1421 0.66099 31 7676
FEB04 Phase 1 1303 0.59718 28 7678
MAR04 Phase 1 1569 0.66219 31 7690
APR04 Phase 1 1576 0.64608 30 7753
MAY04 Phase 1 1567 0.66779 31 7755
JUN04 Phase 1 1450 0.65575 30 7869
JUL04 Phase 1 1532 0.68105 31 7909
AUG04 Phase 1 1694 0.68820 31 7992
SEP04 Phase 2 1721 0.66717 30 8006
OCT04 Phase 2 1762 0.69612 31 8084
NOV04 Phase 2 1853 0.68233 30 8188
DEC04 Phase 2 1770 0.70809 31 8223
JAN05 Phase 2 2024 0.78215 31 9083
FEB05 Phase 2 1975 0.70684 28 9088
MAR05 Phase 2 2097 0.78947 31 9168

The variable nvisite is the number of visits each month, and the variable mmse is the number of members enrolled
each month (in units of “member months”). The variable days is the number of days in each month. The variable nyrse
expresses mmse in units of thousand members per year. The variable _phase_ separates the data into two time phases
because a change in the system is known to have occurred in September 2004 at the beginning of Phase 2.

The following statements create a u chart with a single set of default limits. The chart is shown in Figure 5.

title 'U Chart for Office Visits per 1,000 Members: Clinic E';
proc shewhart data=ClinicE;

uchart nvisite * month / subgroupn = nyrse nohlabel nolegend
odstitle = title;

label nvisite = 'Rate per 1,000 Member-Years';
run;

The default control limits are clearly inappropriate because they do not allow for the shift in the average rate that
occurred in September 2004.
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Figure 5 u Chart with Single Set of Limits

The following statements use BY processing to compute distinct sets of control limits from the data in each phase and
save the control limit information in a SAS data set named Vislimit. The NOCHART option suppresses the display of
separate control charts for each phase.

proc shewhart data=ClinicE; by _phase_;
uchart nvisite * month / subgroupn = nyrse nochart

outlimits = Vislimit (rename=(_phase_=_index_));
run;

Figure 6 shows a listing of Vislimit. The values of the lower and upper control limit variables _LCLU_ and _UCLU_ are
equal to the special missing value V; this indicates that these limits are varying. The variable _index_ identifies the
control limits in the same way that the variable _phase_ identifies the time phases in the data.

Figure 6 SAS Data Set Vislimit

Control Limits for Office Visit Data

_index_ _VAR_ _SUBGRP_ _TYPE_ _LIMITN_ _ALPHA_ _SIGMAS_ _LCLU_ _U_ _UCLU_

Phase 1 nvisite month ESTIMATE V V 3 V 2302.99 V
Phase 2 nvisite month ESTIMATE V V 3 V 2623.52 V

The following statements combine the data and control limits for both phases in a single u chart, shown in Figure 7:

title 'U Chart for Office Visits per 1,000 Members: Clinic E';
proc shewhart data=ClinicE limits=Vislimit;

uchart nvisite * month / subgroupn = nyrse
readindex = all
readphase = all
nohlabel nolegend
phaselegend nolimitslegend
odstitle = title;

label nvisite = 'Rate per 1,000 Member-Years';
run;

The READINDEX= and READPHASE= options match the control limits in Vislimit with observations in ClinicE by the
values of the variables _index_ and _phase_, respectively.
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In Figure 7, no points are out of control, indicating that the variation is due to common causes after adjusting for the shift
in September 2004. Both sets of control limits in Figure 7 were estimated from the data with which they are displayed.
You can, however, apply pre-established control limits from a LIMITS= data set to new data.

Figure 7 u Chart with Multiple Sets of Control Limits

In applications that involve count data, control charts for individual measurements can sometimes be used in place of
u charts and c charts, which are based on a Poisson model, or in place of p charts and np charts, which are based
on a binomial model. Wheeler (1995) makes the point that charts based on a theoretical model “allow one to detect
departures from the theoretical model,” but they require verification of the assumptions required by the model. On
the other hand, charts for individual measurements often provide reasonably approximate empirical control limits, as
illustrated in the next example.

STATISTICAL THINKING FOR BUSINESS PROCESS IMPROVEMENT AT A BANK

Because variation exists in all processes, statistical thinking can be used to monitor and improve the processes in
any business environment. However, in contrast to manufacturing environments, where engineers and operators are
trained to work with processes, the steps that create products or services in a business such as a bank are not generally
analyzed as a process by managers and analysts. Consequently, a helpful preliminary step in statistical thinking is to
diagram the various steps in creating a product or a service. Hoerl and Snee (2002) provide a generic framework for
any process, which they refer to as the SIPOC model, an acronym for its components, which are as follows:

� suppliers are individuals or groups who provide the inputs to the process

� inputs are materials or information that flow from the supplier

� process steps are activities that transform inputs into outputs

� outputs are the product or service that is produced by the process

� customers are the individuals or groups who use the outputs

In any specific situation only a subset of these elements might be present, as illustrated in the next example.
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Example 3: SPC in a Bank Lending Application

Schleicher (2008) described the application of statistical process control to the process of making automated lending
decisions in a large bank, where the ability to understand and react to the variability in this process is essential for risk
management. Figure 8 illustrates the steps in the process.

Figure 8 Process for Lending Decisions

Variability is present at each step. At the input step, the consumers who apply for credit vary in their characteristics and
in their options for obtaining credit elsewhere. While product rates are controlled by the lender, external factors are not,
and these include rates available at other banks. The lender uses information about the consumer along with models,
such as credit scores, to determine the rate for the loan. This decision is subject to variability because the models are
based on historic data, which are an imprecise predictor of the future. The output of the process is the performance of
the loan, which can vary due to changes in the economy, industry rates and terms, and legislation.

Statistical process control can be used to monitor for unusual variation in the inputs and outputs of the process and the
intermediate steps. A noteworthy distinction between this use of SPC and manufacturing applications of SPC is that
special causes of variation in business environments can be detected but not necessarily eliminated.

Unusual variation in the inputs provides a leading indicator of shifts downstream in the process. One example of an
input process measurement is the reported income of applicants for an auto loan. Figure 9 displays a control chart
for the average monthly incomes of loan applicants for a particular vehicle (the averages have been standardized to
protect data confidentiality). Although one average exceeds the upper 3� limit, this is not unusual with small samples
from skewed income distributions. Based on experience with other charts of this type, this chart does not show an
unusual pattern of variation.

The following statements produce the control chart in Figure 9. The XCHART statement requests a control chart for
the monthly averages, which are treated as individual measurements.

title "Means Chart for Reported Income";
proc shewhart history=AvgIncome;

xchart income*month / odstitle=title nolegend outfill;
label income = "Avg Reported Income (Standardized)";

month = "Month";
run;
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Figure 9 Control Chart for Reported Income

Another input process measurement is the percent of auto loan applicants who do not have a home mortgage. Figure 10
displays a p chart for the proportions of these applicants at the months when the loans were booked. This chart shows
a downward trend followed by a sudden spike, which calls for an investigation to determine the cause. Possibilities to
consider are a change in lending practice, a data definition issue, or a data quality problem.

Figure 10 Control Chart for Applicants without a Mortgage

The following statements produce the control chart in Figure 10. The PCHART statement requests a control chart for
monthly proportions.
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title "Proportion of Applicants without a Home Mortgage";
proc shewhart data=missprop limits=misslim;

pchart pmiss*id / subgroupn=100 nolegend odstitle=title outfill;
label pmiss = "Proportion without a Mortgage";
label month = "Month";

run;

For the analysis of process outputs, Schleicher (2008) pointed out that monitoring residuals (the differences between
actual results and expected results based on a model) is helpful for assessing the performance of the model by detecting
variability that is not adequately captured by the model. Sources of such variability include consumer behavior, the
banking industry and the economy, decisions made by the bank, and seasonal patterns.

Figure 11 shows a control chart for monthly averages of the residual amounts of credit card purchases (actual minus
expected) for a group of customers. For the first eleven months, the model underestimated the volume of purchases, as
indicated by a series of consecutive positive residuals. This discovery led to an investigation which identified changes
in consumer behavior.

Figure 11 Control Chart for Average Card Purchase Residuals

The following statements produce the chart in Figure 11:

title "Means Chart for Average Card Purchase Residuals";
proc shewhart data=cardpurchdat limits=cardpurchlim;

irchart resavg*month / nochart2
zones zonelabels tests = 1 2 3 4
xsymbol = mu0
odstitle = title
odsfootnote = ".";

label resavg = "Average Card Purchase Residual"
month = "Month";

run;

Here, the IRCHART statement is used because the residuals are treated as individual measurements. Test 2 is signaled
because it detects nine points in a row in Zone C or beyond on one side of the central line.

More powerful techniques are available for analyzing residuals from predictive models and forecasts, For example, vari-
ance component estimation methods can be applied to decompose residual variability into components that correspond
to product differences, consumer differences, and month-to-month variation for individual consumers. A variety of sta-
tistical procedures can be used for this purpose, including the VARCOMP, MIXED, and GLIMMIX procedures. Variance
component analysis can also be used to adjust the limits for a control chart to appropriately reflect the variation in the
data. Refer to SAS Institute Inc. (2008) for an example of this approach (see “Specialized Control Charts”).

10



Example 4: Exploring Process Variation in a Call Center Application

The managers of a call center operation at a bank are interested in handling calls more effectively in order to improve
customer satisfaction and reduce costs. One measure of the call-handling process is the time (in seconds) required to
handle the call.

Histograms are basic tools for examining the distributions of process measurements, and they are especially useful
when the measurements are skewed and cannot be adequately summarized by their mean and standard deviation.
The following statements use the CAPABILITY procedure in SAS/QC software to create a histogram for handling times.
The histogram is shown in Figure 12.

ods graphics on;

proc capability data=callcenter noprint;
var time;
histogram time / kernel

curvelegend=none
midpoints=100 to 4100 by 200 ;

inset n / position=ne;
label time = "Handling Time (seconds)";

run;

This display shows that the distribution has a long tail, with most calls handled in less than 22 minutes.

Figure 12 Handling-Time Distribution

The next statements create a comparative histogram for time stratified by the classification variable unit, which desig-
nates the business unit that corresponds to each call.

proc capability data=callcenter noprint;
var time;
class businessunit;
histogram time / kernel

curvelegend=none
nrows=3
intertile = 0.5
midpoints=100 to 4100 by 200 ;

inset n / position=ne;
label time = "Handling Time (seconds)";
label businessunit = "Unit";

run;
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The display, shown in Figure 13, reveals that the distribution for the Key Accounts unit has the most dispersion, and
the distribution for the Service unit has the least dispersion. This difference had gone unnoticed by management until
it was discovered in the graph.

Figure 13 Handling-Time Distribution by Business Unit

Figure 14 displays a comparative histogram stratified by the classification variable site, which designates the location of
the center that handled each call.

Figure 14 Handling-Time Distribution by Site

This display also revealed differences that were previously unknown, raising questions that led to a better understanding
of the process.
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MULTIVARIATE PROCESS MONITORING WITH COMPLEX SYSTEMS

The control charts constructed in the previous sections are based on simple statistical models for the common cause
variation in a single process variable, such as the Poisson distribution for the u chart in Example 1, the normal distribu-
tion for the NX chart in Example 2, and the binomial distribution for the p chart in Example 2. These models work well in
Shewhart’s framework, where process measurements are univariate and where common cause variation is viewed as
a series of chance disturbances away from an average level that is assumed to be constant over short periods of time.

In contrast, the application of statistical process monitoring to complex systems—both in manufacturing applications
and in business environments—requires methods that work well with large volumes of multivariate data collected over
time, often from disparate sources and databases. In addition, a much richer set of statistical models is needed to
characterize the expected variation in the data, which, in addition to common cause variation, can include effects such
as correlation among process variables, time-dependent behavior, and multiple sources of variation. More extensive
models are also needed in situations where a set of internal process variables is used to construct a predictive model
for a set of external measures, such as product quality, reliability, and customer satisfaction.

Example 5: Multivariate Process Monitoring in a Regulatory System

To illustrate the modeling issues that arise with a large number of process variables observed over months, consider
the problem facing a regulatory organization responsible for monitoring 6,000 securities firms for unusual activities.
Each firm submits data on more than 100 variables at regular time intervals, including the number of sales representa-
tives, revenue per representative, customer complaints per representative, and customer complaints per sales volume.
Examiners use this data to investigate financial problems and questionable sales practices, but because of the large
volume of the data, statistical process monitoring is used to screen the data for unusual patterns that occur over time
measured in days.

Multivariate process monitoring based on a principal components model is an effective approach for dealing with hun-
dreds or thousands of correlated process variables. This approach is one of many techniques that were introduced
during the mid 1990s by chemometricians for applications within the chemical process and pharmaceutical industries,
which range from modeling the quality of paper pulp from digester process variables to the development of structure-
activity relationships for new drug compounds. The multivariate monitoring approach outlined here is patterned after
the work of Kourti and MacGregor (1995, 1996), and it is discussed in more detail by Rodriguez and Tobias (2001).

The firms in the system are grouped into peer groups. For one of these groups, Figure 15 shows that three principal
components account for 82% of the variation in the variables reported during a period of 40 months.

Figure 15 Principal Components Analysis

The PLS Procedure

Percent Variation Accounted for
by Partial Least Squares Factors

Number of
Extracted Model Effects Dependent Variables

Factors Current Total Current Total

1 41.2846 41.2846 41.2846 41.2846
2 25.5462 66.8308 25.5462 66.8308
3 14.8343 81.6651 14.8343 81.6651

In order to monitor the variation for one particular firm in the peer group (call it Firm 7870), the multivariate approach
computes the statistic T 2

i for the i th day as follows:

T 2
i D

t21 .i/

s2t1

C
t22 .i/

s2t2

C
t23 .i/

s2t3

T 2
i is the sum of squares of the scores for the first three principal components, scaled by their variances. Control limits

for T 2
i are computed from a reference distribution based on data from the entire peer group. The chart, which is shown

in Figure 16, reveals unusual variation for Firm 7870 in the three most recent quarters.
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Figure 16 T 2 Chart

You can visualize how the variation for Firm 7870 departs from the pattern of variation for its peer firms by making
pairwise scatter plots of the three scores t1, t2, and t3 for all the firms, and adding 95% prediction ellipses. Figure 17
and Figure 18 display two of these plots. The points for Firm 7870 are highlighted in red and are identified by their
dates. There is evidence that two other firms are wandering away from the expected region of variability for their peers.

Figure 17 First and Second Scores
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Figure 18 First and Third Scores

There are two explanations for this behavior. The first is that the process has moved outside the control ellipse but is
still within the hyperplane defined by the principal components model. The second is that the process has moved off
the hyperplane and has changed in a way that is not captured by the model. You can check for the second possibility
by plotting the distance of each time point to the model hyperplane, or equivalently, the squared prediction error (SPE),
as shown in Figure 19.

Figure 19 SPE Chart
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Here the control limits for SSE are computed using all the firms in the peer family as a reference normal data set
(Nomikos and MacGregor 1995). The chart indicates that the process has moved off the model plane. Not only is this
firm’s behavior diverging from the common cause variation exhibited by its peers, it is also diverging in a new way with
variation not observed in the data that were used to develop the model. This indicates the need for constructing a new
model.

Another way to diagnose the behavior in Figure 16 is with a contribution plot, which tells you which variables contribute
to the “gap” between a point, such as the one at Day 1097, and the center of the ellipse. For each variable in the model,
the contribution plot displays a root sum of squares of weighted residuals. The plot, displayed in Figure 20, shows that
two complaint variables and a variable that measures merit terminations contributed to the jump at Day 1097. Events
related to these variables should be examined to determine the causes for this variation.

Figure 20 Contribution Plot

CONCLUSION: IT REALLY IS ALL ABOUT VARIATION!

The examples presented in this paper demonstrate how the principles of statistical thinking and statistical process
monitoring apply in a variety of business settings. A common theme is that variation is present in all processes and that
the key to process knowledge and improvement is analyzing and acting on the sources of variation.

In manufacturing applications, the goals of statistical process control are to create a stable, predictable process by elim-
inating special causes of variation and then to achieve a process that is capable of meeting customer requirements by
reducing common cause variation (Wheeler 2000). In health care applications, special causes can often be eliminated
through corrective action such as redesigning procedures and training staff. On the other hand, this form of statistical
process control is not feasible in many business environments. Instead, statistical process monitoring can be used for
improved understanding of variability and for early detection of problems, which reduces costs and minimizes risk.

Successful application of process monitoring in complex systems requires statistical models that adequately describe
the variation in hundreds or thousands of variables that are correlated or subject to multiple sources of variation,
including seasonality and other time-dependent behavior. SAS provides a wealth of modeling techniques for this
purpose.
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