
1

Paper 11-2010

DATA Step and PROC SQL Programming Techniques
Kirk Paul Lafler, Software Intelligence Corporation, Spring Valley, California

Abstract
Are you considering whether to use a DATA step or PROC SQL step in your next project? This presentation explores
the similarities and differences between DATA step and PROC SQL programming techniques. Topics include IF-
THEN-ELSE, SELECT-WHEN, and PROC SQL CASE expressions conditional logic concepts and constructs; and
the techniques for constructing effective merges and joins. Attendees explore examples that contrast DATA step
versus PROC SQL programming techniques to conduct conditional logic scenarios, one-to-one match-merges and
match-joins, and an assortment of inner and outer join programming constructs.

Introduction
This paper illustrates the similarities and differences between the Base-SAS software DATA step and SQL
procedure. We’ll examine two “key” topics that most users are confronted with when working with their tables of
data, conditional logic scenarios and merges/joins. This paper introduces brief explanations, guidelines and “simple”
techniques for users to consider when confronted with conditional logic scenarios and merges/joins. You are
encouraged to explore these and other techniques to make your SAS experience an exciting one.

Example Tables
The data used in all the examples in this paper consist of a selection of movies that I’ve viewed over the years. The
Movies table contains four character columns: title, category, studio, and rating, and two numeric columns: length and
year. The data stored in the Movies table is shown below.

MOVIES Table

The data stored in the ACTORS table consists of three columns: title, actor_leading, and actor_supporting, all of
which are defined as character columns. The data stored in the Actors table is illustrated below.

ACTORS Table

2

Conditional Logic Scenarios
A powerful feature of the SAS software as a programming language is its ability to perform different actions
depending on whether a programmer-specified condition evaluates to true or false. The method of accomplishing this
is to use one or more conditional statements, conditional expressions, and conditional constructs to construct a level
of intelligence in a program or application. In this section, we’ll discuss and illustrate the various conditional logic
scenarios IF-THEN / ELSE, SELECT, and CASE Expressions available in the DATA step and PROC SQL.

Conditional Logic with IF-THEN / ELSE
The IF-THEN / ELSE construct is available to users for logic scenarios in a DATA step. Its purpose is to enable a
sequence of conditions to be assigned that when executed proceeds through the sequence of IF-THEN / ELSE
conditions until either a match in an expression is found or until all conditions are exhausted. The example shows a
character variable Movie_Length being assigned a value of either “Shorter Length”, “Average Length”, or “Longer
Length” based on the mutually exclusive conditions specified in the IF-THEN and ELSE conditions. Although not
required, an ELSE condition, when present, is an effective technique for continuing processing to the next specified
condition when a match is not found for the current condition. An ELSE condition can also be useful as a “catch-all” to
prevent a missing value from being assigned.

Code:

DATA IF_THEN_EXAMPLE;

 ATTRIB Movie_Length LENGTH=$14 LABEL=’Movie Length’;

 SET MOVIES;

 IF LENGTH < 120 THEN Movie_Length = ‘Shorter Length’;

 ELSE IF LENGTH > 160 THEN Movie_Length = ‘Longer Length’;

 ELSE Movie_Length = ‘Average Length’;

RUN;

PROC PRINT DATA=IF_THEN_EXAMPLE NOOBS;

 VAR TITLE LENGTH Movie_Length;

RUN;

Results

 The SAS System

 Title Length Movie_Length

 Brave Heart 177 Longer Length

 Casablanca 103 Shorter Length

 Christmas Vacation 97 Shorter Length

 Coming to America 116 Shorter Length

 Dracula 130 Average Length

 Dressed to Kill 105 Shorter Length

 Forrest Gump 142 Average Length

 Ghost 127 Average Length

 Jaws 125 Average Length

 Jurassic Park 127 Average Length

 Lethal Weapon 110 Shorter Length

 Michael 106 Shorter Length

 National Lampoon's Vacation 98 Shorter Length

 Poltergeist 115 Shorter Length

 Rocky 120 Average Length

 Scarface 170 Longer Length

 Silence of the Lambs 118 Shorter Length

 Star Wars 124 Average Length

 The Hunt for Red October 135 Average Length

 The Terminator 108 Shorter Length

 The Wizard of Oz 101 Shorter Length

 Titanic 194 Longer Length

3

Conditional Logic with SELECT
Another form of conditional logic available to users is a SELECT statement. Its purpose is to enable a sequence of
logic conditions to be constructed in a DATA step by specifying one or more WHEN conditions and an optional
OTHERWISE condition. When executed, processing continues through each WHEN condition until a match is found

that satisfies the specified expression. Typically one or more WHEN conditions are specified in descending frequency
order representing a series of conditions. The next example shows a value based on the mutually exclusive
conditions specified in the sequence of logic conditions of “Shorter Length”, “Average Length”, or “Longer Length”
being assigned to the character variable Movie_Length. Although not required, the OTHERWISE condition can be
useful in the assignment of a specific value or as a “catch-all” to prevent a missing value from being assigned.

Code:

DATA SELECT_EXAMPLE;

 ATTRIB Movie_Length LENGTH=$14 LABEL=’Movie Length’;

 SET MOVIES;

 SELECT;

 WHEN (LENGTH < 120) Movie_Length = ‘Shorter Length’;

 WHEN (LENGTH > 160) Movie_Length = ‘Longer Length’;

 OTHERWISE Movie_Length = ‘Average Length’;

 END;

RUN;

PROC PRINT DATA=SELECT_EXAMPLE NOOBS;

 VAR TITLE LENGTH Movie_Length;

RUN;

Results

 The SAS System

 Title Length Movie_Length

 Brave Heart 177 Longer Length

 Casablanca 103 Shorter Length

 Christmas Vacation 97 Shorter Length

 Coming to America 116 Shorter Length

 Dracula 130 Average Length

 Dressed to Kill 105 Shorter Length

 Forrest Gump 142 Average Length

 Ghost 127 Average Length

 Jaws 125 Average Length

 Jurassic Park 127 Average Length

 Lethal Weapon 110 Shorter Length

 Michael 106 Shorter Length

 National Lampoon's Vacation 98 Shorter Length

 Poltergeist 115 Shorter Length

 Rocky 120 Average Length

 Scarface 170 Longer Length

 Silence of the Lambs 118 Shorter Length

 Star Wars 124 Average Length

 The Hunt for Red October 135 Average Length

 The Terminator 108 Shorter Length

 The Wizard of Oz 101 Shorter Length

 Titanic 194 Longer Length

4

Conditional Logic with CASE Expressions
Another form of conditional logic available to users is a case expression. Its purpose is to provide a way of
conditionally selecting result values from each row in a table (or view). Similar to an IF-THEN/ELSE or SELECT
construct in the DATA step, a case expression can only be specified in the SQL procedure. It supports a WHEN-
THEN clause to conditionally process some but not all the rows in a table. An optional ELSE expression can be
specified to handle an alternative action should none of the expression(s) identified in the WHEN condition(s) not be
satisfied. A case expression must be a valid SQL expression and conform to syntax rules similar to DATA step
SELECT-WHEN statements. Even though this topic is best explained by example, a quick look at the syntax follows.

CASE <column-name>
 WHEN when-condition THEN result-expression
 <WHEN when-condition THEN result-expression> …
 <ELSE result-expression>
END

A column-name can optionally be specified as part of the CASE-expression. If present, it is automatically made
available to each when-condition. When it is not specified, the column-name must be coded in each when-condition.
Let’s examine how a case expression works.

If a when-condition is satisfied by a row in a table (or view), then it is considered “true” and the result-expression
following the THEN keyword is processed. The remaining WHEN conditions in the CASE expression are skipped. If a
when-condition is “false”, the next when-condition is evaluated. SQL evaluates each when-condition until a “true”
condition is found or in the event all when-conditions are “false”, it then executes the ELSE expression and assigns
its value to the CASE expression’s result. A missing value is assigned to a CASE expression when an ELSE
expression is not specified and each when-condition is “false”.

In the next example, a simple case expression is illustrated. The next example shows a character variable
Movie_Length being assigned with the AS keyword. Assigned values based on the mutually exclusive conditions
specified in the sequence of logic conditions of either “Shorter Length” for movie lengths less than 120 minutes,
“Longer Length” for movie lengths greater than 160 minutes, or “Average Length” for all other movie lengths.
Although not required, an ELSE condition can be useful in the assignment of a specific value or as a “catch-all” to
prevent a missing value from being assigned.

SQL Code

PROC SQL;

 SELECT TITLE,

 LENGTH,

 CASE

 WHEN LENGTH < 120 THEN 'Shorter Length'

 WHEN LENGTH > 160 THEN 'Longer Length'

 ELSE 'Average Length'

 END AS Movie_Length

 FROM MOVIES;

QUIT;

5

Results

 The SAS System

 Title Length Movie_Length

 Brave Heart 177 Longer Length

 Casablanca 103 Shorter Length

 Christmas Vacation 97 Shorter Length

 Coming to America 116 Shorter Length

 Dracula 130 Average Length

 Dressed to Kill 105 Shorter Length

 Forrest Gump 142 Average Length

 Ghost 127 Average Length

 Jaws 125 Average Length

 Jurassic Park 127 Average Length

 Lethal Weapon 110 Shorter Length

 Michael 106 Shorter Length

 National Lampoon's Vacation 98 Shorter Length

 Poltergeist 115 Shorter Length

 Rocky 120 Average Length

 Scarface 170 Longer Length

 Silence of the Lambs 118 Shorter Length

 Star Wars 124 Average Length

 The Hunt for Red October 135 Average Length

 The Terminator 108 Shorter Length

 The Wizard of Oz 101 Shorter Length

 Titanic 194 Longer Length

The Process of Merging and Joining
A merge or join is the process of combining two or more tables’ side-by-side (horizontally). Its purpose is to gather and
manipulate data from across tables for exciting insights into data relationships. The process consists of a matching
process between a table’s rows bringing together some or all of the tables’ contents, as illustrated below.

The ability to define relationships between multiple tables and retrieve information based on these relationships is a
powerful feature of the relational model. A merge or join of two or more tables provides a means of gathering and
manipulating data. Merges and joins are specified on a minimum of two tables at a time, where a column from each table
is used for the purpose of connecting the two tables. Connecting columns should have "like" values and the same

column attributes since the processes’ success is dependent on these values.

Contrasting Merges and Joins
The difference between a DATA step merge and a join are subtle, but differences do exist.

Merge Features

1. Relevant only to the SAS System – not portable to other vendor data bases.
2. More steps are often needed than with the SQL procedure.
3. Data must first be sorted using by-value.
4. Requires common variable name.
5. Duplicate matching column is automatically overlaid.
6. Results are not automatically printed.

Join Features

1. Portable to other vendor data bases.
2. Data does not need to be sorted using BY-value.
3. Does not require common variable name.
4. Duplicate matching column is not automatically overlaid.
5. Results are automatically printed unless NOPRINT option is specified.

6

Cartesian Product
A Cartesian Product is defined as a result set of all the possible rows and columns contained in two or more data sets
or tables. The DATA step doesn’t really lend itself to easily creating a Cartesian Product – PROC SQL is the desired
approach. Its most noticeable coding characteristic is the absence of a WHERE-clause. The resulting set of data
resulting from a Cartesian Product can be extremely large and unwieldy as illustrated below, that is a set of 286 rows.
Although rarely produced, a Cartesian Product join nicely illustrates a base (or internal representation) for all joins.

Code

PROC SQL;

 SELECT *

 FROM MOVIES(KEEP=TITLE LENGTH RATING),

 ACTORS(KEEP=TITLE ACTOR_LEADING);

QUIT;

Results

 The SAS System

Title Length Rating Title Actor_Leading

Brave Heart 177 R Brave Heart Mel Gibson

Casablanca 103 PG Brave Heart Mel Gibson

Christmas Vacation 97 PG-13 Brave Heart Mel Gibson

Coming to America 116 R Brave Heart Mel Gibson

Dracula 130 R Brave Heart Mel Gibson

Dressed to Kill 105 R Brave Heart Mel Gibson

Forrest Gump 142 PG-13 Brave Heart Mel Gibson

Ghost 127 PG-13 Brave Heart Mel Gibson

Jaws 125 PG Brave Heart Mel Gibson

Jurassic Park 127 PG-13 Brave Heart Mel Gibson

Lethal Weapon 110 R Brave Heart Mel Gibson

Michael 106 PG-13 Brave Heart Mel Gibson

National Lampoon's Vacation 98 PG-13 Brave Heart Mel Gibson

Poltergeist 115 PG Brave Heart Mel Gibson

Rocky 120 PG Brave Heart Mel Gibson

Scarface 170 R Brave Heart Mel Gibson

... < Some Data Omitted >

Forrest Gump 142 PG-13 Titanic Leonardo DiCaprio

Ghost 127 PG-13 Titanic Leonardo DiCaprio

Jaws 125 PG Titanic Leonardo DiCaprio

Jurassic Park 127 PG-13 Titanic Leonardo DiCaprio

Lethal Weapon 110 R Titanic Leonardo DiCaprio

Michael 106 PG-13 Titanic Leonardo DiCaprio

National Lampoon's Vacation 98 PG-13 Titanic Leonardo DiCaprio

Poltergeist 115 PG Titanic Leonardo DiCaprio

Rocky 120 PG Titanic Leonardo DiCaprio

Scarface 170 R Titanic Leonardo DiCaprio

Silence of the Lambs 118 R Titanic Leonardo DiCaprio

Star Wars 124 PG Titanic Leonardo DiCaprio

The Hunt for Red October 135 PG Titanic Leonardo DiCaprio

The Terminator 108 R Titanic Leonardo DiCaprio

The Wizard of Oz 101 G Titanic Leonardo DiCaprio

Titanic 194 PG-13 Titanic Leonardo DiCaprio

7

Match Merging or Joining
Merging or joining two or more tables together is a relatively easy process in the SAS System. The most reliable way
to merge or join two or more tables together, and to avoid creating a Cartesian product, is to reduce the resulting set
of data using one or more common columns. The result of a Matched merge or join is illustrated by the shaded area
(AB) in the following Venn diagram.

Venn Diagram – Matched Merge or Join

To illustrate how a match merge or join works, two tables are linked together using the movie title (TITLE) in the
following diagram.

 MOVIES ACTORS

Title Title

 Length Actor_Leading

 Category Actor_Supporting

 Year

 Studio

 Rating

Merge Code

PROC SORT DATA=MOVIES;
 BY TITLE;
RUN;

PROC SORT DATA=ACTORS;
 BY TITLE;
RUN;

DATA MERGED;
 MERGE MOVIES (IN=M KEEP=TITLE LENGTH RATING)
 ACTORS (IN=A KEEP=TITLE ACTOR_LEADING);

 BY TITLE;
 IF M AND A;

RUN;

PROC PRINT DATA=MERGED NOOBS;
RUN;

8

Results

 The SAS System

 Title Length Rating Actor_Leading

 Brave Heart 177 R Mel Gibson

 Christmas Vacation 97 PG-13 Chevy Chase

 Coming to America 116 R Eddie Murphy

 Forrest Gump 142 PG-13 Tom Hanks

 Ghost 127 PG-13 Patrick Swayze

 Lethal Weapon 110 R Mel Gibson

 Michael 106 PG-13 John Travolta

 National Lampoon's Vacation 98 PG-13 Chevy Chase

 Rocky 120 PG Sylvester Stallone

 Silence of the Lambs 118 R Anthony Hopkins

 The Hunt for Red October 135 PG Sean Connery

 The Terminator 108 R Arnold Schwarzenegge

 Titanic 194 PG-13 Leonardo DiCaprio

The corresponding SQL procedure code to produce a “matched” row result set is shown below.

SQL Code

PROC SQL;
 CREATE TABLE JOINED AS
 SELECT *
 FROM MOVIES(KEEP=TITLE LENGTH RATING),
 ACTORS(KEEP=TITLE ACTOR_LEADING)
 WHERE MOVIES.TITLE = ACTORS.TITLE;

 SELECT * FROM JOINED;
QUIT;

Results

 The SAS System

 Title Length Rating Actor_Leading

 Brave Heart 177 R Mel Gibson

 Christmas Vacation 97 PG-13 Chevy Chase

 Coming to America 116 R Eddie Murphy

 Forrest Gump 142 PG-13 Tom Hanks

 Ghost 127 PG-13 Patrick Swayze

 Lethal Weapon 110 R Mel Gibson

 Michael 106 PG-13 John Travolta

 National Lampoon's Vacation 98 PG-13 Chevy Chase

 Rocky 120 PG Sylvester Stallone

 Silence of the Lambs 118 R Anthony Hopkins

 The Hunt for Red October 135 PG Sean Connery

 The Terminator 108 R Arnold Schwarzenegge

 Titanic 194 PG-13 Leonardo DiCaprio

9

Asymmetric Merging and Joining
A typical merge or join consists of a process of relating rows in one table with rows in another symmetrically. But
occasionally, rows from one or both tables that have no related rows can be retained. This approach is sometimes
referred to as an asymmetric type of join because its primary purpose is row preservation. This type of processing is
a significant feature offered by the outer join construct.

There are syntax and operational differences between inner (natural) and outer joins. The obvious difference between
an inner and outer join is the way the syntax is constructed. Outer joins use keywords such as LEFT JOIN, RIGHT
JOIN, and FULL JOIN, and has the WHERE clause replaced with an ON clause. These distinctions help identify outer
joins from inner joins. But, there are operational differences as well.

Unlike an inner join, the maximum number of tables that can be specified in an outer join construct is two. Similar to
an inner join, an outer join relates rows in both tables. But this is where the similarities end because the resulting set
of data also includes rows with no related rows from one or both of the tables. This special handling of “matched” and
“unmatched” rows of data is what differentiates a symmetric inner join from an asymmetric outer join. Essentially the
resulting set of data from an outer join process contains rows that “match” the ON-clause plus any “unmatched” rows
from the left, right, or both tables.

The result of a Left Outer merge or join is illustrated by the shaded areas (A and AB) in the following Venn diagram.

Venn Diagram – Left Outer Merge or Join

Left Outer Merge or Join

The result of a Left Outer merge or join produces matched rows from both tables while preserving all unmatched rows
from the left table. The following merge code illustrates a left outer merge construct that selects “matched” movies
based on their titles from the MOVIES and ACTORS tables, plus all “unmatched” movies from the MOVIES table.

Merge Code

PROC SORT DATA=MOVIES;
 BY TITLE;
RUN;

PROC SORT DATA=ACTORS;
 BY TITLE;
RUN;

DATA LEFT_OUTER_MERGE;
 MERGE MOVIES (IN=M KEEP=TITLE LENGTH RATING)
 ACTORS (IN=A KEEP=TITLE ACTOR_LEADING);
 BY TITLE;
 IF M;

RUN;

PROC PRINT DATA=LEFT_OUTER_MERGE NOOBS;
RUN;

10

Results

 The SAS System

 Title Length Rating Actor_Leading

 Brave Heart 177 R Mel Gibson

 Casablanca 103 PG

 Christmas Vacation 97 PG-13 Chevy Chase

 Coming to America 116 R Eddie Murphy

 Dracula 130 R

 Dressed to Kill 105 R

 Forrest Gump 142 PG-13 Tom Hanks

 Ghost 127 PG-13 Patrick Swayze

 Jaws 125 PG

 Jurassic Park 127 PG-13

 Lethal Weapon 110 R Mel Gibson

 Michael 106 PG-13 John Travolta

 National Lampoon's Vacation 98 PG-13 Chevy Chase

 Poltergeist 115 PG

 Rocky 120 PG Sylvester Stallone

 Scarface 170 R

 Silence of the Lambs 118 R Anthony Hopkins

 Star Wars 124 PG

 The Hunt for Red October 135 PG Sean Connery

 The Terminator 108 R Arnold Schwarzenegge

 The Wizard of Oz 101 G

 Titanic 194 PG-13 Leonardo DiCaprio

The corresponding SQL procedure code to produce a left outer join row result set is shown below.

SQL Code

PROC SQL;
 CREATE TABLE LEFT_OUTER_JOIN AS
 SELECT *
 FROM MOVIES(KEEP=TITLE LENGTH RATING)
 LEFT JOIN
 ACTORS(KEEP=TITLE ACTOR_LEADING)
 ON MOVIES.TITLE = ACTORS.TITLE;

 SELECT * FROM LEFT_OUTER_JOIN;
QUIT;

11

Results

 The SAS System

 Title Length Rating Actor_Leading

 Brave Heart 177 R Mel Gibson

 Casablanca 103 PG

 Christmas Vacation 97 PG-13 Chevy Chase

 Coming to America 116 R Eddie Murphy

 Dracula 130 R

 Dressed to Kill 105 R

 Forrest Gump 142 PG-13 Tom Hanks

 Ghost 127 PG-13 Patrick Swayze

 Jaws 125 PG

 Jurassic Park 127 PG-13

 Lethal Weapon 110 R Mel Gibson

 Michael 106 PG-13 John Travolta

 National Lampoon's Vacation 98 PG-13 Chevy Chase

 Poltergeist 115 PG

 Rocky 120 PG Sylvester Stallone

 Scarface 170 R

 Silence of the Lambs 118 R Anthony Hopkins

 Star Wars 124 PG

 The Hunt for Red October 135 PG Sean Connery

 The Terminator 108 R Arnold Schwarzenegge

 The Wizard of Oz 101 G

 Titanic 194 PG-13 Leonardo DiCaprio

The result of a Right Outer merge or join is illustrated by the shaded areas (B and AB) in the following Venn

diagram.

Venn Diagram – Right Outer Merge or Join

12

Right Outer Merge or Join
The result of a Right Outer merge or join produces matched rows from both tables while preserving all unmatched
rows from the right table. The following merge code illustrates a right outer merge construct that selects “matched”
movies based on their titles from the MOVIES and ACTORS tables, plus all “unmatched” movies from the ACTORS
table.

Merge Code

PROC SORT DATA=MOVIES;
 BY TITLE;
RUN;

PROC SORT DATA=ACTORS;
 BY TITLE;
RUN;

DATA RIGHT_OUTER_MERGE;
 MERGE MOVIES (IN=M KEEP=TITLE LENGTH RATING)
 ACTORS (IN=A KEEP=TITLE ACTOR_LEADING);
 BY TITLE;
 IF A;

RUN;

PROC PRINT DATA=RIGHT_OUTER_MERGE NOOBS;
RUN;

Results

 The SAS System

 Title Length Rating Actor_Leading

 Brave Heart 177 R Mel Gibson

 Christmas Vacation 97 PG-13 Chevy Chase

 Coming to America 116 R Eddie Murphy

 Forrest Gump 142 PG-13 Tom Hanks

 Ghost 127 PG-13 Patrick Swayze

 Lethal Weapon 110 R Mel Gibson

 Michael 106 PG-13 John Travolta

 National Lampoon's Vacation 98 PG-13 Chevy Chase

 Rocky 120 PG Sylvester Stallone

 Silence of the Lambs 118 R Anthony Hopkins

 The Hunt for Red October 135 PG Sean Connery

 The Terminator 108 R Arnold Schwarzenegge

 Titanic 194 PG-13 Leonardo DiCaprio

13

The corresponding SQL procedure code to produce a right outer join row result set is shown below.

SQL Code

PROC SQL;
 CREATE TABLE RIGHT_OUTER_JOIN AS
 SELECT *
 FROM MOVIES(KEEP=TITLE LENGTH RATING)
 RIGHT JOIN
 ACTORS(KEEP=TITLE ACTOR_LEADING)
 ON MOVIES.TITLE = ACTORS.TITLE;

 SELECT * FROM RIGHT_OUTER_JOIN;
QUIT;

Results

 The SAS System

 Title Length Rating Actor_Leading

 Brave Heart 177 R Mel Gibson

 Christmas Vacation 97 PG-13 Chevy Chase

 Coming to America 116 R Eddie Murphy

 Forrest Gump 142 PG-13 Tom Hanks

 Ghost 127 PG-13 Patrick Swayze

 Lethal Weapon 110 R Mel Gibson

 Michael 106 PG-13 John Travolta

 National Lampoon's Vacation 98 PG-13 Chevy Chase

 Rocky 120 PG Sylvester Stallone

 Silence of the Lambs 118 R Anthony Hopkins

 The Hunt for Red October 135 PG Sean Connery

 The Terminator 108 R Arnold Schwarzenegge

 Titanic 194 PG-13 Leonardo DiCaprio

Conclusion
The Base-SAS DATA step and SQL procedure are wonderful languages for SAS users to explore and use in a
variety of application situations. This paper has presented explanations, guidelines and “simple” techniques for users
to consider when confronted with conditional logic scenarios and merges/joins. You are encouraged to explore these
and other techniques to make your SAS experience an exciting one.

References
Lafler, Kirk Paul (2010), “DATA Step and PROC SQL Programming Techniques,” Ohio SAS Users Group (OSUG)

2010 One-Day Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2009), “DATA Step and PROC SQL Programming Techniques,” South Central SAS Users Group
(SCSUG) 2009 Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2009), “DATA Step versus PROC SQL Programming Techniques,” Sacramento Valley SAS Users
Group 2009 Meeting, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul, Advanced SAS
®
 Programming Tips and Techniques; Software Intelligence Corporation, Spring

Valley, CA, USA; 1987-2007.

Lafler, Kirk Paul (2007), “Undocumented and Hard-to-find PROC SQL Features,” Proceedings of the PharmaSUG
2007 Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul and Ben Cochran (2007), “A Hands-on Tour Inside the World of PROC SQL Features,” Proceedings

of the SAS Global Forum (SGF) 2007 Conference, Software Intelligence Corporation, Spring Valley, CA, and The
Bedford Group, USA.

14

Lafler, Kirk Paul (2006), “A Hands-on Tour Inside the World of PROC SQL,” Proceedings of the 31
st
 Annual SAS

Users Group International Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2005), “Manipulating Data with PROC SQL,” Proceedings of the 30
th
 Annual SAS Users Group

International Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2004). PROC SQL: Beyond the Basics Using SAS, SAS Institute Inc., Cary, NC, USA.

Lafler, Kirk Paul (2003), “Undocumented and Hard-to-find PROC SQL Features,” Proceedings of the Eleventh Annual
Western Users of SAS Software Conference.

Lafler, Kirk Paul, PROC SQL Programming for Beginners; Software Intelligence Corporation, Spring Valley, CA, USA;

1992-2007.

Lafler, Kirk Paul, Intermediate PROC SQL Programming; Software Intelligence Corporation, Spring Valley, CA, USA;

1998-2007.

Lafler, Kirk Paul, Advanced PROC SQL Programming; Software Intelligence Corporation, Spring Valley, CA, USA; 2001-

2007.

Lafler, Kirk Paul, PROC SQL Programming Tips; Software Intelligence Corporation, Spring Valley, CA, USA; 2002-2007.

SAS
®
 Guide to the SQL Procedure: Usage and Reference, Version 6, First Edition; SAS Institute, Cary, NC, USA; 1990.

SAS
®
 SQL Procedure User’s Guide, Version 8; SAS Institute Inc., Cary, NC, USA; 2000.

Acknowledgments
I would like to thank Melodi Muehlbauer, Foundations and Fundamentals (Beginning Tutorials) Section Chair, for
accepting my abstract and paper. I’d also like to thank Dr. LeRoy Bessler, Alix Riley, and Craig Wildeman for a
terrific conference.

Trademark Citations
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies.

About the Author
Kirk Paul Lafler is consultant and founder of Software Intelligence Corporation and has been using SAS since 1979.
Kirk provides IT consulting services and training to SAS users around the world. As a SAS Certified Professional, Kirk
has written four books including PROC SQL: Beyond the Basics Using SAS, and more than four hundred peer-
reviewed papers and articles. He has also been an Invited speaker and trainer at more than three hundred SAS
International, regional, local, and special-interest user group conferences and meetings throughout North America.
His popular SAS Tips column, “Kirk’s Korner of Quick and Simple Tips”, appears regularly in several SAS User Group
newsletters and Web sites, and his fun-filled SASword Puzzles is featured in SAScommunity.org.

Comments and suggestions can be sent to:

Kirk Paul Lafler
Software Intelligence Corporation

World Headquarters
P.O. Box 1390

Spring Valley, California 91979-1390
E-mail: KirkLafler@cs.com

