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Abstract 
 
Modern computational algorithms such as Markov Chain Monte-Carlo (MCMC) make it possible to find exact 
solutions to a range of statistical problems that are beyond the reach of traditional statistical methods due to 
intractable mathematics or the requirement for over-simplifying assumptions. Adoption of these powerful approaches 
has been inhibited by a lack of appreciation of the Bayesian paradigm, as well as a lack of commercial software. 
Within the last decade, the advantages of these methods are becoming better known, and are now available in 
commercial software such as SAS.  
 
With the inclusion of R interfaces in JMP version 9, a wide selection of statistical tools, including MCMC procedures, 
are now available to JMP users willing to learn R or WinBUGS language basics and write short JMP language (JSL) 
scripts. This paper provides simple, motivating examples of Bayesian estimation using random walk Metropolis or 
Gibbs sampling using JMP R interfaces. The examples include small sample coefficient of variation estimation and 
variance parameter and tolerance interval estimation for a two level hierarchical process. The examples are based on 
the author’s experience in medical device and pharmaceutical R&D, but should be of general interest.  
 
Background is provided so the reader can appreciate why using Bayesian/ MCMC approaches has value. The steps 
required to execute this kind of analysis are presented, including loading of the R and WinBUGS packages and 
required libraries, JSL scripts, and description of the associated theory. Finally, the output will be analyzed using JMP 
visualization and summary platforms. 
 
 
Introduction 
 
When a scientist, engineer, or statistician has a choice of statistical methods to apply to a critical problem it is 
generally best to use one that is familiar. This avoids learning curve delays and mistakes. However, anyone whose 
job involves extracting information from data is well advised to learn novel approaches to advance his/her skill level 
and versatility. In my role as a statistical consultant, there have been times when I have failed to heed this advice and 
instead, due to my ignorance, turned a client’s problem into “one I could solve”. At best this resulted in a confused 
client who could not interpret the statistical results provided. At worst, it was a disservice that resulted in a sub-
optimal decision. So I recommend trying new techniques on example data when time permits.  
 
The purpose of this paper is to share some good news with fellow JMP users:  JMP version 9 includes an interface to 
the R environment for statistical computing.  The R software includes many user contributed packages (2443 as of 
last count). Both the R software and packages are freely available. Of course, many of these duplicate statistical or 
graphical procedures that are already available in JMP. However, there are some R packages that permit statistical 
inferences that JMP cannot provide. We focus here on one particular kind of statistical inference that is now available 
to JMP users through R: Bayesian inference. 
 
Most inferential procedures now available directly in JMP are based on sampling theory. Examples of sampling 
theory approaches include the t-, F-, and Chi-square tests that the reader is likely familiar with. By assuming an 
underlying population distribution (such as normal or binomial), we can predict the characteristics of data when 
sampling repeatedly from the population. We can use this sampling theory to obtain P-values for hypotheses tests, 
confidence intervals to contain underlying model parameters, tolerance intervals to contain future data, set 
specification limits to control a process, and address many statistical questions in a rigorous and objective way. 
During the 20th century, a plethora of sampling theory procedures were developed and they now form the core “tool 
kit” for much of our scientific and industrial decision making. What is most impressive about sampling theory is that it 
can do all this (much of the time) without making any prior assumptions about the true values of underlying 
distributional parameters (such as mean, standard deviation, or binomial proportion). In sampling theory, population 
parameters are regarded as fixed, but unknown, constants. 
 
Bayesian thinking actually predated sampling theory by over 100 years. Like sampling theory, Bayesian inference 
presumes an underlying population distribution and treats observed data as the result of a random process. However, 
it goes one step further than sampling theory: It treats population parameters as random variables too. In Bayesian 
inference therefore, it is necessary to describe the “prior” distribution(s) of the population parameters as well as the 
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population distribution itself. The need to specify prior distributions seems subjective and undesirable. We often like 
to think of our statistical inferences about population parameters as being entirely based on the observed data. 
However, what I would like to illustrate here is that this apparent weakness of Bayesian inference, is in fact its most 
enduring strength. The need to specify prior distributions forces us to come to grips with critical assumptions; and as 
with the “Emperor’s New Clothes” (ref 1), some problems benefit from a careful examination of underlying 
assumptions. Beyond that, the use of prior distributions gives us a knowledge building mechanism and allows us to 
address scientific and industrial questions that are beyond the reach of sampling theory alone. 
 
Like any other form of data analysis, Bayesian approaches require some familiarity with new concepts, new 
languages, and attention to some important details. Bolstad (ref 11) is an excellent introduction to Bayesian ideas and 
basic methods. Gelman et al (ref 12) gives a much more in depth overview of Bayesian modeling and MCMC. Albert 
(ref 13) has provided a very nice LearnBayes R library and an accompanying text book filled with examples of 
Bayesian analyses in R. All of these resources are strongly recommended for JMP users who wish to build their 
knowledge of these important new tools.  
 
To appreciate the “good news” aspect of JMPs new R interface, you first need to have some idea Why you would 
ever want to use a Bayesian procedure. You need to see How to use the R interface to make some simple, but I hope 
compelling, inferences, and finally you need to know What to be aware of when using Bayesian inference on your 
own. I will start with the Why. 
 
 
Why take a Bayesian approach? 
 
The pros and cons of Bayesian inference have been debated since the 1763 publication of Reverend Bayes’ 
celebrated Essay (ref 2 and 3). Instead of joining that debate, I will simply offer some classes of problems for which I 
have found a Bayesian approach appropriate and useful. 
 
Problems that require a probability statement about a model parameter 
 
Bayesian thinking comes naturally to most decision makers who have little statistical training. Often their choices 
depend on their subjective knowledge of some unknown model parameter such as a defect rate. For instance, If the 
true defect rate for a lot is above an acceptance limit, they will fail the lot. They have some prior expectations about 
the defect rate and they have some lot testing data. They want to combine their prior knowledge with evidence from 
the data to know the probability that the lot defect rate is above the limit. Decision makers have much in common with 
gamblers. To make optimal decisions they need to know the odds. For this they often need probability statements 
about the underlying parameters of some process or lot. 
 
A well trained statistician might apply a sampling theory approach to this problem and produce a hypothesis test or 
confidence interval estimate for the defect rate using only the available lot data. However, the statistician understands 
that inferences based on sampling theory cannot produce a probability statement about the underlying defect rate. A 
hypothesis test P-value of 0.04 does not mean that there is 96% probability that the defect rate is above the limit. The 
defect rate of the lot in question cannot be said to have a 95% probability of being contained within a 95% confidence 
interval estimated from the lot testing data alone. Instead, the P-value and confidence interval based on sampling 
theory allow statements about the statistical method itself and about the operating characteristics of the method when 
applied hypothetically in a repeated sampling sense. Such probability statements apply to the statistical method, not 
to the lot defect rate, and they may not be directly useful for probabilistic risk assessment. Often such statements are 
misinterpreted by decision makers. 
 
On the other hand, a Bayesian estimate of the defect rate would come as a posterior distribution. The probability that 
the defect rate exceeds some limit is immediately available from the right tail area of this distributional estimate. Thus 
Bayesian approaches lend themselves to situations in which data estimates of model parameters are used to inform 
cost-benefit choices and risk assessments. 
 
Problems that require a probability statement about some function of model parameters 
 
Consider an analytical method whose measurement values are assumed to come from a normal distribution. The 
quantity of interest might be the underlying %CV which is defined as 100*sigma/mu. The objective might be to 
provide evidence that the method %CV is below some upper limit. Perhaps if the method %CV is above this limit, the 
method will not be fit for purpose and will require further development effort. 
 
If the measurement values can be assumed to follow a normal distribution, sampling theory methods can be used to 
obtain an approximate confidence interval for the underlying %CV (ref 4). If the confidence interval upper bound is 
below the limit, the decision might be to approve the use of the method. However, as discussed above, this approach 
cannot answer the question “What is the probability that the method %CV is below the limit?”. The confidence 
coefficient associated with a confidence interval derived from sampling theory refers to the hypothetical long term 
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repeated sampling performance of the statistical method used to get the confidence interval for the %CV, not to the 
underlying %CV itself. Therefore a decision maker cannot immediately use the confidence interval result to 
understand the decision risk in a direct probabilistic sense. 
 
A Bayesian distributional estimate of the %CV can be used to answer this question directly. Further, the Bayesian 
approach would not require simplifying assumptions or complex analytical derivations. It can be applied to non-
normal situations with little added complication. These comments apply as well to most cases in which a probabilistic 
statement is needed about any complex function of model parameters including those that involve random functions. 
The reason for this is that the distributional estimate of model parameters (i.e., mu and sigma) comes in the form of a 
sample from the joint distribution. This sample is similar in many ways to a bootstrap or Monte-Carlo sample and is 
exactly what is needed for simulations and predictions. The corresponding sample from the distribution of any 
function of the model parameters is available by simple calculation of the function for each draw. Many problems 
which are analytically intractable using sampling theory, such as the two sample t-test with unequal variances,  
become rather trivial using modern Bayesian computational tools. The new R interface makes such tools available to 
JMP users. 
 
Problems in which relevant prior information is available 
 
While a Bayesian approach does require that a prior distribution (sometimes simply referred to as a “prior”) be placed 
on model parameters, one has considerable flexibility in the “information content” of the prior(s). The choice of prior  
is a subjective choice and members of a project team may disagree about the choice. The choice may have a large 
influence on an analysis if the prior information content outweighs that of the data. An analysis can be repeated with 
different priors to determine the impact this choice may have on the final conclusion. This can provide useful 
feedback to a project team. 
 
The project team may choose to use a prior with low information content to let the “data speak for themselves”. Priors 
can be chosen specifically to provide essentially no prior information about the value of a model parameter. For 
instance, as illustrated in Figure 1, one could use a continuous uniform prior between 0 and 1 as the prior for the true  
proportion defective in a population (say a large lot of “widgets”).  
 

 
Figure 1. Non-informative prior distribution for the proportion defective in a process 

 
The uniform distribution in Figure 1 can be constructed directly in JMP using the beta distribution function 
 
Beta Density (Defect Rate, a, b) ,     [1] 
 
where the first parameter is the hypothetical defect rate plotted on the horizontal axis, and the beta distribution 
parameters a = b = 1. All distributions have a “story” behind them. The story with the beta distribution in this case is 
that a + b widgets were randomly sampled and a were found defective. From this the information in the prior amounts 
to testing of 2 “prior” widgets and finding one of them defective. The resulting uniform distribution of Figure 1 is seen 
to give no preference to any particular value of the population proportion defective. 
 
The result of a Bayesian analysis is always expressed as a “posterior” distribution of model parameters. Quite often, 
such a “non-informative” or “objective” prior will yield a posterior distribution whose quantiles are similar or even 
identical to that of a traditional sampling theory method confidence interval. To illustrate, assume actual testing of A + 
B = 30 widgets found A = 3 actual defectives. The posterior probability density distribution of the population 
proportion defective, given the non-informative prior of equation [1] is simply 
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Beta Density (Defect Rate, a+A, b+B) = Beta Density (Defect Rate, 4, 28) [2] 
 
Which is plotted in Figure 2.  
 

 
Figure 2. Posterior distribution for the proportion defective in a process based on the prior distribution in Figure 1 

and the data given in the text 
 
 
 
The equal tailed 95% “credible interval” estimate can be obtained using the beta quantile function as: 
 
( Beta Quantile (0.025, 4, 28), Beta Quantile (0.975, 4, 28) ) = (0.0363, 0.2575).  
 
These are shown as vertical lines in Figure 2.  
 
The 95% confidence interval obtained using a sampling theory based approach in the JMP Distribution platform is 
given in Table 1 as (0.0346, 0.2562), which is a similar range. However, the interpretation of these 2 intervals is very 
different. The Bayesian result allows us to state that the defect rate is between 0.0363 and 0.2575 with 95% 
probability. The sampling theory result allows us only to conclude that, since we have used a method that captures 
the true mean with 95% probability on repeated use, we can indirectly infer that we are unlikely to be wrong in 
assuming that the population value is between 0.0346 and 0.2562. The later statement is a probabilistic statement 
about the method, not the parameter of interest. 
 
Table 1. Output from an analysis of a nominal variable consisting of the data for proportion of defects as discussed 
in the text. 
 
Frequencies 
Level  Count Prob 
0 27 0.90000 
1 3 0.10000 
Total 30 1.00000 
 
Confidence Intervals 
Level  Count Prob Lower CI Upper CI 1-Alpha 
0 27 0.90000 0.743789 0.9654 0.950 
1 3 0.10000 0.0346 0.256211 0.950 
Total 30   
Note: Computed using score confidence intervals. 
 
 
For some parameters there may be considerable prior knowledge. Some prior knowledge is almost always available 
in product or analytical method development from relevant past experience, scientific literature, or applicable theory. 
For instance, in estimating a mean concentration by a well studied analytical method, there may be considerable prior 
knowledge about the method precision. Sampling theory approaches “waste” this information. However a Bayesian 
approach can capture this knowledge as an appropriate informative prior distribution on the method variance. If there 
is general agreement among knowledge experts and decision makers on the choice of an informative prior, then the 
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estimate of the mean will be more efficient because it leverages prior information. The opportunity to leverage prior 
knowledge is one advantage of a Bayesian, over a sampling theory approach.  
 
Continuing with our “widget” example, One familiar with the widget manufacturing process may feel it is reasonable to 
assume that the defect rate likely not to be above 0.5 (50% defective product). One might express this prior 
information as a hypothetical prior experiment in which a + b = 10 widgets were sampled and a=1 was found 
defective. This prior density may be captured using 
 
Beta Density (Defect Rate, 1, 9) ,     [1] 
 
Which is shown in Figure 3. 
 

 
Figure 3. Informative prior distribution for the proportion defective in a process 

 
Figure 4 gives the resulting posterior distribution (thick blue line) plotted using the following density obtained by 
setting a=1, b=9, A=3, and B=27. For comparison the densities in Figures 1 to 3 have been superimposed. Because 
the data set consisted of only 30 samples while the prior sample sizes were 2 and 10, the use of an informative prior 
causes the posterior distribution to be tighter with a lower mode than the posterior resulting from a non-informative 
prior. This reflects the information contained in the prior which, if justified, better informs the analysis and tightens the 
posterior distribution.  
 
Beta Density (Defect Rate, a+A, b+B) = Beta Density (Defect Rate, 4, 36) 
 
 

 
 

Figure 4. Illustration of the effect of prior assumptions on the estimation of a population proportion defective. The 
thin red and blue lines represent the non-informative and informative prior densities. The corresponding thicker lines 

give the respective posterior densities. 
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A Bayesian approach may be executed iteratively such that the current posterior distribution of model parameters 
becomes the prior information for the next experiment. This forms the basis for a rigorous knowledge building and 
continuous learning approach. As additional data are acquired, the relative importance of the original prior becomes 
negligible. The Bayesian approach is a continuous learning process that is in the spirit of much recent regulatory 
guidance in pharmaceutical development (ref 5 and 6). While it can be challenging to justify using prior information to 
regulatory authorities, successfully doing so has the potential of reducing the cost of developing new medicines. 
 
 
 
Problems for which the data model involves a hierarchical structure 
 
In some cases, a parameter value may be different for different sampling units. For example, the mean and/ or 
variance of the tablet drug level of a batch of tablets may differ among batches. In this example, there are 2 
hierarchies: The between batch and the within batch level. In other cases there may be 3 or more hierarchies (e.g., 
tablets within bathes within manufacturing sites) and the internal structures can be endlessly complex. It is 
challenging to model such data structures analytically using sampling theory methods. Often some approximation, 
simplifying assumption, or invocation of a controversial principle is required to arrive at a solution. For instance, the 
confidence intervals for mixed model estimates produced by JMPs Fit Model platform are only approximate when 
sample sizes are small. Under some conditions, variance component estimates can actually be negative which is 
statistically embarrassing. Sampling theory concepts such as degrees of freedom, which are so compelling and 
straightforward in simple problems become slippery and counter-intuitive in the face of even the simplest of 
hierarchical structures. 
 
Bayesian approaches are not as dependent on analytical solutions as are sampling theory approaches. Complex 
mathematical derivations and matrix algebra are replaced by a bottom up strategy in which the individual components 
of the data generation mechanism are each modeled probabilistically. Since each component can be thought of as 
conditionally independent (that is dependent only on the inputs from precedent components) the whole data 
generation structure can be simulated as the sum total of its components. In the last decade, Markov-Chain Monte-
Carlo methods and their tendency to converge toward correct solutions after many iterations on our fast modern 
computers has given us good solutions to large classes of inference problems.  
 
Because Bayesian solutions are derived by simulating the data generation process directly, the statistician (i.e., the 
computer programmer who writes the simulation “do loops”) gains considerable insight into the dynamics of the data 
generation in the model under consideration. Sometimes this insight is lost when using software procedure syntax or 
point-and-click platforms built on a distracting analytical solution somewhat removed from the data generation 
process.  
 
 
Problems that involve missing data 
 
Experimenters are well aware that experimental trials do not always yield usable results. In some experimental 
situations such as survival, reliability, or clinical trials missing results are the rule rather than the exception. Missing 
data can be conceptually challenging for sampling theory methods and the results of an analysis can depend on the 
particular missing data assumptions used in the analysis.   
 
The Bayesian approach to missing data seems particularly straightforward. Missing values are simply treated as 
parameters to be estimated. As a Bayesian MCMC simulation progresses, the missing values are updated 
continuously along with all other parameters. The final Bayesian analysis produces predictive posterior estimates of 
the missing values.  
 
 
Tests of equivalence 
 
Statistical tests of equivalence arise frequently when a change to a manufacturing process or analytical testing 
method occurs. Such tests are used to establish the bioequivalence of two pharmaceuticals. Equivalence tests differ 
from tests of equality in that the null hypothesis is that the processes, methods, or pharmaceuticals are NOT 
equivalent. Such a test requires that an equivalence range be pre-defined for the parameters that govern the system. 
An example of a sampling theory based equivalence test is the two one-sided t-tests (TOST) test (ref 8). 
 
As indicated above, confidence intervals derived from sampling theory give an indirect sense of the likely range of a 
parameter’s value. The only kind of probability statement possible with a sampling theory confidence interval is that 
associated with the long run repeated sampling performance of the method used to calculate the interval. Sampling 
theory concerns itself with sampling distributions of statistics only and does not provide, or permit, a probability 
distribution associated directly with ranges of parameter values. An equivalence test , on the other hand, is 
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concerned directly with ranges within which a parameter’s value is likely to be. For instance the parameter may be 
the difference in the means or ratios of 2 populations whose equivalence is of interest. 
 
To use sampling theory to make a test of equivalence, the following indirect procedure might be used: 
 

1. State a range of parameter values within which the populations are considered equivalent. 
2. Obtain an equal tailed 100*(1-2*alpha)% confidence interval for the parameter using a sampling theory 

method (such as a t-distribution based interval). 
3. If the confidence interval is contained completely within the equivalence range, reject the null hypothesis 

that the populations are not equivalent with 100*alpha% confidence.  
 
The evidence provided by this procedure is based on the long run performance of the sampling theory method itself. 
The final confidence level is not the probability that the populations are equivalent. In fact, the confidence level is 
often conservative and does not take into account the location or width of the final interval relative to the equivalence 
range. So the sampling theory approach does not permit an assessment of decision risk based on the data in hand. 
 
The difficulty of interpreting the result of a confidence interval based equivalence test is exacerbated when the test 
involves multiple parameters. In this case, a multivariate confidence set must be identified in step 2 above. 
Multivariate confidence sets are not unique. They depend on choices such as shape. For instance, both rectangular 
and ellipsoidal confidence sets with the same confidence coefficient can be identified. Often the choice is arbitrary, 
but it may have a critical impact on whether the whole of the confidence region is contained within the equivalence 
region. While a multivariate equivalence test may still be conducted using multiple univariate confidence intervals for 
each parameter, it may be challenging to define the equivalence limits for each parameter if the multivariate 
equivalence region is not rectangular. 
 
A Bayesian equivalence test is conceptually simpler and more direct. It consists of the following steps: 
 

1. State a range of parameter values within which the populations are considered equivalent. 
2. Obtain the (multivariate joint) posterior distribution for the parameter of interest. 
3. Integrate the posterior distribution over the equivalence range. The result is the posterior probability that the 

populations are equivalent.  
 
The Bayesian equivalence approach produces a probability that relates directly to the objective. There is no need to 
worry about the conservative nature of the test or non-essential issues such as confidence set shape. The resulting 
probability can be used directly to assess decision risk. The integration in step 3 is usually a simple counting exercise 
using the posterior sample provided by MCMC. 
 
Adaptive studies involving interim analyses 
 
Traditionally, clinical trials are prospectively designed. All aspects of the study are pre-specified and, except for safety 
monitoring, the protocol is not modified during the study. In fact, the data are not even examined by stake holders 
until the study is complete and the “blind is broken”. To some extent, need for this rigidity is due to the nature of the 
sampling theory methods traditionally used to analyze the results and make the final decisions about safety and 
efficacy. In particular, stopping or changing a trial early based on partial data can be problematic and compromises 
the sampling theory interpretation of the results. 
 
The Bayesian approach, on the other hand, leverages existing prior knowledge and builds that knowledge 
continuously over time (ref 9). This “learning as you go” paradigm encourages adaptive approaches such as 
progressively modifying the allocation of new patients to treatment arms likely to be safer or more efficacious. 
Bayesian approaches can lead to efficiencies by incorporating information from previous trials or from trials involving 
diverse patient demographics. While the Bayesian approach in drug trials is still controversial, its use in the approval 
of medical devices is well established (ref 10). 
 
Predicting future performance 
 
One of the motivations for modeling a process is to predict its future performance. A physician may want to predict 
the probability that a medical treatment will result in a cure – or produce an undesirable side effect. A manufacturer 
may want to predict the probability that a process will produce a product that fails release testing. Such events may 
have financial consequences and estimates of the associated probabilities support financial planning and cost/ 
benefit decisions.  
 
Sampling theory provides exact prediction and tolerance intervals for simple problems. For more complex situations, 
approximations or computer simulation can be used to obtain the desired sampling theory intervals. The interpretation 
of these intervals retains a long run frequency interpretation. For instance, with a sampling theory prediction interval, 
a confidence level of 95% refers to the probability that, when applied over many studies, the method will successfully 
produce an interval which contains the next (or some other pre-specified, randomly selected) observation from the 
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study population. Similarly, a sampling theory based method that produces a 95% confidence tolerance interval to 
contain at least 99% of future observations, will produce an interval which actually does so in 95% of studies to which 
it is applied. 
 
Prediction and tolerance intervals can also be constructed from a Bayesian point of view. However, the interpretation 
of the confidence level is different. For the Bayesian prediction (or tolerance) interval, the confidence level actually 
reflects the posterior probability that the interval will contain future values (or a specified proportion of future values). 
While the interpretation difference is subtle, the Bayesian interpretation lends itself more directly to decision making 
about the specific process under study. Exact Bayesian prediction and tolerance intervals are easily from the MCMC 
posterior sample for a wide range of complex problems which are difficult or intractable by sampling theory 
approaches. 
 
 
How to take a Bayesian approach using JMP/R/WinBUGS 
 
Users of JMP appreciate its excellent data management capabilities as well as its comprehensive set of analytical 
and graphical tools. For those who wish to operate from the JMP environment but add Bayesian options this section 
describes useful R interface commands, R libraries, and requirements for accessing WinBUGS. 
 
Some Bayesian capabilities native to JMP 
 
Below are listed some methods in JMP that are based on Bayesian thinking.  
 
1. Box-Meyer Bayes Plot for identifying significant factor effects in saturated designed experiments.  
2. BIC for model choice in D&I-optimal experimental design. 
3. WeiBayes survival analysis - JMP can constrain the values of the Theta (Exponential), Beta (Weibull), and Sigma 

(LogNormal) parameters when fitting these distributions. 
4. Bayesian variance component estimation in Variability can handle unbalanced data and forces all variances 

components to be positive and non-zero. The method computes the posterior means using a modified version of 
Jeffreys’ prior. For details see Portnoy (1971) and Sahai (1974). 

5. Bayesian information criterion (BIC) useful for model comparison. 
6. For K-Means normal mixture clustering, JMP 9 has moved to a more stable algorithm, a Bayesian regularized 

version of the EM algorithm, which allows JMP to smoothly handle cases where the covariance matrix is  
singular. 

 
These features are somewhat limited and JMP cannot perform MCMC, or other computer intensive functions that are 
needed for general Bayesian problems and which have been added to SAS. Currently if SAS is not available, 
WinBUGS and/or an R library may be good options to obtain a Bayesian analysis. At present, Bayesian methods and 
the supporting procedures are still not considered mainstream by the JMP development team. There may be a 
perception that such Bayesian methods are needed only by advanced experts. Perhaps as the advantages of the 
Bayesian approaches are more widely appreciated, they will move into mainstream use. In the meantime, the JMP 
development team has provided a useful interface to the R language. Within the R language, one has many Bayesian 
resources including access to WinBUGS. These are described below.  
 
 
Downloading R and Winbugs 
 
R and its associated libraries is available for free download from the following web site: 
 
http://www.r-project.org/ 
 
The following R packages are recommended for Bayesian analyses: MCMCpack, LearnBayes, R2WinBUGS, and 
CODA. The graphics package lattice adds many graphical capabilities to R. These are conveniently downloaded from 
a CRAN site as zip files which can then be unzipped from within the R environment. 
 
WinBUGS is also distributed free and can be obtained from the following web site: 
 
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml 
 
Instructions for installing and using these packages are available on the web site or from the electronic manuals and 
HELP features that come with the packages. A discussion of the R and WinBUGS languages is beyond the scope of 
this paper. However, the HELP features of these packages 
 
 
Accessing R using JMP Script 
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The following gives the basic JMP script structure for sending R code to the R environment from JMP. 
 
R Init( ); 
R Submit(“\[ 
 
… R code … 
 
]\”); 
R Term( ); 
 
This basic structure will invoke R, execute the R code, and close the R connection. The last line above is needed only 
if you wish to close the R environment. 
 
To make use of the R connection, it is necessary to send data to R. Lets say your data is contained in a JMP data file 
named dtname.jmp stored locally on your computer. You can send this data set to R using the following script: 
 
dt = Open(“…..\\dtname.jmp”); 
R Init ( ); 
R Send (dt); 
R Submit(“\[ 
. 
. 
R code. “dt” is now an R data frame and the dt column variables may be referenced in R 
as dt$varname. 
. 
. 
]\”); 
 
The R code indicated above is placed directly into the JMP script. This is where you would submit your instructions 
for a Bayesian analysis. Once an analysis in R has been completed, you will want to place your calculated variables 
(usually numeric vectors that may be posterior draws for a random variable of interest) into a hidden R data frame 
(say “df”), save this hidden frame as a file (say “dfname.jmp”), and then formally read that data frame into JMP so it 
can be properly viewed and referenced for further analysis and graphics. This can be done using the following script 
structure: 
 
R Init( ); 
R Submit(“\[ 
. 
. 
R code 
. 
var1 <-... 
var2 <-... 
. 
df<-data.frame(cbind(var1=var1,var2=var2,…)) 
]\”); 
df = R Get(df); 
df << save(”.../dfname.jmp”); 
dt = Open(“.../dfname.jmp”); 
 
Once your data table is in JMP, you can manipulate it using the JMP GUI as desired. However, it may be convenient 
to add new columns (say “newcol”) to the current data table (say referenced as “dt”) using JMP script. This can be 
done using the following JSL, assuming newcol is a numeric result that is a result of some function you can define. 
 
dt << New Column(“newcol”, Numeric, Continuous, Formula (…JMP formula to calculate 
newcol…);  
 
It is sometimes to change the modeling type of a variable (say “var1”) from categorical to continuous in the currently 
selected data table. While this can be done manually, the following script may come in handy. 
 
Column(“var1”) << SetModelingType(“Continuous”); 
 
 
Accessing WinBUGS 
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While Bayesian analyses can be done directly in R using the MCMCpack, LearnBayes, or other R library, WinBUGS 
is a very comprehensive and flexible Bayesian analysis tool that reduces the programming burden somewhat. You 
can access WinBUGS on your computer through R with the R2WinBUGS library. While this may seem to be rather 
desperate (accessing R through JMP then WinBUGS through R), in actual operation it is relatively painless and can 
simplify the steps of performing steps in both WinBUGS and R separately. The JMP R interface lets you treat 
WinBUGS as a JMP resource. The following JSL structure shows a typical WinBUGS analysis. 
 
R Init( ); 
R Submit(“\[ 
 
# Create a data list where “vari” may be a scalar, vector, or matrix. 
# This is produces the data set needed by WinBUGS 
data<-list(“var1”,”var2”,…)   
 
library(R2WinBUGS) 
 
Modelname<-function(){ 
. 
. 
. 
Place your WinBUGS model code in here 
. 
. 
. 
} 
# Store the modelname as a local file 
pathname<-file.path(“…\\...\\”,”modelname.bug”) 
write.model(modelname,pathname) 
 
# Define the starting values for the MCMC iterations 
# If multiple chains are desired this may be a list of lists 
inits<-list(var1=…;var2=…;…) 
 
# Identify the random variables (nodes) for which the joint posterior sample is 
desired 
parameters<-c(“var1”, “var2”,…) 
 
# Place the WinBUGS output into an object called draws.sim 
draws.sim<-bugs(data,inits,parameters,model.file=”…\\modelname.bug”, 
  n.chains=…, n.iter=…,codapkg=FALSE, 
  bugs.directory= “c:/Program Files/WinBUGS14/”) 
 
# Extract the posterior sample from draws.sim, Each chain must be separately extracted 
# for illustration below chain number 1 (“chain1”) is extracted 
chain1<-data.frame(draws.sim$sims.array[,1,]) 
]\”); 
 
/* Move chain1 from R into a JMP data table */; 
chain1=R Get(chain1); 
chain1<< save(“…/chain1.jmp”); 
Open(“…/chain1.jmp”); 
 
 
What kinds of inferences can be obtained from Bayesian approaches: Some examples 
 
The following examples will be discussed in greater detail in the presentation that accompanies this paper. In addition 
to the examples below, examples showing interval estimation for Cpk, estimation of tolerance intervals for complex 
cases, and nonlinear modeling will be illustrated. The author will be happy to provide the slides of this presentation 
when they are available. Please send enquires to david.leblond@abbott.com. 
 
A variance component analysis using the JMP R interface to call WinBUGS 
 
The dyes example is a famous example discussed by Box and Tiao (ref 14) and provided as an example in  
WinBUGS (see the HELP section in the software). The data should be present as a JMP data table in the File “Dyes 
stacked.jmp” containing 30 observations arranged as follows: 
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Batch Sample Yield 
1 sample1 1545 
1 sample2 1440 
… 
6 sample3 1450 
6 sample4 1480 
6 sample5 1445 
 
The following JSL script will move this data into WinBUGS then extract the posterior sample and produce some 
graphics that monitor convergence and give considerable insight into the inference beyond what would be obtained 
from JMPs Fit Model platform. 
 
/* Open the Dyes data table */ 
Dyes=Open("C:\\Users\\Dave\\Desktop\\R2Winbugs Example\\Dyes stacked.jmp"); 
 
/* Analyze Using a Mixed model with random batch */ 
Fit Model( 
 Y( :Yield ), 
 Effects( :Batch & Random ), 
 NoBounds( 1 ),    /* 1=unbounded 0=bounded */ 
 Personality( Standard Least Squares ), 
 Method( EMS ),  /*REML or EMS */ 
 Set Alpha Level( 0.05 ), 
 Emphasis( Effect Leverage ), 
 Run( 
  :Yield << {Analysis of Variance( 0 ), Lack of Fit( 0 ), 
  Plot Actual by Predicted( 1 ), Plot Regression( 0 ), 
  Plot Residual by Predicted( 1 ), Plot Effect Leverage( 1 )} 
 ), 
 SendToReport( 
  Dispatch( 
   {"Response Yield", "Whole Model", "Actual by Predicted Plot"}, 
   "FitLS Leverage", 
   FrameBox, 
   {Grid Line Order( 4 ), Reference Line Order( 3 )} 
  ), 
  Dispatch( 
   {"Response Yield", "Whole Model", "Residual by Predicted Plot"}, 
   "FitLS Leverage", 
   FrameBox, 
   {Grid Line Order( 3 ), Reference Line Order( 2 )} 
  ) 
 ) 
); 
 
 
R Init( ); 
 
/* Send Dyes data set to R */ 
R Send( Dyes ); 
 
R Submit("\[ 
# Create the data set 
y<-matrix(Dyes$Yield,ncol=5,byrow=1) 
y 
batches <- 6 
samples <- 5 
data<-list("batches","samples","y") 
 
# Request the R2WinBUGS library (also requires CODA and Lattice) 
library(R2WinBUGS) 
 
# Specify model.file 
dyesmodel <- function(){ 
  for( i in 1 : batches ) { 
   mu[i] ~ dnorm(theta, tau.btw) 
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   for( j in 1 : samples ) { 
    y[i , j] ~ dnorm(mu[i], tau.with) 
   } 
  }  
  theta ~ dnorm(0.0, 1.0E-10) 
  # prior for within-variation 
   sigma2.with <- 1 / tau.with 
  tau.with ~ dgamma(0.001, 0.001) 
   
  # Choice of priors for between-variation 
  # Prior 1: uniform on SD 
  #sigma.btw~ dunif(0,100) 
  #sigma2.btw<-sigma.btw*sigma.btw 
  #tau.btw<-1/sigma2.btw 
   
  # Prior 2: Uniform on intra-class correlation coefficient, 
  #             ICC=sigma2.btw / (sigma2.btw+sigma2.with) 
  ICC ~ dunif(0,1) 
  sigma2.btw <- sigma2.with *ICC/(1-ICC) 
  tau.btw<-1/sigma2.btw 
   
  # Prior 3: gamma(0.001, 0.001) NOT RECOMMENDED 
  #tau.btw ~ dgamma(0.001, 0.001) 
  #sigma2.btw <- 1 / tau.btw 
} 
# directory in which to (temporarily) store the model function 
filename <- file.path("C:\\Users\\Dave\\Desktop\\R2Winbugs Example","dyesmodel.bug") 
## R2WinBUGS function that creates the model file 
write.model(dyesmodel, filename) 
## and if you want to take a look remove the # in line below: 
#file.show(filename) 
 
# Initials depend on the model form. The following OK for 1 chain:  
# inits <- list(theta=1500, tau.with=1, sigma.btw=1) 
 inits <- list(list(theta=1500, 
tau.with=1,ICC=0.5,mu=c(1500,1500,1500,1500,1500,1500)), 
            list(theta=1000, 
tau.with=2,ICC=0.8,mu=c(1000,1000,1000,1000,1000,1000)), 
            list(theta=2000, 
tau.with=0.5,ICC=0.2,mu=c(2000,2000,2000,2000,2000,2000))) 
# inits <- list(theta=1500, tau.with=1, tau.btw=1) 
#May also use the following forms (must change the parameter names) 
# Specify inits 
#inits <- function(){ 
#    list(theta=rnorm(J, 0, 100), mu.theta=rnorm(1, 0, 100), 
#         sigma.theta=runif(1, 0, 100)) 
#} 
## or alternatively something like: 
# inits <- list( 
#   list(theta=rnorm(J, 0, 90), mu.theta=rnorm(1, 0, 90), 
#        sigma.theta=runif(1, 0, 90)), 
#   list(theta=rnorm(J, 0, 100), mu.theta=rnorm(1, 0, 100), 
#        sigma.theta=runif(1, 0, 100)) 
#   list(theta=rnorm(J, 0, 110), mu.theta=rnorm(1, 0, 110), 
#        sigma.theta=runif(1, 0, 110))) 
 
# Specify the nodes to save (parameters.to.save) Need to alter dep on model 
parameters <- c("ICC", "sigma2.btw", "sigma2.with","theta") 
 
## Below we call WinBUGS temporarily 
## You may need to edit "bugs.directory" 
## If codaPkg=FALSE, will get nice graph and posterior summary in R console 
## If codaPkg=TRUE, the following will be saved to the directory tempdir() 
##   codaX.txt where X=1,2,...,n.chains - this gives the posterior sample CODA file 
##   codaIndex.txt which is the CODA index file 
##   data.txt - the data file as a list 
##   InitsX.txt - the initial values used to start each chain 
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dyes.sim <- bugs(data, inits, parameters,  
    model.file="C:\\Users\\Dave\\Desktop\\R2Winbugs Example\\dyesmodel.bug", 
    n.chains=3, n.iter=5000,codaPkg=FALSE, 
    bugs.directory="c:/Program Files/WinBUGS14/") 
 
# The following puts a nice stats summary of posterior & convergence in R console if 
codaPkg=FALSE 
print(dyes.sim) 
 
# The following gives a nice plot of 80% credible intervals and Rhat for convergence 
verification 
# if codaPkg=FALSE 
plot(dyes.sim)  
 
# If codaPkg=FALSE, then the following will list the items available in the output 
# See documentation for the bugs() statement to see what all these objects are 
# In particular, sims.array contains the mcmc chains as a 3 way vector: 
#  (draw number), (chain number), (parameter) 
names(dyes.sim) 
dyedraws <- data.frame(dyes.sim$sims.array[,1,])  #e.g. lists chain #1 
 
#The following will start the coda interactive menu 
#codamenu() 
]\"); 
 
dyedraws = R Get(dyedraws); /* brings the MCMC draws into JMP as an invisible data 
table */ 
dyedraws<<save("$SAMPLE_DATA/dyedraws.jmp"); /* saves the MCMC draws to a JMP data 
file */ 
Open( "$SAMPLE_DATA/dyedraws.jmp" ); /* open the jmp data file as a visible data table 
*/ 
 
/* The following plots the MCMC chain sequence and provides an autocorrelation 
analysis*/ 
New Window( "dyedraws - Time Series", 
 V List Box( 
  Time Series( Y( :ICC ) ), 
  Time Series( Y( :sigma2.btw ) ), 
  Time Series( Y( :sigma2.with ) ), 
  Time Series( Y( :theta ) ), 
  Time Series( Y( :deviance ) ) 
 ) 
); 
 
/* The following shows a 3D scatterplot of the draw sequence */ 
Scatterplot 3D( 
 Y( :ICC, :sigma2.btw, :sigma2.with, :theta ), 
 Connect Points( 1 ), 
 Frame3D( 
  Set Grab Handles( 0 ), 
  Set Rotation( -72.0724159504983, 5.06473023667573, 38.6179709057463 ) 
 ), 
 SendToReport( 
  Dispatch( {}, "1", ScaleBox, {Max( 0.896009389671361 )} ), 
  Dispatch( 
   {}, 
   "2", 
   ScaleBox, 
   {Min( 683.229813664596 ), Max( 28183.2298136646 )} 
  ), 
  Dispatch( {}, "3", ScaleBox, {Min( 1128.75536480687 )} ) 
 ) 
); 
 
 
/* The following gives kernal density estimates and credible intervals */ 
Distribution( 
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 Continuous Distribution( Column( :ICC ), Fit Distribution( Smooth Curve ) ), 
 Continuous Distribution( 
  Column( :sigma2.btw ), 
  Fit Distribution( Smooth Curve ) 
 ), 
 Continuous Distribution( 
  Column( :sigma2.with ), 
  Fit Distribution( Smooth Curve ) 
 ), 
 Continuous Distribution( Column( :theta ), Fit Distribution( Smooth Curve ) ), 
 Continuous Distribution( Column( :deviance ), Fit Distribution( Smooth Curve ) 
) 
); 
 
/* The following generate 2D kernal density estimates of some parameter pairs */ 
Bivariate( 
 Y( :sigma2.btw ), 
 X( :theta ), 
 Nonpar Density( {Kernel Control( 1 ), Set Kernel( 11.068, 1191.7 )} ) 
); 
 
Bivariate( 
 Y( :sigma2.btw ), 
 X( :sigma2.with ), 
 Nonpar Density( {Kernel Control( 1 ), Set Kernel( 379.66, 1128.9 )} ) 
); 
 
Bivariate( 
 Y( :sigma2.btw ), 
 X( :ICC ), 
 Nonpar Density( {Kernel Control( 1 ), Set Kernel( 0.06228, 836.2 )} ) 
); 
 
R Term( ); 
 
 
Obtaining a Credible and Prediction interval for a %CV 
 
The %CV is often used as a measure of variation for measurement systems or observational data in which it is 
reasonable to assume that the standard deviation is proportional to the mean. Interval estimates for the %CV can be 
derived using sampling theory, but the equations are complex and usually only valid when larger sample sizes are 
available. 
 
The following example uses the JMP R interface to obtain an exact Bayesian credible interval estimate for a small 
sample %CV using the R library MCMCpack. 
 
R Init( ); 
 
R Submit("\[ 
#Credible interval for the normal CV by Metropolis random walk 
 
# Data from Mark Vangel American Statistician 15(1) pp21-26 
# Nearly exact conf interval by method of McKay: (2.070%, 12.93%) 
y<-c(326,302,307,299,329) 
 
# Obtain exact confidence interval 
library(MBESS) 
ci.cv(data = y,conf.level = 0.95) 
 
# Hyper paramters (mu0,kappa0,nu0, sigma02) 
# Parameterization of Gelman p78 
hyper<-c(300,0,-1,0) 
 
#Log Posterior Function 
logpostnorm2=function(theta,y, hyper){ 
  # we want to parameterize on theta =(mu,ln(sigma)) here even though 
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  # the posterior is parameterized on (mu,sigma^2) 
  # so must include a log Jacobian of +2*theta[2] 
  mu0<-hyper[1] 
  kappa0<-hyper[2] 
  nu0<-hyper[3] 
  sigma02<-hyper[4] 
  # identify the model parameters  
  mu <- theta[1]; sigma <- exp(theta[2]); sigma2<-sigma^2 
  # Calculate sufficient statistics 
  ymean<-mean(y) 
  n<-length(y) 
  s2<-var(y) 
  # Obtain paramters of posterior 
  mun<-(kappa0*mu0+n*ymean)/(kappa0+n) 
  kappan<-kappa0+n 
  nun<-nu0+n   
  sigman2<-(nu0*sigma02 + (n-1)*s2 + kappa0*n*(ymean-mu0)^2/(kappa0+n)   )/nun 
  post1<- dnorm(mu,mun,sqrt(sigman2/kappan),log=TRUE) 
  post2<- log(dinvgamma(sigma2,nun/2,nun*sigman2/2)) 
  return(post1 + post2 + 2*theta[2]) 
} 
# Need the MCMCpack 
library(MCMCpack) 
 
# Obtain the posterior mode and hessian at the mode 
optimum<-
optim(hessian=TRUE,par=c(mean(y),log(sqrt(var(y)))),fn=logpostnorm2,y=y,hyper=hyper, 
      method = "BFGS") 
# Perform the MCMC 
bayesfit<-MCMCmetrop1R(fun=logpostnorm2,y=y,hyper=hyper,V= -solve(optimum$hessian), 
             theta.init=optimum$par, 
             thin=1, mcmc=40000, burnin=500, 
             tune=c(1.5, 1.5),verbose=0, logfun=TRUE,seed=1); 
 
mu<-bayesfit[,1] 
LNsigma<-bayesfit[,2] # Note the parameter is on log scale 
bayesfitdf<-data.frame(cbind(mu=mu,LNsigma=LNsigma)) 
 
]\"); 
 
/* The below works as long as there is not already a file with this name in the 
directory */ 
bayesfitdf = R Get(bayesfitdf); /* brings the MCMC draws into JMP as an invisible data 
table */ 
bayesfitdf << save("$SAMPLE_DATA/bayesfitdf5.jmp"); /* saves the MCMC draws to a JMP 
data file */ 
dt=Open( "$SAMPLE_DATA/bayesfitdf5.jmp" ); /* open the jmp data file as a visible data 
table */ 
Column("mu")<<SetModelingType("Continuous"); /* for some reason columns come across as 
ordinal */ 
Column("LNsigma")<<SetModelingType("Continuous"); 
dt<<New Column("sigma", Numeric, Continuous, Formula(exp(LNsigma))); 
dt<<New Column("%CV", Numeric, Continuous, Formula(100*sigma/mu)); /* Add posterior of 
CV */ 
 
 
/* The following produces a kernal density 95% bivariate Credible Interval for 
mu,sigma*/ 
Bivariate( 
 Y( :sigma ), 
 X( :mu ), 
 Show Points( 0 ), 
 Nonpar Density( 
  {Kernel Control( 1 ), Contour Fill( 1 ), Set Kernel( 2.1221, 0.13581 )} 
 ), 
 SendToReport( 
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  Dispatch( {}, "1", ScaleBox, {Show Major Grid( 1 ), Show Minor Grid( 1 )} 
), 
  Dispatch( 
   {}, 
   "2", 
   ScaleBox, 
   {Min( -0.780131746717529 ), Max( 50.8159158517566 ), Minor Ticks( 
3 ), 
   Show Major Grid( 1 ), Show Minor Grid( 1 )} 
  ), 
  Dispatch( {}, "Bivar Plot", FrameBox, {Frame Size( 332, 263 )} ) 
 ) 
); 
 
/* The following gives a kernal density estimate for %CV plus a 95% credible interval 
*/ 
Distribution( 
 Continuous Distribution( 
  Column( :Name( "%CV" ) ), 
  Horizontal Layout( 1 ), 
  Vertical( 0 ), 
  Density Axis( 1 ), 
  Outlier Box Plot( 0 ), 
  Fit Distribution( Smooth Curve ) 
 ), 
 SendToReport( 
  Dispatch( 
   {"%CV"}, 
   "1", 
   ScaleBox, 
   {Max( 20.5 ), Inc( 1 ), Minor Ticks( 1 )} 
  ), 
  Dispatch( {"%CV"}, "Distrib Histogram", FrameBox, {Frame Size( 378, 301 
)} ) 
 ) 
); 
 
 
 
/* The following plots the MCMC chain sequence and provides an autocorrelation 
analysis*/ 
New Window( "bayesfitdf - Time Series", 
 V List Box( 
  Time Series( Y( :mu ) ), 
  Time Series( Y( :sigma ) ) 
 ) 
); 
 
/* The following gives kernal density estimates and credible intervals */ 
Distribution( 
 Continuous Distribution( Column( :mu ), Fit Distribution( Smooth Curve ) ), 
 Continuous Distribution( Column( :sigma), Fit Distribution( Smooth Curve )) 
); 
 
 
Summary and Conclusions 
 
The advantages of Bayesian approaches are becoming better known and it is likely that Bayesian analyses will join 
sampling theory methods in the mainstream of data analysis within the next decade. It can be expected that Bayesian 
concepts and methods will bring new insights, experimental efficiencies, and better risk assessment, modeling, and 
prediction paradigms to engineers, scientists and decision makers. So it is important for data analysts to understand 
and add these tools to their current “tool kit”. The JMP R interface provides a convenient mechanism for JMP users to 
become familiar with Bayesian approaches.  
 
Some simple Bayesian analyses can be done directly in JMP, but more complex analyses require use of the R 
interface to execute MCMC. The freely available R and WinBUGS packages as well as some R libraries must be 
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present on the user’s computer. Some familiarity with JSL as well as the R and WinBUGS languages is needed. This 
paper gives a short primer on these aspects as well as some examples to help JMP users move up the learning 
curve. 
 
The new JMP R interface gives users freedom and access to powerful analytic tools. However with freedom comes 
responsibility. Use of Bayesian analysis, like any data analysis, demands attention to verification of details and 
assumptions. When using unfamiliar data analytic techniques, it is easy to make mistakes. So it is important to try 
known examples and verify good understanding of the concepts and potential pitfalls before using these methods for 
real problems. It is probably best to close this paper with a cautionary statement drawn largely from a famous quote 
in the WinBUGS manual that comes with the software: 
 

Potential users are reminded to be extremely careful when using Bayesian approaches for serious 
statistical analysis. Careful prior elicitation, verifying that the posterior is a proper distribution, 
appropriate parameterization, appropriate MCMC method choice, monitoring for convergence, and 
model checking are very important and are the user's responsibility. Be particularly careful with 
types of models for which you do not have a precedent example. If there is a problem, MCMC 
software might just crash, which is not very good, but it might well carry on and produce answers 
that are wrong, which is even worse. Beware - Gibbs sampling can be dangerous! 
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