

Copyright © 2010 SAS Institute Inc. All rights reserved.

SAS® Macros: Top Ten
Questions (and Answers!)

Kevin Russell –Technical Support Analyst
SAS Institute Inc.

2

Copyright © 2010, SAS Institute Inc. All rights reserved.

SAS® Macros: Top Ten Questions (and Answers!)

1. Can I use SAS functions within the macro facility?

2. What quoting function should I use to mask special
 characters?

3. How do I resolve a macro variable within single
 quotation marks?

4. How do I resolve error messages when output that was
 generated with the MPRINT system option looks fine?

5. What are the differences between the autocall facility
 and the stored compiled macro facility?

3

Copyright © 2010, SAS Institute Inc. All rights reserved.

6. How do I conditionally execute a macro from within a
 DATA step?

7. Why does my macro variable not resolve?

8. How can I use macros to loop through all files in a

 directory?

9. Can I use DATA step variables in a %IF-%THEN

 statement?

10. Why am I getting an error that states that a character

 operand was found in the %EVAL function?

SAS® Macros: Top Ten Questions (and Answers!)

4

Copyright © 2010, SAS Institute Inc. All rights reserved.

Question 1:

 Can I use SAS functions within the

 macro facility?

Answer:

 Yes, by using the %SYSFUNC macro

 function.

5

Copyright © 2010, SAS Institute Inc. All rights reserved.

Example: %SYSFUNC macro function

 %put %sysfunc(date(),worddate20.);

Output:

95 %put %sysfunc(date(),worddate20.);

October 12, 2010

6

Copyright © 2010, SAS Institute Inc. All rights reserved.

Question 2:

 What quoting function should I use

 to mask special characters such as the

 ampersand, percent sign, parentheses,

 and quotation marks?

Answer:

 Depends. Use compile-time or

 execution-time quoting functions for

 your situation.

7

Copyright © 2010, SAS Institute Inc. All rights reserved.

� Compile-time quoting functions:

� %STR–masks commas, mnemonics, and unmatched

quotation marks and parentheses.

� %NRSTR–masks percent signs and ampersands in addition to

the other special characters.

� Execution-time quoting functions:

� %BQUOTE–masks special characters and mnemonics in

resolved values during macro execution.

� %SUPERQ–masks special characters and mnemonics during

macro execution. However, it also prevents further resolution of

any macros or macro variables.

8

Copyright © 2010, SAS Institute Inc. All rights reserved.

Example: Unmatched Quotation Mark (‘)

 %let singleq=O'neill;

 %put &singleq;

Solution: %STR Function

 %let singleq=%str(O%'neill)
 %put &singleq;

3120 %put &singleq;

O'neill

9

Copyright © 2010, SAS Institute Inc. All rights reserved.

Example: Percent Sign (%)
 %let ex=This macro is called %showme;

 %put ex=&ex;

20 %let ex= This macro is called %showme;

WARNING: Apparent invocation of macro SHOWME

not resolved.

21 %put ex=&ex;

WARNING: Apparent invocation of macro SHOWME

not resolved.

Solution: %NRSTR Function
 %let ex=%nrstr(This macro is called %showme);

 %put ex=&ex;

23 %let ex=%nrstr(This macro is called

%showme);

24 %put ex=&ex;

ex=This macro is called %showme

10

Copyright © 2010, SAS Institute Inc. All rights reserved.

31 %put WITH NO QUOTING FUNCTION:;

WITH NO QUOTING FUNCTION:

32 %test(&x);

ERROR: More positional parameters found than

defined.

Example: Commas (,)
 %macro test(value);

 %put &value;

 %mend;

 %let x=a,b,c;

 %put WITH NO QUOTING FUNCTION:;

 %test(&x);

34 %put WITH THE CORRECT QUOTING
FUNCTION:;
WITH THE CORRECT QUOTING FUNCTION:
35 %test(%bquote(&x))
a,b,c

Solution: %BQUOTE Function
 %put WITH THE CORRECT QUOTING FUNCTION:;

 %test(%bquote(&x));

11

Copyright © 2010, SAS Institute Inc. All rights reserved.

Example: Ampersand (&)
 data _null_;
 call symputx(‘Milwaukee','Beer&Brats');
 run;
 %put NOT quoted:;
 %put &Milwaukee;

5 %put NOT quoted:;

NOT quoted:

6 %put &Milwaukee;

WARNING: Apparent symbolic reference BRATS

not resolved.

Beer&Brats

Solution: %SUPERQ Function
 %put THIS is quoted:;

 %put %superq(Milwaukee);

8 %put THIS is quoted:;

THIS is quoted:

9 %put %superq(Milwaukee);

Beer&Brats

12

Copyright © 2010, SAS Institute Inc. All rights reserved.

Question 3:

 How do I resolve a macro variable within

 single quotation marks?

Answer:

 Use the %STR and %UNQUOTE

functions.

13

Copyright © 2010, SAS Institute Inc. All rights reserved.

 %let name=Fred;
 %put %unquote(%str(%‘NAME: &name%'));

17 %put %unquote(%str(%’NAME:&name%'));

'NAME: Fred'

Example: %STR and %UNQUOTE functions

14

Copyright © 2010, SAS Institute Inc. All rights reserved.

Question 4:

 How do I resolve error messages when

 output that was generated with the

 MPRINT system option looks fine?

Answer:

 Use the %UNQUOTE function.

15

Copyright © 2010, SAS Institute Inc. All rights reserved.

 options mprint;
 %macro test;
 %let val=aaa;
 %let test = %str(%'&val%');

 data _null_;
 val = &test;

 put val=;
 run;
 %mend test;
 %test

Example: %UNQUOTE function

Note: Line generated by the macro variable
“TEST”.
1 ‘aaa’
 -
 386

 202
ERROR 386-185: Expecting an arithmetic
expression.
ERROR 202-322: The option or parameter is not
recognized and will be ignored.

16

Copyright © 2010, SAS Institute Inc. All rights reserved.

Solution: %UNQUOTE Function

 options mprint;
 %macro test;
 %let val = aaa;
 %let test = %unquote(%str(%'&val%'));

 data _null_;
 val = &test;
 put val=;
 run;
 %mend test;
 %test

17

Copyright © 2010, SAS Institute Inc. All rights reserved.

Question 5:

 What are the differences between the

 autocall facility and the stored compiled

 macro facility?

Answer:

 The differences are in the features for

 each facility.

18

Copyright © 2010, SAS Institute Inc. All rights reserved.

Features
Autocall
Facility

Stored Compiled
Macro Facility

Easy to maintain if
code is shared

Yes Maybe

Easy to hide code to
the end user

No Yes

Uses less overhead No Yes

Easy to transfer
across platforms

 Yes No

Autocall Facility vs. Stored Compiled Macro Facility

19

Copyright © 2010, SAS Institute Inc. All rights reserved.

Autocall Facility

� Macro source code is implicitly included and compiled to the

WORK.SASMACR catalog.

� To use autocall macros, you have to set the MAUTOSOURCE and

the SASAUTOS= system options.

� The MAUTOSOURCE option activates the autocall facility.

� The SASAUTOS= option specifies the autocall library or libraries.

� To use the autocall facility, submit the following statements:

 filename fileref ‘autocall-library-path’;

 options mautosource sasautos=(sasautos fileref);

20

Copyright © 2010, SAS Institute Inc. All rights reserved.

Stored Compiled Macro Facility
� The stored compiled macro facility provides access to permanent

SAS catalogs from which you can invoke compiled macros directly.

� To use these stored compiled macros, you have to set the

MSTORED and the SASMSTORE= system options.

� The MSTORED option searches for the compiled macros in a

SAS catalog that you reference with the SASMSTORE= option.

� The SASMSTORE= option specifies the libref for the SAS library

that contains the stored compiled macros.

� To use the stored compiled macro facility, submit the following

statements:

 libname libref ‘SAS-data-library-path’;

 options mstored sasmstore=libref;

21

Copyright © 2010, SAS Institute Inc. All rights reserved.

Question 6:

 How do I conditionally execute a macro

 from within a DATA step?

Answer:

 Use the CALL EXECUTE routine.

22

Copyright © 2010, SAS Institute Inc. All rights reserved.

 /* Compile the macro BREAK. The BYVAL */
 /* parameter is generated in the CALL */
 /* EXECUTE routine. */
 %macro break(byval);
 data age_&byval;
 set sorted(where=(age=&byval));
 run;
 %mend;

 proc sort data=sashelp.class out=sorted;
 by age;
 run;

 options mprint;
 data _null_;
 set sorted;
 by age;
 if first.age then call
 execute(‘%break(‘||age||’)’);
 run;

Example: CALL EXECUTE routine

23

Copyright © 2010, SAS Institute Inc. All rights reserved.

MPRINT(BREAK): data age_11;
MPRINT(BREAK): set sorted(where=(age=11));
MPRINT(BREAK): run;
MPRINT(BREAK): data age_12;
MPRINT(BREAK): set sorted(where=(age=12));
MPRINT(BREAK): run;
MPRINT(BREAK): data age_13;
MPRINT(BREAK): set sorted(where=(age=13));
MPRINT(BREAK): run;
MPRINT(BREAK): data age_14;
MPRINT(BREAK): set sorted(where=(age=14));
MPRINT(BREAK): run;
MPRINT(BREAK): data age_15;
MPRINT(BREAK): set sorted(where=(age=15));
MPRINT(BREAK): run;
MPRINT(BREAK): data age_16;
MPRINT(BREAK): set sorted(where=(age=16));
MPRINT(BREAK): run;

Output:

24

Copyright © 2010, SAS Institute Inc. All rights reserved.

Question 7:

 Why does my macro variable not resolve?

Answer:

 The macro variable might not resolve for

a few reasons:

� macro variable scope

� no step boundary

� timing issues

25

Copyright © 2010, SAS Institute Inc. All rights reserved.

� Macro variable scope: Local macro variables versus
global macro variables.

� No step boundary: The DATA step does not have an
ending RUN statement before a CALL SYMPUT or a CALL
SYMPUTX routine.

� Timing issues: a result of using the CALL EXECUTE and
CALL SYMPUT routines together.

Debugging Options:
� %PUT _USER_;

� %PUT _GLOBAL_;

� %PUT _LOCAL_;

� %PUT _ALL_;

� %PUT _AUTOMATIC_;

Reasons for Macro Variable Not Resolving:

26

Copyright © 2010, SAS Institute Inc. All rights reserved.

Macro Variable Scope
� Local macro variables are not available outside of the macros in which

they are defined. Such a macro variable only exists as long as its

associated macro is executing.

1 %macro showme(test);
2 %let inside=RESOLVE ME.;
3 %put this shows INSIDE: &INSIDE;
4 %mend;
5
6 %showme(VALUE)
this shows INSIDE: RESOLVE ME.
7 %put &inside;
WARNING: Apparent symbolic reference INSIDE not resolved.
&inside

%macro showme(test);
 %let inside=RESOLVE ME.;
 %put this shows INSIDE: &INSIDE;
%mend;

 %global inside;
 %showme(VALUE)
 %put &inside;

� Global macro variables are available throughout an entire SAS session.

27

Copyright © 2010, SAS Institute Inc. All rights reserved.

No Step Boundary
Example: No RUN statement before %PUT statement:
 data test;
 x="MYVALUE";
 call symputx('macvar',x);
 %put WILL I RESOLVE &macvar?;

57 %put WILL I RESOLVE &macvar?;
WARNING: Apparent symbolic reference MACVAR not
resolved.

Output:

 data test;

 x="MYVALUE";

 call symputx('macvar',x);

 run;

 %put WILL I RESOLVE &macvar?;

Example: RUN statement before %PUT statement

14 %put WILL I RESOLVE &macvar?;
WILL I RESOLVE MYVALUE?

Output:

28

Copyright © 2010, SAS Institute Inc. All rights reserved.

 data names;
 input code name $;
 cards;
 1 first
 2 second
 3 third
 ;
 %macro report(munc);
 data check;
 set names(where=(code=&munc));
 call symput ('namemac', name);
 run;

 %if &namemac ne %then %do;
 proc print data=check;
 title "data for &namemac";
 run;
 %end;
 %mend report;

 data _null_ ;
 set names;
 call execute('%report('||code||')');
 run;

data check;
 set names(where=(code=1);
 call symput(‘namemac’,name);
run;

Warning and error / stop macro Input stack

Common Issue with the

CALL SYMPUT and

CALL EXECUTE Routines

%report(1)

Timing Issue

29

Copyright © 2010, SAS Institute Inc. All rights reserved.

Timing Issue
WARNING: Apparent symbolic reference NAMEMAC not
resolved.
ERROR: A character operand was found in the %EVAL
Function or %IF condition where a numeric operand
is required. The Condition was:&namemac ne
ERROR: The macro REPORT will stop executing.

Solution: Use %NRSTR
Bad Code
%macro report(munc);

 data check;

 set names(where=(code=&munc));

 call symput ('namemac', name);

 run;

 %if &namemac ne %then %do;

 proc print data=check;

 title "data for &namemac";

 run;

 %end;

%mend report;

data _null_;

 set names;

 call execute('%report('||code||')');

 run;

Good Code
%macro report(munc);

 data check;

set names(where=(code=&munc));

 call symput ('namemac', name);

 run;

%if &namemac ne %then %do;

 proc print data=check;

 title "data for &namemac";

 run;

 %end;

 %mend report;

data _null_;

 set names;

call execute(‘%nrstr(%report

('||code||'))');

 run;

30

Copyright © 2010, SAS Institute Inc. All rights reserved.

Question 8:

 How can I use macros to loop through all

 files in a directory?

Answer:

 Use the %DO statement.

31

Copyright © 2010, SAS Institute Inc. All rights reserved.

%macro drive(dir,ext);

 %let filrf=mydir;

 %let rc=%sysfunc(filename(filrf,&dir));

 %let did=%sysfunc(dopen(&filrf));

 %let memcnt=%sysfunc(dnum(&did));

 %do i = 1 %to &memcnt;

 %let name=%qscan(%qsysfunc(dread(&did,&i)),-1,.);

%if %qupcase(%qsysfunc(dread(&did,&i))) ne %qupcase(&ext) %then

%do;

 %if (%superq(ext) ne and %qupcase(&name) = %qupcase(&ext))

or

 (%superq(ext) = and %superq(name) ne) %then %do;

 %put %qsysfunc(dread(&did,&i));

 %end;

 %end;

 %end;

 %let rc=%sysfunc(dclose(&did));

%mend drive;

%drive(c:\,sas)

Example: %DO statement

32

Copyright © 2010, SAS Institute Inc. All rights reserved.

Question 9:

 Can I use DATA step variables in a

 %IF-%THEN statement?

Answer:

 No, DATA step variables cannot be used

in %IF-%THEN statements.

33

Copyright © 2010, SAS Institute Inc. All rights reserved.

%macro test;

 data sample;
 text=“OPEN”;
 %if TEXT=OPEN %then %do;
 %put TRUE?;
 %end;
 run;
 %mend;

Example: DATA step variable in %IF-%THEN
statement

34

Copyright © 2010, SAS Institute Inc. All rights reserved.

%IF-%THEN statement vs. IF-THEN statement

%IF-%THEN Statement IF-THEN Statement

� Conditionally executes SAS
statements during DATA step
execution.

� Conditionally generates text.

� Expression can only contain
operands that are constant text
or text expressions that generate
text.

� Expression can only contain
operands that are DATA step
variables, character or numeric
constants, or date and time
constants.

� Executes during DATA step
execution. If the statement is
contained within a macro, it is
stored as text.

� Cannot refer to DATA step
variables.

� Executes during macro
execution. If the statement is
contained in a DATA step, it is
executed before DATA step
compilation.

35

Copyright © 2010, SAS Institute Inc. All rights reserved.

Question 10:

 How do I resolve an error stating that

 a character operand was found in the

 %EVAL function?

Answer:

 Use the %SYSEVALF function.

36

Copyright © 2010, SAS Institute Inc. All rights reserved.

 %macro test(val);

 %if &val < 0 %then %put test;

 %mend test;

 %test(-1.2)

99 %test(-1.2)

ERROR: A character operand was found in the %EVAL

function or %IF condition where a numeric operand is

required. The

condition was: &val > 0

ERROR: The macro TEST will stop executing.

Example: %SYSEVALF function

Solution:
%macro test(val);

 %if %sysevalf(&val < 0) %then %put TRUE;

 %mend test;

 %test(-1.2)

673 %macro test(val);

674 %if %sysevalf(&val < 0) %then %put TRUE;

675 %mend test;

676 %test(-1.2)

TRUE

37

Copyright © 2010, SAS Institute Inc. All rights reserved.

References
Question 2: What quoting function should I use to mask special characters?

 SAS Usage Note 31012, “An error occurs when a comma is present in the value of a parameter being
passed to a macro.” 2008. Cary, NC: SAS Institute Inc. Available at support.sas.com/kb/31/012.html.

Question 3: How do I resolve a macro variable within single quotation marks?

 SAS Sample 25076, “Resolve a macro variable within single quotes.” 2005. Cary, NC: SAS Institute Inc.
Available at support.sas.com/kb/25/076.html.

Question 5: What are the differences between the autocall facility and the stored compiled facility?

 SAS Usage Note 445, “How to have shared access with the stored compiled macro facility.” 2005. Cary,
 NC: SAS Institute Inc. Available at support.sas.com/kb/00/445.html.

 SAS Usage Note 23210, “How to hide macro code so that it does not appear in the log when the program
is executed.” 2003. Cary, NC: SAS Institute Inc. Available at support.sas.com/kb/23/210.html.

 SAS Usage Note 24451, “Creating an autocall macro on a PC.” 2005. Cary, NC: SAS Institute Inc.
Available at support.sas.com/kb/24/451.html.

Question 6: How do I conditionally execute a macro from within a DATA step?

 SAS Sample 26140, “Creating a new data set for each BY group in a data set.” 2007. Cary, NC: SAS
Institute Inc. Available at support.sas.com/kb/26/140.html.

Question 7: Why does my macro variable not resolve?

 SAS Usage Note 23134, “Macro variables created with the CALL SYMPUT routine do not resolve when
invoked by the CALL EXECUTE routine.” 2003. Cary, NC: SAS Institute Inc. Available at
support.sas.com/kb/23/134.html.

Question 8: How can I use macros to loop through all files in a directory?

 SAS Sample 25074, “Listing all files that are located in a specific directory.” 2005. Cary, NC: SAS
Institute Inc. Available at support.sas.com/kb/25/074.html.

38

Copyright © 2010, SAS Institute Inc. All rights reserved.

Recommended Reading

Burlew, Michelle. 2006. SAS Macro Programming Made Easy, Second
Edition. Cary, NC: SAS Press.

Carpenter, Art. 2004. Carpenter's Complete Guide to the SAS® Macro
Language, Second Edition. Cary, NC: SAS Press.

Tyndall, Russ. Give Your Macro Code an Extreme Makeover: Tips for
even the most seasoned macro programmer . Cary, NC: SAS Institute
Inc. Available at support.sas.com/techsup/technote/ts739.pdf.

Copyright © 2010 SAS Institute Inc. All rights reserved.

Questions?

