
1 

Paper 110 – 2010 

 

Using PROC SQL to Build and Incrementally Update a Data Mart 

Ben Cochran, The Bedford Group, Raleigh, NC 

 
Abstract  
Often SAS users need to access data from non-SAS sources. This is especially true when constructing a SAS data 
warehouse from other vendors’ databases.  While this task is not too difficult, sometimes unforeseen challenges 
can arise, especially when dealing with date values. This tutorial initially takes a look at several methods for 
accessing different kinds of data to do the initial load of the data warehouse. Then attention is given to various ways 
of doing incremental updates and how to overcome some potential problems.  
         
This paper follows the tasks that were involved in a specific retail application and how a certain organization faced 
and overcame the challenges that accompany building and updating a data warehouse.  To accomplish its 
objectives, this paper is divided into seven sections. The first section looks at the environment and issues 
surrounding the initial load of the warehouse.  The second part looks at the inevitable task of data manipulation, 
specifically dealing with date values. The third part examines methods for finding out the maximum date value of 
transactions in the data warehouse.  Next, the paper looks at finding the maximum date values in the operational 
data that feeds the warehouse. The fifth step looks at the method for comparing the maximum date of the 
warehouse transactions with the maximum date of the operational data. The sixth  step looks at doing the actual 
updating itself.  The seventh  step looks at accomplishing the above by using  the SAS/ACCESS® LIBNAME 
statement.  

 

Part I:  Introduction and Initial Load 

 

Background: A national retail organization recently built a data warehouse that allows it to analyze the 

purchasing patterns of its customers.  The organization wanted to find out who its best customers are so that ways 
might be devised to reward them, with programs like a frequent buyer’s club.  It also wanted to find out who its  
worst customers are, so that it can cease mailing them expensive catalogs on a monthly basis.   
 
This organization has almost 100 stores all across the United States.  Every night, each of these stores uploads its 
transactional data to a regional server.  Then, every few days, the sales data is loaded into Sybase tables.  The 
plans are  to build a SAS data warehouse (or data mart) from the Sybase tables  (figure. 1) 

 

 



2 

 Figure 1. 

 
For the sake of simplicity, this paper will focus only on the loading and updating of the Sales_Header SAS dataset 
from the Tx_Header Sybase table.  Before the code can be written to perform the initial load, the column names of 
the Sybase tables need to be known. The column names for the Tx_Header Sybase table are shown below  (Figure 
2).   Notice the column names.  Especially notice that there are three separate fields for the date of the sale;  
rcpt_dte_yy, rcpt_dte_mm, and rcpt_dte_dd.  
 

 
Figure 2.  Sybase Data 

 

 

Steps to Building the Data Mart 
The following six steps were taken to build the data mart:  

1. Do the initial load, 

2. Perform any data manipulation necessary 

3. Get the maximum date values from the data mart 

4. Get the maximum date values from the DB2 table 

5. Compare dates 

6. If the maximum Sybase date is greater than the maximum data mart (SAS) date, then refresh the data.       

 

 

Step 1: Do the Initial Load  

Using the SAS/ACCESS Libname statement, the step that performs the initial load looks as follows: 

 

 
Program 1.   

 

All the rows that were in the TX_Header SYBASE table have now been read into SAS_3.SALES_HEADER.    The 
next step is to perform any data manipulation.  

 

libname  s_tables  SYBASE   user = BTC123  password = xxx  database = lwdw11A   

               server = lwdw11A   preserve_tab_names=yes ; 

 

proc sql; 

        create table sas_3.sales_header as  

        select  account_number,  sales_amount,  rcpt_dte_yy  as  sales_year,  

       rcpt_dte_mm  as  sales_month,  rcpt_dte_dd   as   sales_day, 

      rcpt_number,        store_id  

        from  S_Tables.TX_HEADER  ;  

quit;                                  



3 

 

 

 

 

Step 2: Data Manipulation 
One example of the type of data that needs to be manipulated is to create a SAS date value from the three  

independent date columns read from of the SYBASE table.  The following DATA step performs step 2.        

 

.Program  2. 

     

There may be many more types of data manipulation necessary at this point.   The creation of a SAS date as seen 

here represents the kind of work that may be needed here.   

 

Steps one and two could be done with a single PROC SQL step as shown next.  

 

Program  3. 

 

So now we have done the initial load and taken care of some data manipulation issues.   

 

 

 

Step 3:  Find the latest transaction date in the Data Mart  
 

The next step is to find the maximum date and the record count from the data in the data mart.  The next program 

does this by placing the maximum date in a macro variable named &cutoff.   Also, in this step, the number of 

observations in the Sales_Header data set are found and placed in a macro variable named &r_count.    

 

 

 

 

 

 

 

 

 

 Program 4.  

 

 

Step 4: Find the latest transaction date in the Sybase table    
The same approach is taken here by finding the maximum transaction date from the Sybase table and placing it in 
a 

macro variable, &LastSDate.    This is accomplished by first building a view (WORK.LATEST) that  uses the MDY 

 data step_2;   
        set sas_3.sales_header: 
        sales_date = mdy(sales_mon, sales_day, sales_year);   
  run; 

libname  s_tables  SYBASE   user = BTC123  password = xxx  database = lwdw11A   

               server = lwdw11A   preserve_tab_names=yes ; 

 

proc sql; 

        create table sas_3.sales_header as  

        select  account_number,  sales_amount,  rcpt_number,  store_id,  

                   mdy(rcpt_dte_mm, rcpt_dte_dd, rcpt_dte_yy) as sales_date   

        from  S_Tables.TX_HEADER  ;  

quit;                                  

proc sql;  

        select  max(sales_date),   count (*)   

                    into : cutoff,   : r_count    

        from  sas_3.Sales_Header ;  

quit;                           



4 

function to create a SAS date.  This value is put into a variable named DATE.   The second SELECT statement 
finds 

the MAX value of DATE and places it into a macro variable named &LASTSDTE.   

 
Program  5. 

 

So now we have the latest date from the Data Mart (&CUTOFF) and the latest date from the Sybase table  

(&LASTSDTE).  The next step (Step 5) is to compare these two dates.  If &LASTSDTE is NOT larger, then it is not  

time to do anything else.   If &LASTSDTE is larger than &CUTOFF, then it is time to run a program that updates the  

Data Mart (Step 6).   Both of these steps are run together as seen in the program step below.  

 

 

Step 5 and 6: Check to see if the Sybase records have been updated   
The next two steps are run at the same time and represents an occasion to conditionally execute a step in a 

program.  This is done in a macro program called  refresh .      

 

 
 Program  6.            

 

Step 5 is found in the %IF statement .  If the condition is true, then the PROC SQL step (Step 6) is run.   Step 6 

creates a data set named WORK.SALES_HEADER.  This data set  contains only the new records that were placed 

in the SYBASE table since the last update or the initial load.   Steps 5 and 6 are to be run together every time the 

data mart is to be updated.   

 

 libname  s_tables  SYBASE   user = BTC123  password = xxx  database = lwdw11A   

               server = lwdw11A   preserve_tab_names=yes ; 

 
 proc sql  noprint;  

      create view latest as  

      select  mdy(rcpt_dte_mm, rcpt_dte_dd, rcpt_dte_yy) as date  

      from S_Tables.Tx_Header ;  

 

      select max(date) into : lastsdte  

      from latest; 

 quit;   
 

 %put %sysfunc(int(&lastsdte), date9.).; 

      %macro refresh;  
            %if  &lastsdte   >   &cutoff  
                   %then  %do; 
                        .             ( proc sql code        )  
                        .             ( from next pages )  
                        .             ( goes here            )  
                   %end; 
     %mend; 
     %refresh;      

  

  %macro refresh;  
 

        %if  &lastsdte   >   &cutoff  
 

               %then  %do; 

 

                        proc sql; 

                                create table sales_header (drop = date) as   

                                select *,  mdy(rcpt_dte_mm, rcpt_dte_dd, rcpt_dte_yy) as date  

                                from  S_Tables.Tx_Header 

                                where calculated date > &cutoff ;    

                        quit ; 

 

              %end; 
 

  %mend refresh; 

 

  %refresh;      

 Step  5 

 Step  6 



5 

There is actually a step 7 that needs to be performed, which takes the new records and append them to the  

SAS_3.Sales_Header data set.   This is illustrated by the diagram below.   

 

 

 

 

 

 
Figure  3.  

 

 

The PROC APPEND code is shown below. 

 
 Program  7. 

  

  

Conclusion 
These steps represent the basic work that needs to be done to build and incrementally update the Data Warehouse 
or  Data Mart.  There may be other minor steps that need to be done depending on the environment or installation.  

 

 

     

Acknowledgments 
I would like to acknowledge and greatly thank the Technical Support Department at SAS Institute for their helpful 
knowledge and expertise that they so freely gave.    I would also like to thank Bob Passmore for his SAS Macro  

knowledge.   He and I worked together on the project  that was the inspiration for this paper. .   

  

Contact Information 
Your comments and questions are valued and encouraged.  Contact the author at: 

Ben Cochran  

The Bedford Group 

Raleigh, NC 27607 

Phone:  919.741.0370  

Email: bedfordgroup@nc.rr.com 

 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration.   

 

 

Tx_ 
Header 

SAS_3. 
Sales_ 
Header 

PROC  
SQL  

 

Tx_ 
Header 

PROC  
SQL  

Work. 
Sales_ 
Header 

PROC  
APPEND  

SAS_3. 
Sales_ 
Header 

  Step    6  

   proc append base = sas_3.sales_header  
                        data = work.sales_header ;  

   run;  



6 

Other brand and product names are trademarks of their respective companies.  

 


