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ABSTRACT

Basic courses in applied biostatistics, statistical methods, experimental design and applied regression
methods often focus on hypothesis testing and estimation for linear and nonlinear models by providing
students and decision-makers the methodology (i.e., test statistics and confidence intervals) to reach
conclusions by narrowly focusing on individual t-tests and global F-tests. These courses leave students
and managers with an overly simplistic view of how informed statistical decisions are made in practice in
the real world. This paper focuses on the new pedagogical ideas of exposing students to underlying
likelihood methods and treating these specific (t- and F-) tests as special cases embedded in this larger
structure. Key to this better decision-making process is powerful statistical software: our focus is here
on the use of the NLMIXED and IML procedures available in SAS’ software to provide the means to make
some of these important decisions. This approach enables practitioners to pose and examine more
meaningful queries. For example, the techniques discussed here allow practitioners to focus on the
estimation of important model parameters in the presence of serially correlated errors rather than on
the detection of the specific time-series error structure (and treating the model function and
parameters as secondary). Numerous additional practical examples of the applicability of likelihood
methods are provided and discussed; specifically, the provided illustrations include novel approaches
useful in statistical modelling, drug synergy, relative potency and optimal experimental design.

Keywords: decision-making; likelihood; modelling; optimal design; statistical education.

INTRODUCTION

Decision-makers and real-world practitioners often underscore the rift between statistical techniques
taught in introductory methods courses and those used in practice on the job. Whereas in the past,
great emphasis was placed on adapting a real-world problem to classical problems, nowadays — using
sophisticated statistical techniques and SAS® software — statistical consultants can adapt the statistical
methods to better address the actual situation. The following illustrations have been chosen to
demonstrate these situations.

SOME MOTIVATING EXAMPLES

The following illustrations provide relevant examples of situations in which practitioners can use SAS®
software to fit meaningful models and answer relevant research questions. Clearly, without the needed
statistical software, these results remain merely theoretical; these statistical techniques empower

researchers to test their hypotheses and implement the scientific method.

Example 1. The Lack of Fit (LOF) Test. By way of highlighting the usefulness of SAS/IML, consider the
usual LOF test, which checks for departures from the assumed base model function. Typically, we check
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for departures from a straight-line fit. This test is useful when the chosen n-point design includes
replicates of k support points, and uses the usual Full and Reduced F test statistic,

[(SSE - SSEF) / (dff - dfe)]

Fiofr-amy,afe = (1)
[SSE¢ / dfe]

The above LOF test —including its advantages and limitations — is discussed in O’Brien & Berg (2009) and
O’Brien, Chooprateep & Funk (2009); in the latter article, it is pointed out that it lacks power to detect
lack-of-fit departures for intermediate models.

To illustrate, consider the data plotted in the following graph where the sample size is n = 30 and the
design comprises three replicates of k = 10 design support points.
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In spite of the above nonlinear pattern, it is surprising that the usual LOF test here fails to reject the
assumption that a line fits these data (Fg0 = 1.9965, p = 0.1003). This seeming contradiction is resolved
in the next section with the use of the IML procedure in SAS®. m

Example 2. Heteroskedastic One-Way ANOVA. It is simple to handle the homoskedastic one-way
ANOVA problem, but things can get somewhat more challenging for the novice when variances are
believed to differ from group to group. To illustrate, consider the data plotted in the graph below.
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These data, taken from O’Brien and Berg (2009), are yield data for three treatments. It is reasonable
here to assume normality of the respective yield measurements. It is also clear here that the variances
for the three groups are not the same, but if this fact is ignored and the three treatment means are
compared using the usual one-way ANOVA test, the claim of equal means (Ho: Wy = 1, = W) is retained
(F527=3.1038, p = 0.0612). The unequal-variance means test can be accomplished using the chi-square
counterpart of the Full-and-Reduced F test in Equation (1) as outlined in Agresti (2007:12). This test is
easily implemented in SAS/IML as demonstrated below. m

Example 3. Calibration in Linear Regression. In this example, adapted from Samuels & Witmer
(2003:538), the concentration of laetisaric acid (independent variable, in ug/mLi) is related to fungal
growth (dependent variable, in mm) using simple linear regression. The data are plotted in the
following graph. Since we want the value of x (denoted v;3) such that E(Y) =y, = 13, the complication
here is that instead of writing the linear model in the usual manner, we write this line as

N(x,0) = E(Y) = yi + B(x - yi) = 13 + B(x - 1) (2)

The parameters to be estimated here are 3 and y;3 so the parameter vector is 0 = ( % j
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Note that the reparameterization given in Equation (2) is a nonlinear model (“nonlinear” in the
parameters) since at least one of the partial derivatives with respect to the parameters involves model

parameters; in fact this is true for both parameters since 0 =x- Y13 and on = -B.
op 0%

This model is easily fit using the NLIN procedure in SAS, but problems associated with the Wald
confidence intervals (provided in the NLIN output) have been underscored in Donaldson and Schnabel
(1987), Haines et al (2004), and elsewhere. In the next section, we provide the means to use PROC IML
to obtain the more reliable profile likelihood confidence intervals. The 95% Wald (WCI) and Profile
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Likelihood (PLCI) intervals for the parameter of interest (y;3) are plotted above in the above figure; the
WCl is symmetric whereas for this illustration the PLCI is skewed to the right. m

Example 4. Confidence Intervals for a Single Binomial Proportion. In the setting where fifteen coin
tosses results in just one Head (i.e., one success out of 15 so n = 15 and y = 1), the usual 95% Wald
confidence interval for the success probability (7t), p + 2 025SE, here extends from —0.0596 to 0.1929.
This interval is clearly nonsensical since this success probability must be non-negative. This Wald
interval is based on a quadratic approximation (dashed curve plotted below) to the log-likelihood
expression (solid curve plotted below),

LL(r) = ylog(m) + (n-y)log(1-m) = log(r) + 14log(1-n) (3)
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Obtaining more reliable confidence intervals — for example, based on this log-likelihood — given in the
next section, can be easily obtained using PROC IML. These intervals are obtained by finding the
intersection of the above (log-likelihood or quadratic approximation) curves with the respective “cut
lines”, also plotted above. m

Example 5. Bioassay and the Assessment of Drug Synergy. Data provided in Giltinan et al (1988)
resulted from an experiment designed to investigate how two insecticides (A and B) may act in
combination. The data, plotted below, correspond to the number of dead insects corresponding to a
fixed number of insects tested (around 30) for 20 combinations of the insecticides. The chosen design is
a so-called 2+3[4] ray design: the two one-at-a-time rays plus three interior rays (with slopes of 3, 1 and
1/3), and with 4 design points per ray. Of interest here is whether the insecticides interact to produce
enhanced performance (termed “synergy”), a reduction in performance (“antagonism”) or neither
(“independent action”).
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For these data, we fit the so-called Finney, model. For this model, similar compounds A and B in
respective amounts x; and x, are related to the binomial response Y by first calculating the effective
dose,

Z=X+6,X +6,,6,XX, (4)

In this expression, 0, is the relative potency parameter and 05 is the coefficient of synergy. If 05<0,
compounds A and B exhibit antagonism; if 85 > 0, synergy is indicated; and if 65 = 0, then compounds A
and B behave independently. The binomial response variable and effective dose in Equation (4) are
related using a dose-response model function such as the 2-parameter log-logistic (LL2) function

1
1+(z/6,)"

In the next section, we use the NLMIXED procedure to fit this generalized nonlinear model. m

n(x,0) = (5)

Example 6. Obtaining and Verifying Optimal Designs. For a given (Normal) linear or nonlinear model
function n(x,0), an experiment is often undertaken in which a chosen design is used to efficiently
estimate the p model parameters 6. An n-point design (or probability measure), denoted by &, is written

- Xps Xg5eees Xy

- 6
Wy, W ..., O ()

Here the oy (k = 1,2 ... n) are non-negative weights that sum to one, and the x, (which could be vectors)

belong to the relevant design space. Note that the design points (x,) are not necessarily distinct). For

the chosen model function n(x,0), the Jacobian matrix is V = an/d0 (of dimension nxp) and the pxp
Fisher information matrix is

M(E,08) = V'QV (7)
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where Q = diag{®;, ,, ... ®,}. The first-order (and asymptotic) variance of the least-squares estimator
§ is proportional to M, so designs are often chosen to minimize some convex function of M™. For
example, designs which minimize its determinant are called D-optimal.

The (first-order) variance of the predicted response at X = x is given by

o0) s
00

on(x,0)

d(x,,8) = o

(€ (8)

Designs that minimize (over &) the maximum (over x) of d(x,&,0) are called G-optimal. The General
Equivalence Theorem demonstrates that D- and G-optimal designs are equivalent, and that the variance
function evaluated using the D-/G-optimal design does not exceed the line (or hyper-plane) y = p (i.e.,
the number of model parameters) — but that it will exceed this line/plane for all other designs. A
corollary establishes that the maximum of the variance function (i.e., p) is achieved for the D-/G-optimal
design at the support points of this design.

These concepts are discussed more fully in O’Brien and Funk (2003). In the next section, we show how
to use SAS/IML to obtain and verify optimal designs. m

Clearly, one of the limitations encountered by non-statistical practitioners is the unavailability of
sophisticated software to handle situations and datasets for which statistical methods beyond very basic
analysis is needed. Thankfully, the IML and NLMIXED procedures in SAS® can easily handle these
situations, and it is incumbent upon us to educate students and practitioners as to the proper analysis
and to demonstrate use of the relevant software. As such, we discuss with our students several of the
analyses and results given in the next section.

RESOLUTION USING SAS PROC IML AND PROC NLMIXED

In this section, we reconsider the above illustrations and show how key SAS procedures, modules and
functions can be used to obtain meaningful solutions. Relevant output is given in the Appendix;
corresponding SAS programs may be obtained from the author.

Example 1 continued. The Lack of Fit (LOF) Test. SAS Output 1 given in the Appendix shows that the
usual LOF test retains the assumed linear fit for these data (Fg0 = 1.9965, p = 0.1003). On the other
hand, given the above plot, one might feel that a model function which might better fit these data is the
guadratic model function

n(x,0) = o+ P1x + Bzxz (9)

Since the test of Hy: B, = 0 is rejected here (F1 27 = 7.6061, p = 0.0103), this quadratic model is deemed
appropriate for these data and thus the assumed line does indeed show significant lack of fit. This
apparent contradiction points out that the usual LOF test sometimes lacks power to detect departures
from the assumed model (i.e., the line) since it compares the line with the highest order polynomial (a
ninth order polynomial in this case). Thus, it misses the intermediate (quadratic) model.
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As pointed out in O’Brien, Chooprateep & Funk (2009), we write the full model here as
y=XB+e=[X | X]B+e=XP1+XoP2+ € (10)

In this expression, X is of dimension nx p, X; is nx(p-q), and X, is nxq. X; here corresponds to the
assumed linear model. Let P; denote the projection matrix associated with X;, and we note that it is
important to understand the nature of the matrix

Ry =(1-Py)X; (11)

This matrix targets is the subspace of C(X;) that is orthogonal to C(X;). If we let P, denote the projection
matrix associated with R,, then it is straightforward to show that the numerator of the test statistic in
Equation (1) can be written SSEg - SSEr = y' P,y = ||Poy||%; see Seber and Lee (2003:100). Using SAS/IML,
it is seen that this squared norm is equal to 1254.53 for these data. Then using SAS/IML, we next
sequentially decompose R, one column at a time in an orthogonal manner, obtaining the corresponding
projection matrix and the squared norm. This task is indeed akin to finding sequential sums of squares.
These eight values here are 621.01, 51.39, 121.13, 258.98, 12.69, 55.20, 69.86, 64.27, and orthogonality
is confirmed since these eight values sum to ||P,y||* = 1254.53. Since the largest of these values
(621.01) — corresponding to the quadratic component —is so large, it is not surprising that the usual LOF
test lacks power in this instance. m

Example 2 continued. Heteroskedastic One-Way ANOVA. As pointed out above, the extension of the
Full-and-Reduced F test to other than homoskedastic Normal settings is the chi-square test which is
based on twice the change in the log-likelihood. Obtaining the log-likelihood values is relatively simple
using SAS/IML, and the exercise of writing such programs is an excellent learning tool for statistics
students.

For these data, the full model contains six parameters (a mean and variance for each of the three
treatments) and the reduced model contains only four parameters (three variances and a common
mean). The SAS program given in Output 2 in the Appendix gives these parameter estimates as well as
the values =2LLgy = 99.9954 and —2LLgepucen = 116.7110, from which we obtain the test statistic

¥2* = 116.7110 - 99.9954 = 16.7156 (p = 0.0002). Thus, in contrast with the above incorrect result, this
result indicates that at least one of the treatment means differs from the others. m

Example 3 continued. Calibration in Linear Regression. As highlighted in Donaldson and Schnabel
(1987), O’Brien and Wang (1996) and Haines et al (2004), Wald confidence intervals (WCls) for nonlinear
models can be problematic in the sense that even though the nominal coverage of the WCI might be
95%, the actual coverage may be quite different from 95%. Likelihood or profile likelihood confidence
intervals (obtained by profiling out nuisance parameters), on the other hand, are typically quite reliable.
Also, Clarke (1987) and Haines et al (2004) show that important connections exist between departures
between Wald and likelihood intervals, on one hand, and marginal curvature measures, on the other.

As shown in O’Brien and Wang (1996), marginal curvature measures are easily obtain using SAS/IML,
and these are given in Output 3b of the Appendix. The PROC NLIN 95% Wald confidence interval for y13,
(16.45,37.29), is given in Output 3a. This interval is also repeated in Output 3b. The profile likelihood
interval, on the other hand, is (19.50,48.36). The latter interval is obtained from the following profile
likelihood plot, where the horizontal cut lines correspond to 90% (lowest horizontal line) and 95%

7|Page



(middle cut line). The Wald interval corresponds to a profile likelihood plot with a quadratic shape since
Wald intervals are symmetric. For these data, the profile likelihood plot is far from quadratic in shape,
and this explains the big difference between the Wald and likelihood confidence intervals. Output 3b
also shows that the overlap (ratio of intersection to union) of the 95% Wald to the Likelihood interval is
only 55.75%; this output also shows that the overlap of the 95% marginal curvature-adjusted interval
(MCCI) proposed in Clarke (1987), (18.53, 44.88), is 85.10%; this indicates that the MCCI provides a
better approximation to the likelihood interval.
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One reason the profile likelihood curve increases quickly on the left and gently on the right is that five of
the original six design points are to the left of 7,,=26.87 and only one point is to the right. This

demonstrates that a better design (at least in terms of estimating y;3) would be to choose a more
equitable number of design points on either side of }713 =26.87.m

Example 4 continued. Confidence Intervals for a Single Binomial Proportion. The IML results given in
Output 4 are used to obtain the likelihood-based 95% Cl for , which, in this case extends from 0.0039 to
0.2621. Due to the likelihood results given in Agresti (2007:12), these values are obtained by solving the
expression

LL(m) = LL(p) — %) 1,0° (12)

Here, LL(7) is given above in Equation (3) and p = y/n. Solving this nonlinear equation is equivalent to
finding the roots of an equation, and this task is easily performed using one of the “NLP” (nonlinear
optimization) routines in SAS/IML. As pointed out in the previous example, the simulation results given
in Donaldson and Schnabel (1987) underscore the reliability and preference of these likelihood-based
intervals over Wald intervals. m

In comparing Examples 3 and 4, note that Example 3 involves a homoskedastic Normal model whereas
Example 4 involves a generalized linear model as the Binomial distribution is assumed. Further, since
Example 3 involves multiple parameters, profiling is used to remove the additional (so-called
“nuisance”) parameters.
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Example 5 continued. Bioassay and the Assessment of Drug Synergy. The generalized nonlinear
Finney, model given in Equations (4) and (5) is easily fit to the data given in Giltinan et al (1988) using
the NLMIXED procedure; the relevant output is given in the Appendix. For these two compounds,

A

antagonism is indicated since the estimate of the coefficient of synergy, J=-1.0349, is negative. To

test whether independent action is observed here (05 = 0), instead of using the Wald results given the
NLMIXED output, we again advocate the use of the likelihood-based test. Thus, we fit the reduced
model with the condition 05 = 0 imposed; this results in the value —2LL = 110.9 (results not shown), and
the test statistic Xlz =110.9 - 80.6 =30.3 (p < 0.0001). Clearly, these compounds appear to interact
antagonistically. m

Example 6 continued. Obtaining and Verifying Optimal Designs. For the homoskedastic Normal linear
model in one independent variable defined over the design space X =[0, 1] —i.e., for 0 < x <1 —the D-
optimal design (&;) assigns the weight ® =% with each of the two design points x =0 and x = 1. This
design, obtained using SAS/IML and the NLPNRA nonlinear optimization subroutine, is given in the
Appendix. The corresponding determinant of the information matrix is equal to %, and the
corresponding variance function, d(x,&,) = 4(x - %)* + 1, is graphed below as the solid curve (parabola).
D-/G-optimality of this design is verify by noting that the variance function d(x,&;) does not exceed the
line y = 2 (the number of model parameters here), and also that d(x; = 0,&;) = d(x, = 1,&3) = 2.

25

\ —— For D-optimal design
LY ---- Forrival design /

A\ y=2

20

Predicted Variance

1.5

1.0

In contrast with the above D/G-optimal design, consider the design &, which assigns the weight

o = % with each of the three design points x; =0, x, =% and x3 = 1. That this design is not D-optimal is
established by noting first that the corresponding determinant of the information matrix is 1/6 (less
than the value of % associated with the D-optimal design). The second way to establish non-optimality
is to note that the variance function, d(x,&,) = 6(x - %)* + 1, graphed above as the dashed curve
(parabola), does exceed the cut-line y = 2. These designs and determinant values are obtained using
SAS/IML and graphs can easily be plotted using SAS/GRAPH. m
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CONCLUSION

As highlighted above, it is incumbent upon the practicing statistician to more directly adapt the
statistical techniques to better address the practitioner’s research queries, and using the SAS® NLMIXED
and IML procedures (in addition to others) can often give the consultant the means to do so.
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APPENDIX

Output 1. Linear LOF Tests

PVAL1
0.1003176

F_LOF1
1.9965096

F_LOF2
7.6061499

PVAL2
0.0103079

Output 2. Heteroskedastic One-Way ANOVA

THETAA N2LLA
5.829999 72.939999 70.689999 2.3220895 6.9381841 2.0549695 99.995372
THETAB N2LLB
71.864014 4.595775 7.0211213 2.3666872 116.71103

TESTSTAT PVAL

16.715658 0.0002346
Output 3a. Calibration, PLCI's and Curvature — PROC NLIN

The NLIN Procedure
Sum of Mean Approx
Source DF Squares Square F Value Pr > F
Model 1 348.1 348.1 24.49 0.0078
Error 4 56.8451 14.2113
Corrected Total 5 404.9
Approx Approximate 95%

Parameter Estimate Std Error Confidence Limits Skewness
b -0.7309 0.1477 -1.1410 -0.3209 -104E-18
g13 26.8686 3.7519 16.4517 37.2854 1.0035

Approximate Correlation Matrix

b 13
b 1.0000000 0.8276845
g13 0.8276845 1.0000000
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Output 3b. Calibration, PLCI’s and Curvature — IML

TH SIG WALD
-0.730929 3.7697852 -1.14099 -0.320868
26.868578 16.451585 37.28557

ADJGAM ADJBET FUNC
-2.65E-17 -7.98E-17 1
0.1672435 0.0343997 0.6597623

MCBETACI
-1.14099 -0.320868
18.526309 44.884949

PL
-1.14099 -0.320868
19.498871 48.35563

OVER
1 1
0.5575061 0.8510444

Output 4. Binomial Likelihood Confidence Interval

Optimization Results
Parameter Estimates

Gradient
Objective
N Parameter Estimate Function
1 X1 0.003931 -0.000005051

Value of Objective Function = 3.269083E-12

Optimization Results
Parameter Estimates

Gradient
Objective
N Parameter Estimate Function
1 X1 0.262078 1.615404E-13

Value of Objective Function = 2.031197E-14

Output 5. Bioassay and the Assessment of Drug Synergy

The NLMIXED Procedure

Specifications
Data Set WORK.ONE
Dependent Variable y
Distribution for Dependent Variable Binomial
Optimization Technique Dual Quasi-Newton
Integration Method None
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Dimensions
Observations Used 20
Parameters 4

Fit Statistics
-2 Log Likelihood 80.6

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha Lower Upper
th2 9.9531 1.0590 20 9.40 <.0001 0.05 7.7441 12.1621
th3 1.8018 0.1612 20 11.18 <.0001 0.05 1.4655 2.1381
th4 0.9002 0.1170 20 7.69 <.0001 0.05 0.6562 1.1442
ths -1.0349 0.1390 20 -7.44 <.0001 0.05 -1.3248 -0.7449

Output 6. Obtaining and Verifying Optimal Designs

Optimization Results
Parameter Estimates
Gradient Active

Objective Bound
N Parameter Estimate Function Constraint
1 X1 1.477225E-18 0.250000 Lower BC
2 X2 1.000000 -0.250000 Upper BC
3 X3 0.500002 -0.249999
4 X4 0.499998 -0.250001

Value of Objective Function = -0.0625
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